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rows box (Figure 1-1).  The  “filter”  box allows an analyst to 
create a filter on either a dimension or measures. In Figure 
1, for example, the analyst performs a query over an FAA 
(US Federal Aviation Administration) database of flight 
delays, showing the average arrival delay by day of the 
week. 

Visualization of Queries 
When a query is issued, the system sends it to the back-end, 
which computes and returns an estimate and confidence 
bounds; the front-end displays a chart of the results. The 
estimate and bounds are updated every second with more 
rows of data.  

sampleAction displays all aggregates with a column chart. 
We chose column charts for their familiarity and versatility. 
The column charts is annotated with error bars (Figure 1) 
which are shown around each column. The error bars show 
the confidence bounds around the resulting data value. The 
error bars show the range of values that may occur at the 
confidence levels, while column height itself shows the 
current estimated value. For example, in Figure 1, an 

analyst can conclude that—with 90% probability—the true 
average delay on Friday  (day=5) is somewhere between 6 
and 12 minutes, while on Saturday is between 2 and 8 
minutes. These conclusions are drawn by looking at 56000 
rows, just 0.32% of the full database. 

sampleAction uses error bars to show the values of the 
estimate. However, there are new parameters that are not 
common in standard exploratory data visualization systems, 
which sampleAction is able to show (Figure 1). The display 
shows the number of rows of data examined so far, and how 
much of the total dataset this represents. A tooltip (Figure 
1-2) allows the user to know the number of datapoints that 
were used to compute a given estimate. Last, sampleAction 
shows how the bounds are changing over time (Figure 2); 
this can help an analyst decide how much longer it is worth 
waiting for more data.  

An analyst can pause or stop the incremental process at any 
time; in the current implementation, analysts can also start 
additional queries while the previous ones are still running. 

Figure 1. The Analytics panel in sampleAction showing an incremental visualization in progress. The analyst is looking at flight delays 
by day of week. (1) Selecting columns to be shown in (2) the visualization. Dark blue bars show current estimates; pale blue dots show 

the expected range of values. This prototype interface includes multiple selectable bounding algorithms. (3) A progress indicator 
showing that 0.32% of the database has been seen so far.  

Session: Visualization + Visual Analysis CHI 2012, May 5–10, 2012, Austin, Texas, USA
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D. Fisher, I. Popov, S. Drucker, and m. c. schraefel, “Trust me, i’m partially right: incremental 
visualization lets analysts explore large datasets faster,” in Proceedings of the SIGCHI Conference 
on Human Factors in Computing Systems, New York, NY, USA, 2012, pp. 1673–1682.
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When is this strategy viable?
How do we design systems

to take advantage of it?
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J.Ayres, J.Flannick, J.Gehrke, and T.Yiu. Sequential Pattern mining using a bitmap representation. In 
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AMIA 2014
Skrovseth, Perer, Delaney, Revaug, 

Lindsetmo, Augestad

"Detecting Novel Associations for 
Surgical Hospital Readmissions in Large 
Datasets by Interactive Visual Analytics” J

130



Contributions
§  A precise definition and design guidelines for 

Progressive Visual Analytics
§  An example Progressive Visual Analytics 

system, Progressive Insights
§  (In the paper) A case study of using 

Progressive Insights for exploring frequent 
patterns in EHR

131



Contributions
§  A precise definition and design guidelines for 

Progressive Visual Analytics
§  An example Progressive Visual Analytics 

system, Progressive Insights
§  (In the paper) A case study of using 

Progressive Insights for exploring frequent 
patterns in EHR

132



Contributions
§  A precise definition and design guidelines for 

Progressive Visual Analytics
§  An example Progressive Visual Analytics 

system, Progressive Insights
§  (In the paper) A case study of using 

Progressive Insights for exploring frequent 
patterns in EHR

133



Contributions
§  A precise definition and design guidelines for 

Progressive Visual Analytics
§  An example Progressive Visual Analytics 

system, Progressive Insights
§  (In the paper) A case study of using 

Progressive Insights for exploring frequent 
patterns in EHR

134



Chad Stolper
Georgia Tech
chadstolper@gatech.edu

135

Adam Perer
IBM T.J. Watson
Research Center

David Gotz
UNC Chapel Hill



Thank You!

Chad Stolper
Georgia Tech
chadstolper@gatech.edu

136

Adam Perer
IBM T.J. Watson
Research Center

David Gotz
UNC Chapel Hill



Questions?

Chad Stolper
Georgia Tech
chadstolper@gatech.edu

137

Adam Perer
IBM T.J. Watson
Research Center

David Gotz
UNC Chapel Hill



Questions?

Chad Stolper
Georgia Tech
chadstolper@gatech.edu

138

Adam Perer
IBM T.J. Watson
Research Center

David Gotz
UNC Chapel Hill



Progressive Visual Analytics

Seven Design Guidelines

139



Progressive Visual Analytics Systems
Analytics should…
1.  Provide increasingly meaningful partial 

results as the algorithm executes
2.  Allow users to focus the algorithm to 

subspaces of interest 
3.  Allow users to ignore irrelevant subspaces
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Progressive Visual Analytics Systems
Visualizations should…
4.  Minimize distractions by not changing views 

excessively
5.  Provide cues to indicate where new results have 

been found
6.  Support on-demand refresh
7.  Provide an interface to specify where the analytics 

should focus and ignore
141


