Software Visualization Reflections and Future Directions

John Stasko
Information Interfaces Research Group College of Computing and GVU Center Georgia Tech

stasko@cc.gatech.edu www.cc.gatech.edu/~john.stasko

Software Visualization

- Definition
"The use of the crafts of typography, graphic design, animation, and cinematography with modern humancomputer interaction and computer graphics technology to facilitate both the human understanding and effective use of computer software."

Price, Baecker and Small, '98

Software Visualization Areas

- Algorithm Visualization
- Pedagogy
- Systems
- Use in classroom
- Empirical study
- Program Visualization
- Software engineering
- Debugging
- Program analysis
- Systems

Algorithm Animation Program Visualization

Tango

Multiple frames from bubblesort

IEEE Computer '90 JVLC '90

Tango Model

- Image, Location, Path, Transition

Tango Contributions

- Importance of smooth animation
- Simplification of the design/programming process
- Formal model of the animation, the PathTransition Paradigm

XTango

- Native X Windows version of Tango

Tango
 BWE

 XTangoD. Hayes

SIGACT News '92

DANCE

- Why not design an algorithm animation visually?
- Direct manipulation environment for interactive, visual design of algorithm animations
=> Automatically generates Tango code

Animating Tree Algorithms

Concurrent Programs

- Understanding parallel programs is even more difficult than serial
- Visualization and animation seem naturals for illustrating concurrency
- Temporal mapping of program execution to animation becomes critical

Tango Insufficiencies

- Simulated object-oriented
- One animation window
- Transition model

Must compose all transitions into one "super" transition, then perform it

POLKA

- Improved animation design model
- Object-oriented paradigm
- Multiple animation windows
- Much richer visualization/animation capabilities
E. Kraemer

JPDC '93
Bun Step siow Q Fast Quit

그표 out
Debua Reiriesh close

POLKA Model

- Location, AnimObject, Action
- Introduce explicit animation time (frame)

$$
0123456789
$$

t

POLKA Programming Model

```
Circle *circ;
Loc *loc, *center;
Action *act;
int len;
circ = new Circle(this,1, 0.2,0.3, 0.1,"red", 1.0);
circ->Originate(time);
center = circ->Where(PART_C);
loc = new Loc(0.6, 0.5);
act = new Action("MOVF", center, loc, 20);
len = circ->Program(time, act);
time = Animate(time, len);
```


Concurrent Programs

- New model better, more flexible for illustrating concurrent program actions
- Polka used to build animation libraries for a variety of architectures/programming paradigms
- message passing
- shared memory
- compiler-driven parallelism

Message Passing

PVM/Conch

B. Topol
V. Sunderam

ICDCS '95 IJPDSN '98

Threads

Pthreads

High Performance FORTRAN

Example Program IIllustration

Array values view

Debuy Refresh Gose
『 $\bar{\square} \nabla$ 回 our
History of exchanges view

Temporal Mapping

- Many temporal mappings exist from a concurrent program's execution to its animation
- timestamp
- serialized
- maximum concurrency

Animation Choreographer

- Visual depiction of program events and dependencies
- Allows viewer to manipulate events in time, then see animation that reflects that temporal order
IPPS '94
E. Kraemer
Concurrency '98

Animation Choreographer

time

PVaniM

- Visualizing PVM programs on-line
- Must use sampling, not tracing due to sheer number of events
- Shows machine loads, host utilization, memory used, messages sent, communication patterns, etc.

B. Topol
V. Sunderam

PVaniM

\square PVanim 2.0

Basic
system UI

Polka-3D

- 3-D and VR version of Polka
- Same animation model
- Use third dimension to
- Enhance visual aesthetics
- Portray 3-D data
- Encode more program attributes
- Not sure appropriate for algo anim
J. Wehrli

VL '93

POLKA-3D

Quicksort side view

Blue dots are as in 2-d view

Colored planes represent exhanges

Polka-RC

- Rather than time being animation frames, what if we use elapsed wall clock time?
- Challenging under X Windows
- Not clear if this is desirable for algorithm animations
S. McCrickard

Austral Comput Jrnl '95

Polka-RC

```
Action a1("RESIZE", rect1,
    Traj(CLOCKWISE, 0.2,-0.1,slowinout) ,
    START_A⿱T, NOW(),
    DURATION, Sec(1.5));
```

Programming model

```
Action a2("MOVE", rect1,
    Traj(STRAIGHT, loc1, loc2, uniform),
    START_AFTFFR_FND_OF, &a1, Sec(0.5),
    VFLOCITY,50)
```

```
Action mov1("MOVF", elt[i],
    Traj (CLOCKWISE, from, to, uniform) ,
    START_Aㅗ, ASAP(), V로OCITY, 50);
```

Schedule (\&a1) ;
Schedule (\&a2) ;
Schedule(\&mov1);

Visualizing Large Data Sets

Uses semantic zooming

Sorting 5000 elements

View all data

Zoom to first 10\%

Zoom further

Visual Debugging

- Can we adapt algorithm animation capabilities to help programmers debug their code?
- Want to go beyond data structure displays
- Show semantics of program's domain
- Easy specification by programmer

Animation design palette

Source code

Lens System

- Architectural model

Runs animation, controls UI
Runs dbx, executes program
S. Mukherjea

ICSE '93 ToCHI '94

Empirical Evaluation of Algorithm Animations as Learning Ajds

- Can we show that algorithm animations can help students learn?
- Compare learning with animation to learning without
- Measuring understanding is difficult
- Four main studies

1. Pairing Heaps

- Classical experimental design
- Just having animation doesn't make learning happen
- Difficult for student to leverage animation of complex algorithm when they don't understand algorithm and visual mapping yet
A. Badre
C. Lewis

2. Introductory Algorithms

- Sorting, graphs
- Interaction is the key
- Students who enter their own data sets into the algorithm benefited from animation
A. Lawrence
A. Badre

3. Binomial Heap \& DFS

- Is animation like prediction?
- Does it help the student to anticipate what will happen next and learn from that?
- Mixed data, some support
M. Byrne
R. Catrambone

4. Homework Scenario

- Provide student with learning objectives/ questions up front
- Give unlimited work time
- Animations appear to help motivation
- Make a complex algorithm less intimidating
- Animation helped learning
C. Kehoe
A. Taylor

IJHCS '00

Student-Built Animations

- Samba
- Simple animation scripting language

```
circle 1 0.8 0.8 0.1 red half
line 2 0.1 0.1 0.2 0.2 green thin
rectangle 3 0.1 0.9 0.1 0.1 blue solid
text 4 0.0 0.0 0 black Hello
circle 6 0.3 0.3 0.2 wheat solid
triangle 7 0.5 1.0 0.6 0.8 0.4 0.9 cyan solid
bigtext 8 0.2 0.2 0 black Some Big Text
moveto 1 6
moverelative 3 0.05 -0.4
jumprelative 4 0.4 0.4
lower 1
color 6 blue
```

- Embed print statements in any program to generate SIGCSE ‘97

Visualizing Large 0-O Programs

Current State of Software Visualization

- Research continues...
- Some use of algorithm animations as pedagogical aids
- Program visualization trickling into commercial tools

What's Needed? (AA)

- Focus on interactive tools
- Simpler animation construction
- Empirical validation of value

What's Needed? (PV)

- Better analysis of what software developers want and need
- Flexible displays providing overview and detail
- Improved tracing/monitoring/analysis capabilities

Acknowledgments

- Research supported by National Science Foundation, Sun, and the GVU Center
- More info
- www.cc.gatech.edu/gvu/softviz
- stasko@cc.gatech.edu

