Quantifying the Performance Effect of Window Snipping in Multiple-Monitor Environments

Duke Hutchings John Stasko

NSF Support: IIS-0414667

Multiple-Monitor Environments

Window Snipping – DEMO

Foundational Field Studies

The widened gap: User Focus vs. Input Focus

Many Snips...

Field Observations

- Created more visible windows with Snip
- Concentrated snips on a "reference monitor"

What can multiple monitor users expect to gain by snipping windows for reference?

Study Setup

Recruiting

- Word of mouth and face-to-face requests
- Participants must be fluent in English
- Participants must not have used Snip before

Equipment

- Standard desktop computer running Windows XP
- Two monitors side-by-side, new dual-monitor card
- 17" LCD displays at 1280 × 1024 pixels, landscape

Setup

8

Experiment Phases

- Snip phase
- Arrange Phase
- Reference Phase
- Brief Interview

Relevant Details

- Participants respond to 8 sets of 12 statements
- 2 sets are practice, 6 sets are timed
- 3 corresponding sets of 2, 4, and 6 windows
- "Always a piece visible" in the regular set
- No content overlap but questions are equivalent
- Balancing
 - 246, 264, 426, 462, 624, 642
 - 1/2 snipped-regular, 1/2 regular-snipped

Snip Phase

Snip Phase

Relevant Details

- Participants perform 19 Snip operations
- 5 Snips are practice, 14 Snips are timed
- 7 unique windows from Reference Phase
- Snip points are given to guide Snipping

Hypotheses

Main Hypothesis

 The total time needed to respond to the statements in the Snipped sets will be significantly less than for the regular sets

Secondary Hypothesis

 Given that the main hypothesis holds, there will be a direct relationship between number of windows and size of the differences

Participation

- 13 enrolled but one cancelled (no show)
- 12 participants (balancing needs factor of 12)

	2 Windows		4 Windows		6 Windows		
	Regular	Snipped	Regular	Snipped	Regular	Snipped	
\overline{x}	92.11 sec	65.44 sec	92.94 sec	62.86 sec	79.16 sec	66.28 sec	
σ	25.50	20.37	21.96	16.27	18.23	20.68	
p	0.00	0.0000		0.0000		0.0007	

How much time did participants save? Values are expressed in seconds per reference

	2 windows	4 windows	6 windows
Average case	2.22	2.51	1.07
"Worst case"	1.48	2.02	0.36

Secondary hypothesis not upheld

Time needed to Snip a window

$T(W_s)$	Button to StartReg	StartReg to EndReg	Total
$\frac{1}{x}$	1.47 sec	1.87 sec	3.34 sec
σ	0.41	0.65	
$\frac{1}{x+\kappa}$	1.55 sec	2.00 sec	3.55 sec

References needed to pay off Snip overhead time

			Average case		Worst case	
R_W			Region only	Reg + Button	Region only	Reg + Button
			1.87 s	3.34 s	2.00 s	3.55 s
Average case	2	2.22 s	2 refs	4 refs	2 refs	4 refs
	4	2.51 s	3 refs	6 refs	4 refs	6 refs
	6	1.07 s	11 refs	19 refs	12 refs	20 refs
Worst case	2	1.48 s	3 refs	5 refs	3 refs	5 refs
	4	2.02 s	4 refs	7 refs	4 refs	8 refs
	6	0.36 s	32 refs	56 refs	34 refs	60 refs

Discussion: Arrangement

			Average case		Worst case	
R_W			Region only	Reg + Button	Region only	Reg + Button
			1.87 s	3.34 s	2.00 s	3.55 s
Average case	2	2.22 s	2 refs	4 refs	2 refs	4 refs
	4	2.51 s	3 refs	6 refs	4 refs	6 refs
	6	1.07 s	11 refs	19 refs	12 refs	20 refs
Worst case	2	1.48 s	3 refs	5 refs	3 refs	5 refs
	4	2.02 s	4 refs	7 refs	4 refs	8 refs
	6	0.36 s	32 refs	56 refs	34 refs	60 refs

Interview Notes

- Snipped sets were never overwhelming
- Felt faster with Snip than without it
- Understood mechanics of Snip, one asked for keycut
- Half said they would use every day, half occasionally

Summary

Main Hypothesis holds; strong evidence of **time-efficiency** gain

Particularly promising for long-snipped windows... but need to further investigate 6-window finding

Complements **space-efficiency** gain observed in Snip field study

Future Work

- "Anti-Snip" UI holes for privacy or constrained use
- Automation with Snip and better history mechanisms
- Impact of tools in other window managers

Quantifying the Performance Effect of Window Snipping in Multiple-Monitor Environments

Duke Hutchings John Stasko

NSF Support: IIS-0414667