Low-Level Components of Analytic Activity in Information Visualization

Robert Amar, James Eagan, & John Stasko

Information Interfaces Research Group College of Computing & GVU Center Georgia Institute of Technology

Motivating Question

 Are there (low-level) categories of analytic activities people perform when using information visualization systems?

If so, what are they?

Existing Work

Wehrend & Lewis (Vis '90)

<u>User tasks</u>

identify locate

iocate

distinguish

categorize

cluster

distribution

rank

compare within relations

compare between relations

associate

correlate

Roth & Mattis (CHI '90)

<u>User information-</u> <u>seeking goals</u>

value lookup

compare within relations

compare between relations

distribution

functional correlation

indexing needs

Shneiderman (VL '96)

Visualization task

overview

zoom

filter

details on demand

relate

history

extract

Existing Work

Zhou & Feiner (CHI '98)

<u>User goals in creating multimedia</u>

<u>presentations</u>

<u>Inform</u>		Enable			
Elaborate	Summarize	Explore		Compute	
Emphasize Reveal	Associate Background Categorize Cluster Compare Correlate Distinguish Generalize Identify Locate Rank	Search Categorize Cluster Compare Correlate Distinguish Emphasize Identify Locate Rank Reveal	Verify Categorize Compare Correlate Distinguish Identify Locate Rank Reveal	Sum Correlate Locate Rank	Differentiate Correlate Locate Rank

Shortcomings

- Focus on a generated presentation or infovis system as end-result
 - User tasks a subcomponent
- Issues with task sets (important ones left out)

Background

- Use "commercial tools" class assignment (early in class)
- Students generate questions to be answered using commercial infovis systems
- Data sets:

Domain	Data cases	Attributes	Questions Generated
Cereals	78	15	43
Mutual funds	987	14	14
Cars	407	10	53
Films	1742	10	47
Grocery surveys	5164	8	39

Generated 196 total analysis tasks

Background

- Use "commercial tools" class assignment (early in class)
- Students generate questions to be answered using commercial infovis systems
- Data sets:

Domain	Data cases	Attributes	Questions Generated
Cereals	78	15	107
Mutual funds	987	14	41
Cars	407	10	153
Films	1742	10	169
Grocery surveys	5164	8	126

Generated 596 total analysis tasks

Rang Genda like What ranges do the middle 75% of funds perform

What is the range of length of films?

What is the range of possible horsepower for cars

extreme value of attribute

Find

- Which manufacturers are healthiest?

or releasest cars have the worst MPG?

Find the Fidelity with the highest net asset

Japanese, European ar

- Which cereals a west in fat and sugar?

Find the heaviest car

a 5 accelerating cars

What are the highest and lowest purchase amounts?

Which cars have the highest horsepower and the best MPG?

- Which car has the biggest engine?

and lower wa

determine their
Which cereal is the r

- Locate cereal:

which is the

- Identify the c

which car has the best

Which actor is the most por

What were the most pathey mostly recent?

What category

Identify the chain with the highest a

Find the car will

Which category of funds has the beperformance?

- What car has the best accele

Which cereals are low in carbohydrates

the highest horsepaner?

Find the shortest and longost senade after year

X that are not music videos.

What is the longest lim?

Terminology

- Data case An entity in the data set
- Attribute A value measured for all data cases
- Aggregation function A function that creates a numeric representation for a set of data cases (eg, average, count, sum)

1. Retrieve Value

General Description:

Given a set of specific cases, find attributes of those cases.

- What is the mileage per gallon of the Audi TT?
- How long is the movie Gone with the Wind?

2. Filter

General Description:

Given some concrete conditions on attribute values, find data cases satisfying those conditions.

- What Kellogg's cereals have high fiber?
- What comedies have won awards?
- Which funds underperformed the SP-500?

3. Compute Derived Value

General Description:

Given a set of data cases, compute an aggregate numeric representation of those data cases.

- What is the gross income of all stores combined?
- How many manufacturers of cars are there?
- What is the average calorie content of Post cereals?

4. Find Extremum

General Description:

Find data cases possessing an extreme value of an attribute over its range within the data set.

- What is the car with the highest MPG?
- What director/film has won the most awards?
- What Robin Williams film has the most recent release date?

5. Sort

General Description:

Given a set of data cases, rank them according to some ordinal metric.

- Order the cars by weight.
- Rank the cereals by calories.

6. Determine Range

General Description:

Given a set of data cases and an attribute of interest, find the span of values within the set.

- What is the range of film lengths?
- What is the range of car horsepowers?
- What actresses are in the data set?

7. Characterize Distribution

General Description:

Given a set of data cases and a quantitative attribute of interest, characterize the distribution of that attribute's values over the set.

- What is the distribution of carbohydrates in cereals?
- What is the age distribution of shoppers?

8. Find Anomalies

General Description:

Identify any anomalies within a given set of data cases with respect to a given relationship or expectation, e.g. statistical outliers.

- Are there any outliers in protein?
- Are there exceptions to the relationship between horsepower and acceleration?

9. Cluster

General Description:

Given a set of data cases, find clusters of similar attribute values.

- Are there groups of cereals w/ similar fat/calories/sugar?
- Is there a cluster of typical film lengths?

10. Correlate

General Description:

Given a set of data cases and two attributes, determine useful relationships between the values of those attributes.

- Is there a correlation between carbohydrates and fat?
- Is there a correlation between country of origin and MPG?
- Do different genders have a preferred payment method?
- Is there a trend of increasing film length over the years?

Discussion/Reflection

- Compound tasks
 - "Sort the cereal manufacturers by average fat content"
 Compute derived value; Sort

 "Which actors have co-starred with Julia Roberts?"
 Filter; Retrieve value

Discussion/Reflection

- What questions were left out?
 - Basic math
 "Which cereal has more sugar, Cheerios or Special K?"
 "Compare the average MPG of American and Japanese cars."
 - Uncertain criteria
 "Does cereal (X, Y, Z...) sound tasty?"
 "What are the characteristics of the most valued customers?"
 - Higher-level tasks
 "How do mutual funds get rated?"
 "Are there car aspects that Toyota has concentrated on?"
 - More qualitative comparison
 "How does the Toyota RAV4 compare to the Honda CRV?"
 "What other cereals are most similar to Trix?"

Discussion/Reflection

- Shares overlap with taxonomies discussed earlier
- Shares operations with spreadsheets or DB languages such as SQL

Concerns

- InfoVis tools may have influenced students' questions
- Graduate students as group being studied
 - How about professional analysts?
- Subjective Not an exact science

Contributions

- Set of <u>grounded</u> low-level analysis tasks
- Potential use of tasks as a language/vocabulary for comparing and evaluating infovis systems
- Continue emphasis and focus on enduser goals and tasks

Thanks for your attention!

Acknowledgments:

- Research supported in part by NSF IIS-0414667
- Thanks to all the students from CS 7450

www.cc.gatech.edu/gvu/ii/vistasks

