
Visually Encoding Program Test 
Information to Find Faults in Software

James Eagan, Mary Jean Harrold, 
James A. Jones, John T. Stasko

College of Computing / GVU Center
Georgia Institute of Technology

Supported by Boeing Commercial Airplane Group, 
National Science Foundation, and the Yamacraw Project



Area

• Software creation & 
maintenance

• Locate faults after failures 
(debugging)

• Reduce the time and cost 
necessary to debug



Particular Focus

• Testing of large software systems
• Large suites of tests

– Able to characterize whether a program 
• Passes on a test (Execution is judged correct)
• Fails on a test (Execution is judged incorrect)



Test Data

• Execution summary on test suite
– For each test case

• Its pass/fail status
• Statements that it executes

Test # Status Statements
1 P 12 13 14 24 25 27 28 …
2 P 12 13 14 15 16 …
3 F 12 13 124 125 126 …
...



The Problem

• Analyzing one failed test (traditional)
– Just one data point
– Neglects context of all other tests

• Analyzing whole suite
– Huge data set
– Locating bug by analyzing this textual 

summary is at best tedious and difficult
– Desire a better way of representing the 

summary of the test suite execution



One Approach
• Visualize the execution of all tests
• Display statements in program according to 

the test cases that execute them
On

ly
 fa

ile
d

tes
t c

as
es

Bo
th

 pa
ss

ed
 &

fa
ile

d t
es

t c
as

es

On
ly

 pa
ss

ed
tes

t c
as

es

Statements
executed by:



Example
mid() {
int x,y,z,m;

1: read(“Enter 3 numbers:”,x,y,z);
2: m = z;
3: if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8: else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13: print(“Middle number is:”, m);

}

3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

Test Cases

Pass Status: P P P P P F

h
h
h

h
h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h

h

h
h
h

h

h

h
h
h

h
h

h

Fault



Example

3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

Pass Status: P P P P P F

h
h
h

h
h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h

h

h
h
h

h

h

h
h
h

h
h

h

Test Cases

mid() {
int x,y,z,m;

1: read(“Enter 3 numbers:”,x,y,z);
2: m = z;
3: if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8: else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13: print(“Middle number is:”, m);

}



Our Approach

• Distribute statements executed by both 
passed and failed test cases over spectrum

• Use hue and brightness to communicate 
status more clearly

On
ly

 fa
ile

d
tes

t c
as

es

Bo
th

 pa
ss

ed
 &

fa
ile

d t
es

t c
as

es

On
ly

 pa
ss

ed
tes

t c
as

es

Discrete Approach:

Continuous Approach:



Hue

• Compare ratios of passed and failed 
tests through statement

• Slide toward higher percentage



Brightness

• Encodes ratio of passed or failed 
(whichever is higher) through statement

• Higher percentage makes statement 
brighter, lower makes it darker



Example

3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

Pass Status: P P P P P F

h
h
h

h
h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h

h

h
h
h

h

h

h
h
h

h
h

h

Test Cases

mid() {
int x,y,z,m;

1: read(“Enter 3 numbers:”,x,y,z);
2: m = z;
3: if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8: else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13: print(“Middle number is:”, m);

}



Scalability
• Large programs difficult to display
• Use the line-of-pixels, SeeSoft, view
• Each character in the source is displayed as a pixel

mid() {
int x,y,z,m;
read(“Enter 3 numbers:”,x,y,z);
m = z;
if (y<z)

if (x<y)
m = y;

else if (x<z)
m = y;

else
if (x>y)

m = y;
else if (x>z)

m = x;
print(“Middle number is:”, m);
}

[Eick,Steffen,Sumner,
TSE 1992]



Tarantula



Initial Evaluation

• Two questions to ask
– How red are the faulty statements?
– How red are the non-faulty statements?

• Preliminary tests on one system appear 
promising
– Faults are typically red
– Non-faults aren’t red very much
– Submitted ICSE paper



Future Work
• Further evaluation
• Examining perception of colors better
• Understanding bug-finding process

– What other views and analyses would be 
useful?

– How to incorporate system in larger 
software engineering context


