Visually Encoding Program Test
Information to Find Faults in Software

James Eagan, Mary Jean Harrold,
James A. Jones, John T. Stasko

College of Computing / GVU Center
Georgia Institute of Technology

Supported by Boeing Commercial Airplane Group,
74r
Re

istotle National Science Foundation, and the Yamacraw Project nformation
search Group Mgrfaug

Area

. \
e Software creation &
maintenance \

* Locate faults after failures
(debugging) »

 Reduce the time and cost
necessary to debug

ristotle
Research Group

mormation
merfaces

Particular Focus

» Testing of large software systems

» Large suites of tests

— Able to characterize whether a program
» Passes on a test (Execution is judged correct)
 Fails on a test (Execution is judged incorrect)

ristotle n'Fﬂl'mﬂ'hﬂ‘“
Research Group nterfaces

Test Data

. \ g
* Execution summary on test suite

— For each test case
* |ts pass/fail status
o Statements that it executes

|

Test # St at us St at enent s

1 P 12 13 14 24 25 27 28 ...
2 P 12'13 14 15 16 ...
3 = 12 13 124 125 126 ...

ristotle
Research Group

mormation
merfaces

The Problem

» Analyzing one failed test (traditional)
— Just one data point
— Neglects context of all other tests

* Analyzing whole suite
— Huge data set
— Locating bug by analyzing this textual
summary is at best tedious and difficult

— Desire a better way of representing the
summary of the test suite execution

ristotle n'Fﬂl'mﬂ'hﬂ‘“
Research Group nterfaces

One Approach

* Visualize the execution of all tests

* Display statements in program according to
the test cases that execute them

o)
NS
NS
S

N
Q

o &
2

&

Statements
executed by:

¥ o
| D L >
O v &
s O & o
g & s
9 5 &
S NSRS
X O

ristotle
Research Group

mormation
merfaces

Example

Test Cases
md() w |G S| | 2
Int X,V,z,m N~ n|a
1. read(“Enter 3 nunbers:” Xx,Vy,Z); | o o o | o o
2: m= Z; | o| o| o| o| o o
3: | f (y<Z) ° ° ° ° ° °
4: Ri (X<y) °
5: m= vV; °
6: else if (x<z) ° o | o
/. m=vy; ° °
8. else ° o | o
9: | f (X>y) °
10: m= vy, °
11: else I f (x>2)
12: m = X;
13: print(“Mddle nunber is:”, m; o o o o | o o
} Pass Status: ([P [P [P |P | P
Research Group n’rerf'am

Example

Test Cases
mid() { S RS RS RN B
Int X,V,z,m N~ n|a
1: ° ° ° ° ° °
2: ° ° ° ° ° °
3: o o o o o o
4: °
5: °
6: el se if (x<z) ° o | o
& m = : ° °
8: ° ° °
9: °
10: °
11: else I f (x>2)
12: m = X;
IRMEprint(“Mddl e nunber is:”, m; o o o 0o o o
} Pass Status: ([P (P |P |P | P
Research Group n’rerf'aneg

Our Approach

- Distribute statements executed by both
passed and failed test cases over spectrum

. | .
* Use hue and brightness to communicate
status more clearly
Y&

Discrete Approach:

Continuous Approach:

ristotle nfﬂrmﬂ‘hﬂl'l
Research Group ﬂ'l'EI'Fﬂﬂ&g

Hue

« Compare ratios of passed and failed
tests through statement

» Slide toward higher percentage

Y% passed(s)

IOW hue (red) -+ W * hue range

ristotle n'Fﬂl'mﬂ'hﬂ‘“
Research Group ﬂ'l'EI'Fﬂﬂ&g

Brightness

* Encodes ratio of passed or failed
(whichever is higher) through statement

* Higher percentage makes statement
brighter, lower makes it darker

bright(s) = max(% passed(s),% failed(s))

ristotle n'Fﬂl'mﬂ'hﬂ‘“
Research Group ﬂ'l'EI'Fﬂﬂ&g

Example

Test Cases
. _ <
mid() { | o] o] | | =
int x,y,z, m =W v
11: else I f (x>2)
12: m= X;
IKMEprint(“Mddl e nunber is:”, m; o | o| o | o | o | o
} Pass Status: ([P |P |P [P | P

ristotle n'Fﬂl'mﬂ'hﬂl'l
Research Group ﬂ'l'BI'Fﬂﬂ&g

Scalability
» Large programs difficult to display
» Use the line-of-pixels, SeeSoft, view
« Each character in the source is displayed as a pixel

read(“Enter 3 nunbers:”

-

else if (x>z) |
m= x;
Amie print(“Mddl e nunber is:”, m; wformation

Research Group nterfacee

[Eick,Steffen,Sumner,
TSE 1992]

Tarantula

ristotle
Research Group

File
Default

SRR

1||

Summary

1’“1 Vl

[|‘ | |‘ ‘u

Tarantula Codeliewer

Passes (! Fails [Mixed ® Shaded Summary

w'

‘moon l

"N

LI

t 'w!' 1
S

P — ——
—_—

— —_

. —
—
—
A——

I

1" V' 'wm,'l'wur

mormation
merfaces

Initial Evaluation

» Two questions to ask
— How red are the faulty statements?
— How red are the non-faulty statements?
* Preliminary tests on one system appear
promising
— Faults are typically red
— Non-faults aren’t red very much
— Submitted ICSE paper

ristotle n'Fﬂl'mﬂ'hﬂ‘“
Research Group nterfaces

Future Work

* Further evaluation
« Examining perception of colors better

« Understanding bug-finding process

— What other views and analyses would be
useful?

— How to incorporate system in larger
software engineering context

ristotle n'Fﬂl'mﬂ'hﬂ‘“
Research Group nterfaces

