Visualization of Test Information to Assist Fault Localization

> James A. Jones, Mary Jean Harrold, John Stasko Georgia Institute of Technology

Supported by Boeing Aerospace Company, National Science Foundation, and the Yamacraw Project

nformation nterfaces

Outline

- Approach
- Demonstration of Prototype
- Case studies
- Related Work
- Conclusions & Future Work

nterfaces

More suspicious of being faulty

Approach

Consider two statements

Approach

- Utilizes
 - pass/fail results of executing test cases
 - coverage provided by those test cases
 - source code of program under test
- Provides visualization of program statements that summarizes pass/fail status of test cases that covered them

Approach

For statement s:

Hue summarizes pass/fail results of test cases that executed s Brightness presents the "confidence" of the hue assigned to s

Hue

Summarizes pass/fail results

- executed mostly by failed test
 - cases \rightarrow red
- executed evenly by passed and
 - failed \rightarrow yellow
- executed mostly by passed test cases → green
- Uses percentages of passed and failed test cases

$$\frac{10 \text{ failed test cases}}{10} = 100\%$$

$$\frac{10}{10}$$

$$m = yi$$

$$\frac{20 \text{ passed test cases}}{200} = 10\%$$

$$\mathrm{hue}(\mathbf{s}) = \qquad \mathrm{low} \ \mathrm{hue} \ (\mathrm{red}) + \tfrac{\%\mathrm{passed}(\mathbf{s})}{\%\mathrm{passed}(\mathbf{s}) + \%\mathrm{failed}(\mathbf{s})} * \mathrm{hue} \ \mathrm{range}$$

Brightness

- Shows the amount of coverage for a statement
- Uses greater percentage of passed and failed to show confidence in hue assigned

bright(s) = max(% passed(s),% failed(s))

Example

	Test Cases						
<pre>mid() { int x,y,z,m;</pre>		3,3,5	1,2,3	3,2,1	5,5,5	5,3,4	2,1,3
1: read("Enter 3 numbers:",x,y,z);		•	•	•	•	•	•
2: m = z;		•	•	•	•	•	•
3: if (y <z)< td=""><td></td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td></z)<>		•	•	•	•	•	•
4: if (x <y)< td=""><td></td><td>•</td><td>•</td><td></td><td></td><td>•</td><td>•</td></y)<>		•	•			•	•
5: m = y;			•				
6: else if (x <z)< td=""><td></td><td>•</td><td></td><td></td><td></td><td>•</td><td>•</td></z)<>		•				•	•
7: $m = y;$		•					•
8: else				•	•		
9: if (x>y)				•	•		
10: $m = y;$				•			
11: else if (x>z)					•		
12: $m = x;$							
13: print("Middle number is:", m);		•	•	•	•	•	•
} Pass	Status:	Р	Р	Р	Р	Р	F

Example

	Test Cases							
mid() {		,3,5	,2,3	,2,1	,5,5	,3,4	,1,3	
int x,y,z,m;		3	—	3	5	5	<u> </u>	
1: read("Enter 3 numbers:",x,y,z);		•	•	•	•	•	•	
2: $m = z;$		•	•	•	•	•	•	
3: if (y <z)< td=""><td></td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td><td>•</td></z)<>		•	•	•	•	•	•	
4: if (x <y)< td=""><td></td><td>•</td><td>•</td><td></td><td></td><td>•</td><td>•</td></y)<>		•	•			•	•	
5: <u>m = y;</u>			•					
6: else if (x <z)< td=""><td></td><td>•</td><td></td><td></td><td></td><td>•</td><td>•</td></z)<>		•				•	•	
7: $m = y;$		•					•	
8: else				•	•			
9: if (x>y)				•	•			
10: $m = y;$				•				
11: else if (x>z)					•			
12: $m = x;$								
<pre>13: print("Middle number is:", m);</pre>		•	•	•	•	•	•	
} Pas	ss Status:	Р	Р	Р	Р	Р	F	
1							- stansatio	

Scalability

- Large programs difficult to display
- Use the line-of-pixels, SeeSoft, view
- Each character in the source is displayed as a pixel

Tarantula

Case Studies

Two initial studies

- How red are the faulty statements?
- How red are the non-faulty statements?
- Subject program: Space
 - 8000 lines of executable code
 - 1000 coverage-based test suites of size
 156-4700 test cases
 - 20 faulty versions

Faulty Statements

nformatio nterfaces

Color distribution for Faulty Statements

Research Group

100% %08 20% 40% 60% %0 N ω 4 σ თ ~1 ω ശ Faulty Versions 6 1 12 ដ 14 5 6 17 7 19 ĹШ 20

Non-faulty Statements

Color distribution for Non-faulty Statements

nformatio nterfaces

Three Faults

Faulty statements

Non-faulty statements

Related Work

- Eick, et al. [TSE92]: SeeSoft visualizes coverage and slices
- Agrawal, Horgan, et al. [ISSRE95]: uses set arithmetic to compute dice for fault localization
- Leon, Podgurski, et al. [ICSE00]: visualize test case behavior using multivariate analysis

Conclusion & Future Work

- New technique that efficiently narrows search space for faults using commonly available information
- Promising results from studies
- Perform more empirical studies
- Create techniques to help when no statements are red
- Provide editing and dynamic update capabilities

