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Approach

• Utilizes
– pass/fail results of executing test cases
– coverage provided by those test cases
– source code of program under test

• Provides visualization of program 
statements that summarizes pass/fail 
status of test cases that covered them



Approach

Hue summarizes 
pass/fail results of 
test cases that 
executed s

Brightness presents the 
“confidence” of the 
hue assigned to s

For statement s:
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• Summarizes pass/fail results
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Hue
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Brightness

m = y;

10 failed test cases

20 passed test cases

10

200

= 100%

= 10 %

• Shows the amount of 
coverage for a 
statement

• Uses greater 
percentage of passed 
and failed to show 
confidence in hue 
assigned
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Test Cases

mid() {
int x,y,z,m;

1: read(“Enter 3 numbers:”,x,y,z);
2: m = z;
3: if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8: else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13: print(“Middle number is:”, m);

}
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Test Cases

mid() {
int x,y,z,m;

1: read(“Enter 3 numbers:”,x,y,z);
2: m = z;
3: if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8: else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13: print(“Middle number is:”, m);

}



Scalability
• Large programs difficult to display
• Use the line-of-pixels, SeeSoft, view
• Each character in the source is displayed as a pixel

[Eick,Steffen,Sumner,
TSE 1992]

mid() {
int x,y,z,m;
read(“Enter 3 numbers:”,x,y,z);
m = z;
if (y<z)

if (x<y)
m = y;

else if (x<z)
m = y;

else
if (x>y)

m = y;
else if (x>z)

m = x;
print(“Middle number is:”, m);
}



Tarantula



Case Studies

• Two initial studies
– How red are the faulty statements?
– How red are the non-faulty statements?

• Subject program: Space
– 8000 lines of executable code
– 1000 coverage-based test suites of size 

156-4700 test cases
– 20 faulty versions







Three Faults

Faulty statements Non-faulty statements



Related Work

• Eick, et al. [TSE92]: SeeSoft visualizes 
coverage and slices

• Agrawal, Horgan, et al. [ISSRE95]: uses 
set arithmetic to compute dice for fault 
localization

• Leon, Podgurski, et al. [ICSE00]: visualize 
test case behavior using multivariate 
analysis



Conclusion & Future Work
• New technique that efficiently narrows search 

space for faults using commonly available 
information

• Promising results from studies

• Perform more empirical studies
• Create techniques to help when no statements 

are red
• Provide editing and dynamic update capabilities


