
Visualization of Test Information 
to Assist

Fault Localization

James A. Jones, Mary Jean 
Harrold, John Stasko

Georgia Institute of Technology

Supported by Boeing Aerospace Company, National
Science Foundation, and the Yamacraw Project



Outline

• Approach
• Demonstration of Prototype
• Case studies
• Related Work
• Conclusions & Future Work



Approach

C
onsider tw

o statem
ents

passed

passed

passed
passed

passed

failed

failed
failed
failed
failed
failed
passed

m
 = x

w
 = y

M
ore suspicious of being faulty



Approach

• Utilizes
– pass/fail results of executing test cases
– coverage provided by those test cases
– source code of program under test

• Provides visualization of program 
statements that summarizes pass/fail 
status of test cases that covered them



Approach

Hue summarizes 
pass/fail results of 
test cases that 
executed s

Brightness presents the 
“confidence” of the 
hue assigned to s

For statement s:



Hue

10 failed test cases

20 passed test cases

10

200

= 100%

= 10 %

m = y;

• Summarizes pass/fail results
– executed mostly by failed test 

cases →
– executed evenly by passed and 

failed →
– executed mostly by passed test 

cases →
• Uses percentages of passed 

and failed test cases

red

yellow

green



Hue

m = y;

10 failed test cases

20 passed test cases

10

200

= 100%

= 10 %

a = b;

10 failed test cases
10

= 100%

0 passed test cases
10

= 0%

c = d;

1 failed test cases
10

= 10%

0 passed test cases
10

= 0%



Brightness

m = y;

10 failed test cases

20 passed test cases

10

200

= 100%

= 10 %

• Shows the amount of 
coverage for a 
statement

• Uses greater 
percentage of passed 
and failed to show 
confidence in hue 
assigned



Example

3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

Pass Status: P P P P P F

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

Test Cases

mid() {
int x,y,z,m;

1: read(“Enter 3 numbers:”,x,y,z);
2: m = z;
3: if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8: else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13: print(“Middle number is:”, m);

}



Example

3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

Pass Status: P P P P P F

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

Test Cases

mid() {
int x,y,z,m;

1: read(“Enter 3 numbers:”,x,y,z);
2: m = z;
3: if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8: else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13: print(“Middle number is:”, m);

}



Scalability
• Large programs difficult to display
• Use the line-of-pixels, SeeSoft, view
• Each character in the source is displayed as a pixel

[Eick,Steffen,Sumner,
TSE 1992]

mid() {
int x,y,z,m;
read(“Enter 3 numbers:”,x,y,z);
m = z;
if (y<z)

if (x<y)
m = y;

else if (x<z)
m = y;

else
if (x>y)

m = y;
else if (x>z)

m = x;
print(“Middle number is:”, m);
}



Tarantula



Case Studies

• Two initial studies
– How red are the faulty statements?
– How red are the non-faulty statements?

• Subject program: Space
– 8000 lines of executable code
– 1000 coverage-based test suites of size 

156-4700 test cases
– 20 faulty versions







Three Faults

Faulty statements Non-faulty statements



Related Work

• Eick, et al. [TSE92]: SeeSoft visualizes 
coverage and slices

• Agrawal, Horgan, et al. [ISSRE95]: uses 
set arithmetic to compute dice for fault 
localization

• Leon, Podgurski, et al. [ICSE00]: visualize 
test case behavior using multivariate 
analysis



Conclusion & Future Work
• New technique that efficiently narrows search 

space for faults using commonly available 
information

• Promising results from studies

• Perform more empirical studies
• Create techniques to help when no statements 

are red
• Provide editing and dynamic update capabilities


