HOTSKETCH Drawing Police Patrol Routes Among Spatiotemporal Grime Hotspots

Alex Godwin \& John Stasko
School of Interactive Computing Georgia Institute of Technology

email: alex.godwin@gatech.edu

Georgia Visualization Tech \mathbb{V} Lab

Proactive Policing

Show police presence
Engage with the community to learn their concerns Analyze historical ;orime reports

Neighborhood Comparison and Analysis

Path Selection for Patrolling the Community

Hotsketch

Police units need a mobile system that allows them to view an updated analysis of crime hotspots based upon changing location and time

HotSketch

Sketch-based approach for dynamic route planning

HotSketch

Sketch-based approach for dynamic route planning

HotSketch

Sketch-based approach

 for dynamic route planning
HotSketch

Sketch-based approach for dynamic route planning

HotSketch

Dynamic hotspot approach that takes time into account

Related Work

- Predictive Policing
- Chen et al., 2004
- Chen et al., 2003
- Hotspots (Eck et al., 2005)
- KDE (Chainey, Tompson, \& Uhlig, 2008)
- Variable spatial bandwidths (Maciejewski et al., 2010)
- Linked views to help analyze temporal nature
- Afzal, Maciejewski, \& Ebert, 2011
- Brunsdon, Corcoran, \& Higgs 2007
- Seasonal variation (Malik et al., 2014)
- Mobile applications (Razip et al., 2014)
- Route analysis
- Andrienko et al., 2008
- Andrienko \& Andrienko, 2011
- Tominski et al., 2012
- Sketching trajectories (Turkay et al., 2014; Blaser, 2000; Forbus, Usher, \& Chapman, 2004)

Hotspot Analysis

How to determine the relevance of an event that occurs at time x_{i} given the current time and date x_{j} ?

1. We determine the difference between them, d, and a maximum allowable difference bandwidth h.
2. Given these parameters, we can use a kernel function $k(d, h)$ to determine the relevance of all known events to the current time.
3. These relevance scores can then be used to create a heatmap of the spatial distribution of events on a map of an area.

Hotspot Analysis

$$
k(d, h)= \begin{cases}\left(1-\frac{d^{2}}{h^{2}}\right)^{2}, & d<h \\ 0, & d \geq h\end{cases}
$$

Bisquare Kernel, h=3

Hotspot Analysis

$$
f\left(x_{i}, x_{j}\right)=\frac{2}{5} k\left(d_{t}, h_{t}\right)+\frac{2}{5} k\left(d_{w}, h_{w}\right)+\frac{1}{5} k\left(d_{s}, h_{s}\right)
$$

Weighted summation of kernels

Time of Day kernel

Day of Week kernel

Season of Year kernel豊曹

\section*{| Su | M | T | W | Th | F | Sa |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

䒼曲

Weighted Kernel Sums, $h_{w}=6$ weeks, $h_{w}=2$ days, $h_{t}=3$ hours

Panel: Relevance of Events by Kernel

Shows the distribution of events and the aggregated relevance of scores by kernel components

- Day of Week ($x_{i}=$ Friday)
- Hour of Day ($x_{i}=11: 30 p m$)

- Season of Year ($x_{i}=$ Early June)

Demonstration

Evaluation

Exploration of an officer patrol route using crime data for Atlanta, GA

Atlanta (UCR) Grime Data.

Conclusions and Future Work

Initial work is promising, and evaluation in the field would provide ecological validation and allow us to identify future design requirements

Future work would include designing a version of HotSketch directed towards civilian needs for crime exploration within a community

Acknowledgments

- Supported by the DHS Center of Excellence in Command, Control \& Interoperability (VACCINE Center)

- Supported by NSF IIS-1320537

WHERE DISCOVERIES BEGIN

Questions?

Alex Godwin, PhD Student School of Interactive Computing Georgia Institute of Technology alex.godwin@gatech.edu

John T. Stasko, Professor School of Interactive Computing Georgia Institute of Technology stasko@cc.gatech.edu

