
Interacting with Transit-Stub Network Visualizations

James R. Eagan∗, John Stasko†, and Ellen Zegura‡

GVU Center, College of Computing
Georgia Institute of Technology

Atlanta, GA 30332

Abstract

Real-world data networks are large, making them difficult to an-
alyze. Thus, analysts often generate network models of a more
tractable scale to perform simulations and analyses, but even these
models need to be fairly large. Because these networks do not di-
rectly correspond to any particular network, it is often difficult for
the user to construct a mental model of the network. We present
a network model visualization system developed with networking
researchers to help improve the design and analysis of these topolo-
gies. In particular, this system supports manipulation of the network
layout based on hierarchical information; a novel display technique
to reduce clutter around transit routers; and the mixture of manual
and automatic interaction in the layout phase.

CR Categories: H.5.2 [Information Systems]: Information Inter-
faces and Presentation—User Interfaces

Keywords: network visualization, graph layout, graph manipula-
tion

1 Introduction

Because of the scale of real-world networks, networking re-
searchers typically use network models of a more manageable scale
on which to perform analyses. Tools such as the Georgia Tech
Internet Topology Modeler (GT-ITM) [Calvert et al. 1997] gener-
ate pseudo-random network topologies on which researchers can
perform their analyses. These networks are pseudo-random in the
sense that they are randomly generated within the constraints of
various properties that have been identified as existing in many real-
world networks. One limitation of these systems is that the output
of the model generator is an abstract description of a network; the
leading feature request for GT-ITM is “How can Iseewhat this
topology looks like?”

To aid in the analysis of these network models, we created the
NetVizor system, a tool designed to visually display the network
models generated by GT-ITM. In designing NetVizor, we met with
networking researchers to identify the tasks and peculiarities of the
particular problems they address when looking at network topolo-
gies. One problem in particular is the generation of a suitable layout
for a network.

To help address the problem of graph layout, we propose a gen-
eral method of attack to the layout problem that mixes automatic
layout algorithms with manual interaction. Another problem that
our networking participants face is the publication of generated
models. As such, the aesthetics of the layout are important to con-
vey the structure of the topology adequately. To help the user refine
the layout, we take advantage of the hierarchical nature of real-
world networks and use hierarchy information to aid in the ma-
nipulation of the layout of nodes and domains in the visualization.

∗email: eaganj@cc.gatech.edu
†email: stasko@cc.gatech.edu
‡email: ewz@cc.gatech.edu

Lastly, we introduced a “fudge-factor” in the visualization that adds
virtual aggregate edges to the visualization to reduce clutter around
transit domains. We discuss these three techniques in more detail
in the next few sections.

2 Related Work

Although the network topologies we are working with are not gen-
eral graphs, work in the field of graph layout is relevant. A lot
of work has gone into this field [Battista et al. 1999]. We lever-
age this existing work, focusing instead on the application of these
techniques to this particular network layout problem.

The Nicheworks system [Wills 1999] and the H3 browser [Mun-
zner 1997]operate on arbitrary graphs, but do not provide explicit
support for hierarchical or nested graphs like the ones generated by
GT-ITM. The layouts generated by Nicheworks are primarily static
with respect to manual repositioning of the nodes within the graph.
The H3 browser supports good interaction with the graph, but the
layout is fixed in its hyperbolic space — the user changes perspec-
tive on the graph rather than how everything is laid out.

The GraphVisualizer3D (GV3D) system [Ware et al. 1997] and
the HINTS system [do Nascimento and Eades 2001] each involve
the user in the layout process. In GV3D, the user plays a cleanup
role in the layout process,post hoc. In the HINTS system, the user
provides hints about the structure of the graph to improve the per-
formance of the automatic layout algorithm for the purposes of gen-
erating a better layout. No emphasis is placed on improving the
user’s understanding of the structure of the topology.

Nam [Estrin et al. 1999], the network animator, provides an ani-
mation of a network animation trace, but has very rudimentary lay-
out and interaction capabilities; its focus lies on the animation of
trace data. Tools such as the Extended Nam Editor [nam 2003]
provide more robust editing capabilities.

3 Transit-Stub Models

The models generated by GT-ITM follow the transit-stub model of
networks. In this model, nodes, which represent routers on the net-
work, are organized into logical domains, or collections of nodes.
Nodes within a domain tend to be fairly interconnected within the
domain, but rarely connect to nodes outside of the domain. Do-
mains themselves are then classified into two types: transit domains
and stub domains. Nodes in a stub domain are typically an endpoint
in a network flow — network traffic either originates at or is des-
tined for a node in a stub domain. Nodes in transit domains are
typically intermediate in a network flow — traffic is typically just
passing through. For example, one of UUnet’s backbone routers
would be in a transit domain, while a router at the local ISP would
be in a stub domain.



(a) Traditional Graph View (b) Spurred Graph View

4 Manual-Automatic Hybrid Layout

We suspect that mixing manual interaction with automatic layout
can help the user of the system forge a stronger mental understand-
ing of the structure of the model topology. This aid is particularly
important in this case because the topologies being presented do not
directly correspond to any existing real-world network. By letting
the user do some of the work, he or she can better understand the
process that is taking place and the structure of the network; by do-
ing most of the work automatically, the system can keep the task
from becoming too tedious. Thus, the user can “sketch out” a high-
level overview of the layout, while the system fills in the details.

When loading a new topology, the system presents the user with
3 options: layout the network automatically; layout the network
manually; or layout the network using a mixture of the two. In
the last case, the user is presented with a blank canvas and a list
of the domains in the network. The user then assigns a position
to each transit domain in the network; as a position is defined, the
system runs an automatic layout algorithm on the stub domains that
peer with that transit domain and on all of the nodes within each
of those domains. In the case of a 2000 node topology, the manual
component of the layout process consists of laying out 10-15 transit
domains in a typical case.

5 Aggregation Spurs

Typically, many stub domains connect to a single transit node in
a transit domain, with many other stub domains connecting to the
other nodes within the transit domain. When drawn on the screen,
this creates a ball of string as many edges converge on a small lo-
cation on the screen. To help combat this problem, we introduce
a virtual aggregation edge, which we call a “spur” to the network.
Each spur draws a transit node outside of the domain and creates a
larger area for all of the stub peers of a transit domain to converge
upon (See figure 1).

6 Hierarchical Manipulation

We take advantage of the hierarchical nature of the transit-stub
model when manipulating the layout of the graph. When the user
drags a node on the screen, its position is constrained within the

domain it is in. When a domain is moved on the screen, all of the
nodes within the domain move with it, as the user would expect.
When the user changes the position of a transit domain, however,
all of the stub domains that peer with it move as well, in addition
to the nodes within the domains. Thus, one reposition of the transit
domain can move the entire group of domains associated with that
domain, as the user would typically wish to do. Similarly, when the
user adjusts the position of one of the spurs, all of the domains that
peer with that node are repositioned.

References

BATTISTA , G. D., EADES, P., TAMASSIA , R., AND TOLLIS, I. G.
1999. Graph Drawing — Algorithms for the Visualization of
Graphs. Prentice Hall.

CALVERT, K., DOAR, M., AND ZEGURA, E. W. 1997. Modeling
internet topology.IEEE Communications Magazine(June).

DO NASCIMENTO, H. A. D., AND EADES, P. 2001. A system for
graph clustering based on user hints. InPan-Sydney Workshop
on Visual Information Processing.

ESTRIN, D., HANDLEY, M., HEIDEMANN , J., MCCANNE, S.,
XU, Y., AND YU, H. 1999. Network visualization with the
vint network animator nam. Tech. Rep. 99-703, University of
Southern California.

MUNZNER, T. 1997. H3: Laying out large directed graphs in 3d
hyperbolic space. InIEEE Symposium on Information Visualiza-
tion, 2–10.

2003. Extended Nam Editor.

WARE, C., FRANCK, G., PARKHI , M., AND DUDLEY, T. 1997.
Layout for visualizing large software structures in 3d. InVi-
sual97 Second International Conference on Visual Information
Systems, 215–225.

WILLS , G. J. 1999. Nicheworks — interactive visualization of very
large graphs.Journal of Computational and Graphical Statistics
8, 2, 190–212.


