
THE BUZZ: SUPPORTING EXTENSIVELY CUSTOMIZABLE INFORMATION
AWARENESS APPLICATIONS

A Dissertation
Presented to

The Academic Faculty

by

James R. Eagan

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
College of Computing

Georgia Institute of Technology
December 2008

THE BUZZ: SUPPORTING EXTENSIVELY CUSTOMIZABLE INFORMATION
AWARENESS APPLICATIONS

Approved by:

John T. Stasko, Advisor
College of Computing
Georgia Institute of Technology

Beki Grinter
College of Computing
Georgia Institute of Technology

Mark Guzdial
College of Computing
Georgia Institute of Technology

Saul Greenberg
Department of Computer Science
University of Calgary

Keith Edwards
College of Computing
Georgia Institute of Technology

Date Approved: August 2008

For my father.

iii

ACKNOWLEDGEMENTS

This work is the product of input and help from many sources. Many thanks to my committee

for their time, effort, and insight in shaping this work, and especially to my advisor, John Stasko.

To my peers who helped me shape and refine my ideas, James Hudson, Jochen Rick, Chris Plaue,

Zach Pousman, Erika Shehan, Dugald Hutchings, Brian Dorn, Allison Tew, and the members of

the Information Interfaces lab at Georgia Tech. Thanks to the U.S. National Science Foundation

(IIS-0414667) for supporting much of this work.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

I INTRODUCTION . 1

1.1 Motivation . 1

II SUPPORTING MODELS . 9

2.1 User Ecology . 9

2.2 Information Awareness Data Pipeline . 11

III RELATED WORK . 14

3.1 Information Awareness Applications . 14

3.2 Data Gathering . 17

3.2.1 Data Scraping . 17

3.2.2 Web Data Scraping . 19

3.2.3 Data Storage . 21

3.2.4 Data Presentation . 22

3.3 End User Customization . 23

IV THE BUZZ . 25

4.1 Formative Interviews . 25

4.1.1 Interview Observations . 26

4.2 Prototype Design Goals . 28

4.3 Iterative Prototypes . 30

4.4 Running The Buzz . 31

4.4.1 Users of The Buzz . 34

4.5 Channels . 35

4.6 Customizing The Buzz . 35

4.7 Creating a Channel Lineup . 36

4.8 Modifying and Creating Channels . 40

v

4.8.1 The Channel Editor . 41

4.9 A Tale of Three Channels . 45

4.9.1 Webcams . 45

4.9.2 Digg . 48

4.9.3 NSF News . 52

4.9.4 Channel Data Model . 57

4.9.5 Channel Presentation Model . 59

4.9.6 Layout Templates and Regions . 61

4.10 Sharing Customizations . 62

V THE BUZZ ARCHITECTURE . 67

5.1 Database . 67

5.2 Properties . 70

5.3 Harvesters . 71

5.4 Scrapers . 72

5.5 Visualizers . 74

5.6 Dispatch . 75

5.7 Plugins . 77

VI COMPARATIVE ANALYSIS . 79

6.1 Gentle Slope . 79

6.2 Six Approaches . 82

6.2.1 Yahoo Pipes . 82

6.2.2 Marmite . 86

6.2.3 Konfabulator/Dashboard/Google/LiveGadgets 89

6.2.4 Summaries Framework and Cards . 91

6.2.5 Koala/Coscripter . 92

6.2.6 Notification Engine . 93

6.3 Customization Space . 95

6.3.1 The User . 97

6.3.2 Data Extraction and Transformation . 99

6.3.3 Data Presentation . 104

6.3.4 Beyond the Data Pipeline . 108

vi

6.4 Customization Space Summary . 112

6.5 Dimensions Overview . 114

6.6 Challenges and Limitations . 116

6.6.1 General Limitations . 117

6.6.2 Limitations of The Buzz . 123

VII DEPLOYMENT STUDY . 125

7.1 Desktop Deployment . 125

7.2 Lounge Deployment . 127

7.3 Lounge Deployment Observations . 129

7.4 Deployment Conclusions . 130

VIII CONCLUSION . 131

REFERENCES . 138

vii

LIST OF TABLES

1 Built-in harvesters in The Buzz. 72

2 Operators available in Yahoo Pipes . 85

viii

LIST OF FIGURES

1 Al Gore working in his office, with three displays on the desktop and another on the
wall. 2

2 The awareness data pipeline. 11

3 A microformat to provide semantic information for a phone number in an HTML
document. 18

4 Potential channel information sources . 28

5 The original channel selector interface, which was replaced by the channel browser
shown in Figure 8. 31

6 The Buzz running on a extra monitor on the desktop (at right). 32

7 The Buzz running in a public lounge. 32

8 Viewing the current channel lineup in The Buzz. 37

9 Browsing available shared channels in The Buzz. 39

10 Downloading a shared channel that already exists in the user’s current channel lineup. 40

11 The channel editor in The Buzz. 42

12 Standard (left) and Advanced (right) options for configuring a Flickr channel. . . . 43

13 The “My Webcams” channel in The Buzz. 46

14 Editing the list of webcams used by the “My Webcams” channel. 46

15 Modifying the presentation of the “My Webcams” channel. 47

16 Viewing the configuration for a region. 48

17 The Digg channel in The Buzz. 49

18 Setting the name and description of a new channel. 49

19 Configuring the Digg data gatherer. 50

20 A Digg article summary page. 51

21 The pattern editor in The Buzz. 52

22 Configuring the CISE News channel to gather CISE-related news articles from the
NSF. 54

23 Images extracted from the CISE section of the NSF News website. 55

24 Creating an extraction pattern for NSF News articles. 56

25 The CISE News articles channel, including article summaries. 57

26 The Channel model in The Buzz. 58

ix

27 Configuring the presentation of a channel with potentially stale data. 59

28 Customizing the presentation of a channel in The Buzz. 60

29 Editing the bindings for a particular region in a channel’s presentation template. . . 61

30 Sharing a channel in The Buzz. 63

31 The Channels folder containing all of the user’s subscribed channels. 64

32 Browsing shared channels through the web-based interface. 65

33 The Buzz Architecture . 68

34 A BBC World News article as stored in the channel database. 69

35 Choosing how to extract data from an RSS feed. 73

36 An example scraper plugin to extract images from articles posted on Digg.com. . . 78

37 The structure of a channel bundle on the file system. 78

38 The information awareness gentle slope. 80

39 An overview of systems in the awareness customization space. 83

40 The Yahoo Pipes editor. 84

41 The Marmite interface. 86

42 A Dashboard interface. 88

43 The Coscripter interface. 92

44 The Notification Engine. 94

45 A rule editor interface from Apple’s Mail program. 96

46 Fluidity of user roles in customizable software systems. 97

47 Generality versus Specialization. 99

48 Personalization vs. Customization in Awareness Systems 102

49 Customizing the Presentation. 106

50 Expressiveness of data relationships. 109

51 Support for and encouragement of sharing/browsing content. 110

52 Alignment of customization task to user task. 111

53 An overview of systems in the awareness customization space. (Repeat) 113

54 A summary of the information awareness customization space. 115

x

CHAPTER I

INTRODUCTION

1.1 Motivation

Two technology trends have emerged that are creating an exciting opportunity to create new tools

to help people to manage the information they encounter on a routine basis. The first of these

trends is increasingly ubiquitous access to information. Every day, people send more than 60 billion

email messages [65], make over 1.6 million blog postings1, and post over 32 thousand videos to

YouTube [42]. Every year, more than four times the data in the U.S. Library of Congress is added

to the world wide web, not including unindexed web pages and information stored in dynamic

databases [65]. Not only is more information becoming available on the Internet, but also access to

the Internet itself is becoming increasingly ubiquitous. Miniaturization is allowing network access

to be embedded throughout the environment, with wireless Wi-Fi and 3G internet access becoming

available in many municipalities.

At the same time, the costs of display technologies is falling. It is becoming increasingly feasible

to embed displays throughout the environment [96, 85, 24, 73]. Visions of the future varying from

those of Hollywood’s Minority Report to Weiser’s dream of ubiquitous computing [105] are coming

closer to reality. Figure 1 shows former Vice President Al Gore’s office, with three Apple Cinema

displays on the desktop and a flat-panel display on the wall.

The combination of abundant and ubiquitous access to data with falling costs of display tech-

nologies is forming an exciting opportunity to create new and interesting information awareness

applications. These applications can gather data from a variety of sources, compound them together

in interesting ways, and create new interfaces on the data. For example, mashups focus on taking

data from one or multiple sources and integrating them together with a different interface [62], as

in combining housing data from Craig’s List with a mapping interface from Google [88]. These

1As of November, 2006, Technorati.com tracks and average of 1.6 million posts to 60 million weblogs [5]

1

Figure 1: Al Gore working in his office, with three displays on the desktop and another on the wall.

mashups, however, are difficult to create. They usually involve reverse-engineering the underly-

ing data format, the interface to a particular unpublished user interface, or both. For example, one

of the first mashups was the aforementioned Craig’s List and Google Maps mashup. At the time,

Google did not make their maps API available. Creating that mashup involved scraping data from

the Craig’s List website and converting them into a format suitable to be injected into Google’s

private mapping interface.

Other applications focus on presenting the data via calm, ambient or peripheral interfaces [87].

For example, the InfoCanvas [96] conveys information through dynamic artwork on the wall. Vari-

ous elements on the canvas update to encode some particular piece of information. To the uninitiated

observer, the canvas looks like an electronic picture hanging on the wall, but to the owner, the var-

ious elements of the picture depict the forecasted temperature, the stock market, or the number of

emails in one’s inbox.

These interfaces offer the exciting potential to help people to better manage interruption [15, 50]

and reduce feelings of information overload [30, 21]. They work by allowing the user to glean

information opportunistically through lightweight interactions. Rather that explicitly searching for

a particular piece of information, the user might happen to glance at the interface during a natural

break and happen to see some relevant information. This approach may not help for demand-driven

2

information foraging sessions, but can transfer monitoring activities [56] from an active pull process

to a passive push process.

These information awareness tools, however, are inherently personal in nature. The needs of one

individual, however, are frequently different from the needs or interests of another. Information that

is relevant to a manager, for example, is often different from the information relevant to front-line

worker. Such systems, therefore, need to support some degree of customization in order to allow

the user to tailor the content to his or her own personal interests.

Different software systems have taken various approaches to supporting users at customizing

their software to varying degrees. One way to consider the degree of customization is in terms of

the expressiveness of a particular customization with regard to the amount of effort that the user

must expend. In these terms, a relatively minor customization might not require much of effort. As

such, this customization might entail low effort for low expressiveness. A complex customization,

in contrast, might involve a high degree of expressiveness with significant effort on the part of the

user.

Although it may seem that there is a tradeoff between effort and expressiveness, such a trade-

off is not necessarily inherent. Consider, for example, defining a search query for housing listings.

An interface that requires the user to compose a basic SQL statement and an interface that allows

the user to compose that query via sliders before executing it might afford the same degree of

expressiveness, but the dynamic query interface requires significantly less effort from the user. Fur-

thermore, modifying the sliders to continuously execute the queries as the user adjusts them might

increase the expressiveness of the interface by allowing the user to dynamic changes and thresholds

in the data as the query parameters change [13, 12]. At the same time, this immediate feedback

might also reduce the effort required by the user. Thus, depending on the task and the interface,

effort and expressiveness are not necessarily a continuous, monotonically increasing function, al-

though they may typically appear as such.

One goal of customizable software is often to support customization across this space: to sup-

port users of different skills at being able to perform different kinds of customization with varying

3

degrees of expressiveness in accordance with their capabilities and motivations. To support cus-

tomization across this space, applications typically partition the interface to focus on different ca-

pabilities. These systems recognize that different users have different motivations and skills. Users

are typically ascribed to three roles: end users, tinkerers, and developers [68, 66, 40]. End users

are competent computer users but have little intrinsic interest in the underlying functionality of the

software. Tinkerers tend to examine the inner workings of the software are are more experimen-

tal in their usage, whereas developers possess some degree of programming skills and can develop

software or plugins.

Using these terms, Apple’s Dashboard [11], for example, supports end users at subscribing

to widgets, and developers, through a separate IDE, to create such widgets. In this way, the two

interfaces afford vastly different kinds of customization, and users of one are not required to use the

other. Similarly, HyperCard uses an interface through which the skill level of the user determines

the interface options available. Thus, a beginning user is not exposed to a hypercard stack’s scripting

capabilities, while an intermediate user might be able to perform limited scripting capabilities, and

and advanced user might have full reign over the interface.

These approaches adapt the interface to the capabilities of the user, either by making the user

explicitly switch between interaction roles, as in Dashboard, or by adjusting the presentation of the

interface itself, as in HyperCard. Like Dashboard, Yahoo Pipes [7], a system for creating mashups,

also partitions the interface between a user and developer role, but further provides support within

the interface for the user to transition between these interfaces. Nonetheless, these interfaces all take

the approach of providing separate interaction interfaces for users in different roles. Through these

different interfaces and different roles, these interfaces support the user at making customizations at

different points along the expressiveness spectrum.

I have created a research prototype information awareness application, The Buzz [34], which

aims to support users, from competent computer users through programmers, at performing cus-

tomizations across the full expressiveness spectrum via a unified interface. Rather than partitioning

the interface through distinct roles, as in Dashboard, or adapting the interface to the user’s skill

level, as in HyperCard, The Buzz aims to provide a fluid interface through which the user can adjust

4

his2 effort to correspond to the complexity of the underlying task.

The system attempts to provide a nested interface where more basic customization operations

are available alongside cues to expand the interface for more complex operations. Through disclo-

sure dialogs and nested dialogs, the user can “dive down” into deeper interfaces to perform more

complex interactions. If these cues align appropriately with the user’s mental model of the task, it

is reasonable to expect that the user should be able to identify the relevant interfaces [86]. Through

a modular component architecture, these interfaces support the combination of reusable and con-

figurable components to create powerful, flexible customizations that can handle a wide variety of

situations. Furthermore, by providing this depth of interfaces, The Buzz aims to support users at

performing basic customizations, such as subscribing to content and adjusting basic properties of

their presentation; more advanced, rich customizations, whereby the user is controlling abstract be-

haviors of the system but without programming; to defining new behaviors such as by writing plugin

code. It is through this software that we can examine the thesis statement of this work:

Thesis Statement

It is possible for an information awareness application to enable end-users, tinkerers,

and developers to use, modify, create, and share powerful, flexible customizations over

the content and presentation that the system provides. Such an application can pro-

vide more extensive customization capabilities than existing systems without requiring

significant programming effort.

This thesis statement focuses on several components. The first of these reflects the notion that

not all users are alike. Instead, they each possess different skills and motivations, which will influ-

ence their use of an information awareness application. The second of these components recognizes

that not only do different users possess distinct skills, but also they do not always customize their

software from scratch. Instead, they may use others’ customizations as a starting point. The third

component focuses on the complexity of the actions the user can take. By powerful, we mean

that a user can create customizations that go beyond controlling simple parameters of the aware-

ness system to actually controlling abstract behaviors. By flexible, we mean that the complexity

2Except where otherwise stated, gendered pronouns should be read in the neuter.

5

of the customization can vary with the power needed to express it. The user should be able to

make a choice about how complex a customization to make depending on the challenges involved

in creating or modifying a particular informative presentation. The final component argues that,

by supporting these powerful and flexible customizations, such a system can enable more complex

customizations than are currently possible in other systems without significant programming.

This thesis statement raises the following questions:

RQ1 Is it possible for an information awareness application to give users increased power in their

customizations without requiring significant programming effort?

RQ2 Is it possible for an information awareness application to give users increased flexibility in

how they create their customizations?

RQ3 What dimensions characterize the customization space for awareness applications?

RQ4 What kinds of customizations can users create with a powerful, flexible customizable infor-

mation awareness application?

The first of these questions, RQ1, focuses on the power, or expressiveness, of the customizations

that a user can create without significant programming. There is a small amount of ambiguity in

just what constitutes programming. While there are certainly clear examples of programming and

non-programming interfaces, the boundary between the two is fuzzy. The word significant in this

question and in the thesis statement reflects this ambiguity. As such, this question demands not a

yes or a no answer, but rather more of a characterization of the interaction. The significance of

programming will depend on a combination of the extent and complexity of the programming or

programming-like interactions that a user must perform.

While RQ1 focuses on the capabilities of the customization, RQ2 looks beyond the power of

expression that the customization interface affords. Rather, it considers how the user can scale that

expression. What kinds of choice does the user have in the complexity of a particular customization

he might perform? Does he have to create a new channel from scratch? Can he modify an existing

channel instead to yield an artifact that is “close enough” to his goal?

RQ3 takes a step back and looks at the broader customization space for information awareness

6

applications. What approaches have been taken by existing systems to support users at customiz-

ing their experience? What dimensions help to define this space? Does these dimensions reveal

unexplored areas?

Finally, RQ4 focuses on what kinds of customizations users can make. What kinds of content

can the user present? How can she represent those data? Are there examples of customizations that

real users have made using such a software system?

The Buzz supports this kind of powerful and flexible customization. Throughout this work,

we will examine this system and how it answers these questions. In Chapter 2, we examine two

supporting models that will help frame our discussion of these questions. The first of these models

focuses on the user and describes a user ecology in which users assume different roles depending

on their skills, motivations, and goals at a particular moment. The second of these models describes

the underlying technical model to represent information awareness processes.

In Chapter 3, we use these models to frame our examination of various related work in both the

information awareness and customization domains. What kinds of information awareness systems

have been developed? How do they convey information to the user? What kinds of configuration

do they support? This exploration describes the information awareness landscape that The Buzz

inhabits. Additionally, it examines various technical approaches that have beent taken in creating

these tools. What kinds of data do they support? How do they gather those data? What techniques

do they use to present them? How can the user control these processes?

Chapter 4 describes The Buzz prototype software that exemplifies our customization approach.

In this chapter, we present The Buzz software system and explore The Buzz user experience. What

does the software do? How does the user run it? What kinds of customizations can the user perform,

and how might she perform them? Through this discussion, we demonstrate both the power (RQ1)

and flexibility (RQ2) of The Buzz, both from the perspective of how the system design supports

them and from the perspective of how the user can make use of them. Chapter 5 then explores the

underlying technical design of The Buzz. It describes the architectural underpinnings of the system

and relates them to the interfaces exposed to the user.

In order to understand the customization capabilities that The Buzz supports within the aware-

ness context, Chapter 6 compares six related systems in the awareness customization domain.

7

Through this analysis, we identify various dimensions that help to characterize this space (RQ3).

We further explore how The Buzz (and each of the other systems within the space) behaves with

respect to each of these dimensions. This explorations shows not only how The Buzz supports a

different class of customization from other systems, but also gives a sense of what the information

awareness customization domain looks like.

We conducted two small deployment studies to get a sense of whether users will be able to take

advantage of the customization capabilities available in The Buzz. Chapter 7 describes these deploy-

ments, and shows how users created their own channels (RQ4). Although no users within the study

group performed especially complex customizations, some users did share their customizations with

others and made use of complex customizations that had been created by the system designer, further

reinforcing the importance to design for the broader ecology of users. Finally, Chapter 8 presents

the research contributions of this work and potential future directions for research.

8

CHAPTER II

SUPPORTING MODELS

We used two models throughout the design of The Buzz: a user model and a technical model.

These models help to frame the analysis of information awareness customization domain, and are

used extensively throughout the design of The Buzz software, and in this document. The first of

these models draws from the notion that users are not all the same. They bring different skills

and different motivations, which will alter how the interact with an awareness system. Section 2.1

describes this user ecology.

The second of these models is the data pipeline. This data pipeline model helps to describe the

technical issues that surround the information awareness domain. It describes the process of col-

lecting data from publishers scattered across the Internet and on the local machine and transforming

those data in a representation for the user. Section 2.2 describes this pipeline in more detail.

2.1 User Ecology

Customizable software recognizes that not all users are alike. It is because of those differences that

the software allows the user to tailor its behavior to better suit his own individual needs. Just as

different users may have different needs from the software, different users may also have their own

peculiar needs from the customization system.

Different people have different skills and different motivations that affect their use of the soft-

ware system. A merely competent computer user is likely to customize his software very differently

from an expert programmer, who might immediately look for hidden “dotfiles” to tinker with.

Not only will these particular skills be different, but so might their individual needs. An ex-

ecutive, for example, for whom a large part of the job is to maintain networking contacts, might

need to keep a keen sense of the various people with whom he interacts on a semi-routine basis. A

customer service representative, in contrast, might not need to maintain a breadth of contacts, but

might instead need a detailed overview of outstanding problem tickets.

Finally, people often do not customize their software in a vacuum. People rarely create complex

9

customizations from scratch. More commonly, they share their customizations with each, using

someone else’s configuration as a starting point. Within an office setting, one coworker might be

meeting with another and observe a non-standard operation, prompting him to ask something like,

“How’d you get it to do that?” This practice is so common that many web sites have been set

up to facilitate sharing of customizations, from desktop wallpapers to email rules, to music “smart

playlists.” Through this sharing, many kinds of customization belong to a larger ecology, in which

one user might create an initial customization, share it, and find it to evolve throughout a larger

community.

This notion of an ecology of users has been studied within various customization domains. For

example, Maclean et al. describe users as being workers, tinkerers, or programmers [68]. Gantt

and Nardi identify three similar roles in the context of CAD users: end users, local developers, and

professional programmers [40]. Furthermore, they identify a special kind of local developer, the

gardener (also called the guru), who receives explicit organizational support to provide customized

tools for the group or groups with which he or she interacts. Finally, Mackay identifies various pat-

terns of sharing of Unix dotfiles, with different roles of end users, translators, and programmers [66].

Although all of these studies focus on customization roles within different contexts, and al-

though all of these studies use different terminology for the various roles the users take, they all

identify the same three basic classes of users: the end user, who may be competent with the software,

but uses it as-is; the tinkerer, who has no intrinsic interest in the inner workings of the computer

but will, nonetheless, work “under the hood” to support domain-specific tasks; and the programmer,

who typically has formal training to develop new software applications, plugins, and other related

support tools.

In A Small Matter of Programming, Nardi further observes that these roles are not static [81].

For example, many spreadsheet users, who tend to have no formal programming training or any

intrinsic interest in programming, write complex spreadsheet formulae to solve domain-task-specific

problems that arise. Even though a user might not have a high degree of skill at programming, her

or she may still put forth the effort necessary to learn if there is a perceived work value to doing so.

On the other end of the spectrum, consider the Unix guru who uses a Macintosh because it “Just

Works.” He or she may be highly capable, but chooses not to customize his or her software simply

10

Data

Extraction

DB

Transformation Visualization

Presentation

Figure 2: The awareness data pipeline.

because it is not perceived to be worth the time. In this way, the role that a particular user fulfills

may be fluid, based on a combination of base skills and motivations.

This variety of users and their mixtures of skills and motivations drives the design of The Buzz.

The system should support a user at performing customizations that scale not only with the individ-

ual skills of the user but also with her motivation. For example, a merely competent user or one with

relatively low motivation should be able to control the content of the awareness system, whereas an

advanced or highly motivated user should be able to exert finer-grained control over the system.

2.2 Information Awareness Data Pipeline

In order to present information to the user, the awareness system must gather data from various data

sources and transform them into an appropriate representation for the user. The data pipeline model

helps describe this data gathering and transformation process (see Figure 2). This pipeline reflects

the notion that information awareness tools focus on taking data on one end and transforming those

data into information in the user’s head. Thus, on the front end of the awareness pipeline, lies data

as it is published by the various content producers. On the back end of the pipeline, we have an

informative representation of those data. The various operations necessary to convert those data

into such an informative presentation lie in the middle of the pipeline.

The front-end of this pipeline is concerned with content. This content is the input to the aware-

ness application. Content may be in the form of a web page intended for human eyes, or it might

be encoded in a machine-readable format such as RSS. It could be data from a database, such as

provided by the U.S. National Weather Service [99] or even from raw sensor output. Regardless of

the source, the data is rarely in a format suitable for directly presenting to the user. Even web pages

11

often present a specific representation of the data that reflects the publisher’s intended use rather

than the user’s. For example, an information aggregation tool might attempt to unify the presenta-

tion style for common data from a variety of web sites. Publishers may embed distracting animated

ads in their web pages that would be unsuitable for a peripheral awareness display. As such, even

if the data are presented in a human-readable form, that presentation may be incompatible with the

goals of the awareness application.

Thus, the next stage of the pipeline involves extracting these data from the publishers. If the

data are in a well-structured database or if the publisher provides an appropriate API, then it may

be relatively straightforward to extract such data. Nonetheless, such data extraction still requires

knowledge of the encoding format or API. If the data are not in such a machine-readable format,

then it may be even more complex to extract the relevant data from the irrelevant and to infer any

sort of semantics.

Once the data are extracted, they may still be in a different format than desired. Thus, is may

be necessary to apply various transformations. For example, temperatures might be in degrees

Fahrenheit, degrees Centigrade, or Kelvin. Locations could be a street address, city and state, postal

code, or latitude and longitude. For example, the U.S. National Weather Service provides radar data

keyed by radar site name, whose location is provided in latitude and longitude. Thus, to get the

radar data for a city, the city must first be geocoded into a latitude and longitude from which the

nearest radar site can be computed.

The data extraction process is frequently a lengthy process. If data from multiple sources are to

be integrated, then they will need to be stored in some intermediate format suitable for aggregation.

Thus, the next stage of the pipeline is the database that stores these data as extracted and transformed

from the server.

At some point—which may be immediately upon extraction—these data will need to be pre-

sented to the user. Somehow the data stored in the database must be represented to the user in the

desired fashion. That is, the data must be visualized1 to yield an information presentation.

For a simple visualization, breaking down the process into this information awareness data

pipeline may seem painstaking. For example, a Google Gadget might simply embed the image of

1or represented through some other modality such as audio

12

the day from some particular website. In this case, the data the gadget uses might be a static URL

whose content changes daily. Thus, the gadget is merely an HTML template that gets embedded

on the user’s personalized portal page. The data is implicitly loaded by the user’s web browser

whenever she loads the portal page. Breaking this process down into the constituent parts of the

pipeline may seem overly complex in this case.

However, this pipeline models a wide variety of awareness applications. Thus, while some

stages of the pipeline may be short-circuited for some applications, they may be necessary in others.

For example, many Google Gadgets actually cache the data they load onto the Google servers so as

to avoid overloading the web servers that provide the source content. As such, a gadget may use

more stages of the pipeline than may at first seem apparent.

Furthermore, the structure of the pipeline allows for flexibility in the design of information

awareness applications. Data transformations could take place at the time data are extracted, at the

time the data are visualized, or a combination of the two. Whichever approach is taken can depend

on the particular needs of the application.

13

CHAPTER III

RELATED WORK

Supporting extensive customization in information awareness applications involves the intersection

of two domains: end user customization and information awareness. This chapter comprises three

sections related to these two topics. We first examine information awareness applications in order

to better understand what kinds of uses these systems support (Section 3.1). What kinds of data

can they convey? How do they go about conveying those data? How does a user interact with the

system, if at all?

With an understanding of this awareness domain, we can then focus on the underlying technical

tasks necessary to support both the gathering and conveying data and the customization of those

processes (Section 3.2). Section 3.3 considers work from the end-user customization domain. In

addition to this Related Work chapter, Chapter 6 provides a detailed comparison and evaluation of

six systems in the awareness and customization space.

3.1 Information Awareness Applications

Numerous informations awareness systems have been built. Some of these systems focus on aggre-

gating information from numerous sources and providing a unified interface to that information, or

on combining data from one or more sources and “mashing them up” with another interface. Re-

gardless of how they aggregate their data or what interface they use, these tools all share in common

the ability to repurpose data.

In their repurposing of these data, awareness applications strive to help people to better manage

their attention and to handle the onslaught of information that inundates their lives. Some awareness

tools provide informative dashboards, such as Sideshow [18] and Irwin [74]. These tools run in a

small region along the side of the screen or in a corner. These tools comprise small applets or

tickets, each of which conveys a specific piece of information, such as the state of an email inbox,

main memory usage, or the weather.

14

Sideshow even provides a C++-based software developer’s kit (SDK) through which program-

mers can create new tickets to add to the ticker. These tickets run in the periphery in the sense that

they reside on the side of the screen. Some of these tickets, however, are fairly dynamic in nature

and may draw the attention of the user. Furthermore, the focus of these tickets is to provide ready

access to information through their display and interaction. As such, the data representations are

usually appealing and visually active, and provide extensive interactive support to dive down into

the information conveyed. For example, the email ticket allows the user to see an overview of the

inbox, read a full email, and trigger the email client to send a reply.

Konfabulator [6], Apple’s Dashboard [11], Vista Sidebar [75], Google Gadgets [4], and Win-

dows Live Gadgets use a similar applet-based approach through which the user can create a full-

screen collection of applets. Developers can create new applets (often called widgets or gadgets)

using a combination XML, HTML, and JavaScript. Because these tools use web-based frameworks,

they can run in various configurations. For example, both Live Gadgets and Google Gadgets can

run on the desktop in a full-screen mode as described, in a side bar as Sideshow, or embedded in a

web portal page. Thus, they support a flexible style of information presentation that can vary from

peripheral (as in the sidebar) to something that integrates with the user’s active information foraging

habits.

So far, all of the systems we have considered focus on conveying personally-relevant informa-

tion to the user. That is, the information is tailored to the individual. Other awareness systems have

focused on promoting group awareness and interaction. The Notification Collage [45] and Messy-

Desk [36] attempt to promote group awareness and interaction by providing a full-screen canvas,

or bulletin-board, to which group members can post various snippets of information—images, we-

blinks, live webcams, text notes, etc. These systems are tailored to run on the individual user’s

desktop (usually on a secondary monitor), but they can also run on a large, shared, projected dis-

play.

Whereas the Notification Collage and MessyDesk provide an interactive tool through which

group members can exchange information, the What’s Happening screensaver [111] passively con-

veys information through automatically generated collages from the community web server. Accen-

ture Technology Labs’ UniCast [73] uses a similar approach, but running on a secondary display to

15

convey information in the periphery by displaying collages from sources that the user has selected.

Huang’s Semi-Public Displays [49] further attempt to promote group awareness by encoding pres-

ence and activity information in the display, while attempting to balance awareness and privacy

issues.

Churchill’s PlasmaPosters project [23] combines approaches from the previous few systems to

convey user-submitted group content via large-screen plasma displays embedded throughout the en-

vironment in places such as heavily-trafficked corridors or break rooms. The Café Life project [24]

deploys a similar system in a coffee shop to further promote community interaction and awareness.

Because many of these awareness systems are intended to run on a peripheral display on the

desktop or even on a wall-based display (such as a flat-panel display or projected image), sev-

eral approaches emphasize the aesthetics of the information they convey. The InfoCanvas [79, 96]

depicts a scene in which the elements change to abstractly represent dynamic information. For ex-

ample, in a beach scene, the color of a woman’s bathing suit might change depending on the traffic

on the freeway, the number of empty drink cups near her might depend on how full an email inbox

is, and a bird might soar higher in the sky depending on the current temperature. In this way, what

might look like an image of a beach scene to a casual observer is actually an informative display to

the owner. The Kandinsky [38] and Informative Art [91] similarly convey information via aesthetic

presentations, but emphasise artistic representations over more direct information representations.

Many of these tools operate in the periphery, so they must balance the needs of effectively

conveying information with the need to avoid unnecessary interruption [14, 28]. Judicious use

of animation [85] and change-blind transitions [54] can help to avoid unintended interruptions.

Nonetheless, sometimes it may be necessary to alert the user under exceptional circumstances or

with urgent information. Matthews et al. created the Peripheral Display Toolkit to help support

designers of peripheral displays at managing notifications and interruptions [72, 71].

There are many other information awareness systems and approaches, focusing on conveying

information via methods from ambient interfaces [87, 31, 20, 48] to tangible interfaces [44, 55,

20]. As it becomes increasingly feasible to embed networked display technology throughout the

environment in both larger and smaller form factors, designers will continue to create new and

exciting ways to convey information.

16

3.2 Data Gathering

Creating these information awareness tools, however, involves solving technical challenges at each

stage of the data pipeline. Challenges arise in gathering data from multiple data sources in a mul-

tiplicity of formats and encodings, integrating them into a unified and coherent format if they are

to be aggregated, and effectively conveying them to the user in whatever manner is used by the

particular awareness system. The remainder of this section focuses on work related to solving these

technical challenges.

3.2.1 Data Scraping

There are many data formats in current use, all tailored to various properties of the data they encode.

Understanding all of these data formats and representations is an enormous task which few, if any,

systems could support. It would be too time-consuming to be able to decode and make sense of so

many data formats.

Furthermore, not all data are stored in semantically-rich formats. The vast majority of data on

the World Wide Web, for example, is stored in HTML or XHTML. This markup format provides

for rendering markup to describe how data should be displayed to the user, but it rarely contains

semantic markup to describe the data themselves (although there are some efforts to graft semantic

markup into HTML [58, 37, 109]).

Although HTML is primarily a presentation markup language, there is often an implicit seman-

tic structure to HTML documents. For example, most newspapers use a common template for all

of their articles. Two different articles in the same section of a newspaper are likely to have a sim-

ilar high-level structure from which the various individual data components can be inferred. The

headline of the article might be in an <h1> tag while the text of the article might be in a separate

class. Thus, given this implicit information, it may be possible to extract the underlying data from

an HTML document (see Figure 3).

There are two primary forms of data available on the web: those that are in presentation-oriented

markup languages and those that are in semantic data formats. The first kind of format might encode

data to be shown to the user, with, for example, a title in a bolder, larger typeface. In this way, the

document format does not specify that the bolder, larger text is the article title. A semantic format,

17

Our work number:

+1.415.555.WORK

Figure 3: A microformat to provide semantic information for a phone number in an HTML docu-
ment [58].

in contrast, would specifically designate this underlying meaning of the data.

This second approach may seem relatively straightforward at first. If a publisher exposes an

API for their data, then there is a clear method by which to gain access to and to extract the content.

Difficulty arises, however, when we consider many publishers. If each publisher exposes a different

API for their data, then each potential data source may need a separate translation mechanism to

convert and extract the data from each publisher.

There are, however, some existing approaches to attempt to resolve the complexity of abundant

data access frameworks. The Web Service Description Language (WSDL) is an attempt to create

a standard interface by which web services can publish their interfaces in a machine-readable for-

mat [22]. A web service provider can publish their interface as a WSDL document. This document

provides a combination of human-readable descriptions of the interface along with a machine read-

able specification. The U.S. National Weather Service, for example, publishes the interface to the

National Digital Forecast Database (NDFD) in WSDL format [100].

Many of these web services are built using protocols such as SOAP or REST [112, 46], which

attempt to create a lightweight RPC-over-HTTP mechanism. Many so-called Web 2.0 [84] services

publish interfaces that use these simple protocols. For example, Yahoo provides such access to its

search services [8]. The Flickr photo sharing site provides rich access to its data via REST [3], as

does the social bookmarking service, Digg [2].

These interfaces may help in getting access to the various data provided by content producers,

but a human still needs to make sense of the interface. These APIs specify a sort of a “contract”

for how to access the data, but a human still needs to make sense of what it means to gather, for

example, the interestingness of a photo on Flickr.

18

As a middle ground to providing such rich APIs, many publishers make extensive use of more

rigid standardized formats that provide semantic information about common attributes of the con-

tent, but allow for a flexible document structure. Really Simple Syndication (RSS) [106], the Re-

source Description Framework (RDF) [9], and Atom [53] describe article-style documents in a

machine-readable format, delineating titles, summaries, full stories, authors, etc. RDF is also used

extensively in the Semantic Web community [109].

These formats have been adopted by a variety of publishers in a variety of industries, including

the BBC World News, Flickr, and Apple’s iTunes Store. These feeds provide semantic markup to

distinguish various properties of each entry, such as title and description, but the specific format of

some of these values may be only loosely defined. For example, the description of an entry might

be a one or two line summary in plain text, or it might be the full text of the article in HTML

format. Flickr updates, for example, use a specific HTML template where Flickr-specific data, such

as number of comments on a photo, are only encoded in the HTML. In order to extract the number

of comments on a photo from this feed, an application would have to scrape it out of the HTML.

The web service could, however, (and many frequently do) change what content appears within

the entry description field or how it is represented. In this way, general purpose semantic formats

can help make data more available to information awareness applications, but there is still a certain

amount of wizardry involved in finessing the data into the appropriate format for many tasks.

3.2.2 Web Data Scraping

Even as more services make their data available through web APIs or feeds, much of that content

is likely to remain in HTML format. As such, scraping data from HTML and other non-semantic

formats can be a valuable tool to gathering data to be repurposed. A lot of work has been performed

in the area of web data extraction (see [60] for a brief survey).

One approach is to use a pattern expression to extract content from a text-based document,

regardless of whether it is in plain text, HTML, RSS, or some other XML-based format. Because

regular expressions are difficult even for programmers, let alone end users, many data extraction

tools either hide the regular expressions from the user or provide simplified “wildcard” expressions

instead [76, 47]. One advantage of this pattern matching approach is that it can find data that is

19

embedded within data of another format. For example, a pattern that looks for HTML <image> tags

in textual data will find such tags even if they are embedded in the document with inline JavaScript,

or if they are a part of an HTML block embedded within an RSS document. However, because the

pattern pays no attention to context, it is likely to match erroneous data. For example, an HTML

<image> tag matcher will probably match against images that have been commented out in the

underlying HTML document. Furthermore, such patterns are difficult to write and often incorrectly

handle more subtle features of the underlying markup format.

To address the limitation of blindly looking for matching text in a marked-up document, encoding-

aware patterns can be useful. For example, the W3C’s XPath query language is designed specif-

ically for matching elements and attributes in XML documents [25]. More broadly, tools such as

XWRAP [47], RoadRunner [27], and Dapper [1] operate on parsed data to take advantage of the

document object model (DOM) hierarchy. One limitation of this approach is that they are relatively

fragile when dealing with malformed documents. Most modern web browsers support a “quirks

mode” to handle malformed markup. As a result, many of the pages on the web render in most web

browsers, but might not parse correctly to a standards-compliant parser.

As an alternative to hand-crafted data scraping methods, various machine learning-based meth-

ods have been used. One approach is to use various data detectors [82, 35], capable of identifying

data items in an arbitrary textual document like a web page or email message. These data detec-

tors can recognize things like URLs, phone numbers, email addresses, etc., in a document. This

approach can be useful when the desired data is relatively easily and unambiguously detected, but it

may have difficulty distinguishing between a ten-digit phone number and a ten-digit product code.

To help limit data detection errors, some systems combine a library of data types with explicit

information from the user to identify the entities in the document [52, 78]. Thus, a user can click

on the various items in a document and the system can infer what kind of the data they are, as well

as identify similar items in the document. This approach can be particularly useful, but care must

be taken to ensure that the user’s model is aligned with the inference system and to detect possible

outliers [77].

Rather than relying on the user to identify the data itself, tools like RoadRunner [27] and

Dapper[1] allow the user to specify multiple instances of the same web page. The system then

20

compares these examples to attempt to identify the relevant parts of the document, possibly with the

aid of the user. For example, a user could specify three days’ worth of the front page of an online

newspaper as examples, from which the system could try to identify how to extract the headlines.

So far, all of these examples have operated on raw data such as an HTML or XML document.

Greenberg and Boyle’s notification engine instead operates on the rendered output of webpages [43]

(see Section 6.2.6 for a more detailed description). The user identifies regions of interest on a

rendered web page, relative to a fixed position on the page or some “visual anchor.” This approach

takes advantage of the web browser’s ability to handle the vast majority of data published on the

web. If a particular web page presents its information using Flash or Java, the browser is already

capable of displaying it. However, because this approach operates on the rendered output, it does

not provide semantic access to the data. It scrapes out a collection of pixels rather than the data they

represent. Nonetheless, for many peripheral awareness applications, it may be sufficient merely to

extract the visual information to present to the user as-is.

3.2.3 Data Storage

The data storage referred to in this section does not have to do with how to represent data on disk

in the more traditional databases and data representation senses. Rather, it refers to how to store

data from a collection of different data sources in a variety of different formats and for a variety of

purposes in a common format. Ideally, similar data in different formats could relatively easily be

combined to be used in compatible tasks. For example, data from an RSS feed of news articles and

data on auction listings might share similar attributes: both might have a title, a description, and

possibly some pictures. Although the data sources and formats are different, a common data format

might allow them to be represented in the same fashion.

However, using a rigid structure can lead to unnecessary complexity when defining new data

types to store in the database. A complex new definition may need to be defined to extend the

existing database schemas. Alternatively, a designer might attempt to shoehorn the new data format

into an existing schema in a way that is not strictly compatible with the schema or the data being

stored. These difficulties illustrate a tradeoff between complexity and mutual intelligibility [33].

An alternative approach is to use a folksonomic approach using tagging [102, 70]. Under this

21

approach, new data types are added using the appropriate existing tags or adding new ones as nec-

essary. The lightweight nature of this approach is also its biggest detractor: without any central

management of tags, the meanings of tags might inappropriately evolve. These approaches are

prone to tag-creep, whereby the different tags might be used for equivalent purposes or the same tag

might be used with a variety of meanings.

3.2.4 Data Presentation

The last stage in the data pipeline process is to transform the data into an information representation.

Creating such visualizations in general is a difficult challenge, whether on the screen [95] or off

the screen [98], and regardless of whether the purpose of those visualizations is to support active

analysis or more peripheral awareness. Most general-purpose awareness presentation interfaces

delegate the task of depicting the data to a programmer, as in the dashboards and SideShow, where

the widget developer has full programmatic control over individual pixels.

Others still provide a more restrictive model of the kinds of information that they can convey

and provide a framework for visualizing those kinds of data. The InfoCanvas, for example, lets the

user drag and drop visual operators to the screen, which represent a particular encoding for a piece

of data. For example, a user could drag a slider operator to screen and associate it with an image

and a numeric data value. The particular value of the number would then control where along the

specified path the image would be drawn.

Restricting the class of presentations that a system can support, however, can allow for signif-

icant flexibility. North and Shneiderman’s Snap-Together Visualizations [83], for example, help to

enable users to create custom coordinated-views visualizations without programming. Using this

system, users were able to create complex visualizations out a collection of pluggable components.

North and Shneiderman further describe three levels of customization available for visualization

systems (paraphrased from [83]):

1. Data. The user can specify what data to use with an existing visualization.

2. Visualizations. The user can specify what data to use and choose an appropriate pre-existing

visualization for them.

22

3. Coordination. The user can specify how multiple visualizations can be combined to coordi-

nate amongst their data.

Beyond their categorization, a fourth level might involve the creation of new visualizations, as

supported through tools like the dashboards, SideShow, and The Buzz (see Chapter 4).

Various frameworks can help guide users at creating visualizations of their data. Operating at

level 2, Bell Labs’ InfoStill [26] enables users to embed dynamic visualizations into web-based

reports using an easy to learn markup syntax. For creating more complex visualizations, Apple’s

DashCode allows widget developers to create their widgets using a drag-and-drop GUI creator to

construct a view using reusable interface components. Thus, the widget developer need only write

a reduced set of widget-specific code to connect the components and use any specialized rendering

methods necessary.

3.3 End User Customization

The End User Programming community [57] is primarily concerned with supporting end users at

writing better programs. These approaches often involve trying to make programming easier, such

as by visual programming techniques. Such programming approaches, however, are frequently

concerned with supporting general purpose computation in a broad collection of problems. Because

of their general purpose nature, these approaches necessary entail significant abstractions necessary

in computing.

More specialized programming languages such as Processing [90] can help to align program-

ming abstractions to the particular domain in which they are applied. In the case of Processing, the

language has enabled artists and designers to create a variety of creative information visualizations.

Nonetheless, even an applied programming language tailored to a particular domain can still require

significant technical effort beyond the needs or desires of many users.

Many non-programmers have, however, used programming techniques to extensively customize

their software. Spreadsheet users frequently create artifacts that demonstrate complex conditional

logic and computation [81], but such computation is typically highly scaffolded and aligns closely

with the particular task domain of the user. In this way, even though the user may be writing a

complex spreadsheet program, there is enough structure to the process and domain orientation that

23

many non-programmers are able to create such programs.

Much of the work in the end user programming community can help to solve end user cus-

tomization problems through a trickle-down effect. Nonetheless, many programming solutions,

such as those that involve training users to use guard conditions [17] or to aid in debugging [59]

may have varying utility within more focused customization domains. In these contexts, those per-

forming customization may not desire to use software engineering practices; primary concern is of

getting something that just works, or works well enough.

Because of this domain-centric nature of customization problems, much of the end user cus-

tomization work has been applied in nature. Such customization frequently takes place within the

context of performing another task, such as recording scripts of web actions [63] (see Section 6.2.5),

creating mashups [108, 7] (see Sections 6.2.2 and 6.2.1), extracting data from web pages [52, 32]

(see Section 6.2.4), customizing web-based interactions [16], writing web crawlers [76], creating

interactive “scrapbooks” out of pieces of webpages [97], or otherwise piecing together elements

from web pages [39]. All of these approaches focus specifically on tasks within a particular do-

main. For example, Chickenfoot might help a user to extract a set of product listings from a web

page and sort based on price, even if the publisher does not provide that ability [16].

Each of these customization approaches involves different degrees of complexity or even pro-

gramming activity, depending on the complexity of the underlying task. For example, the afore-

mentioned Chickenfoot tool makes extensive use of JavaScript to support many customizations that

might not otherwise be feasible.

24

CHAPTER IV

THE BUZZ

This chapter describes The Buzz, the software system designed to exemplify our flexible customiza-

tion approach over a broad range of customizations. The goal of the research driving the application

is to be able to examine how to support end-users, tinkerers, and developers at being able to create

their own personal information awareness streams, with tailored content reflecting the combination

of the users’ own skills and motivations.

In contrast, the user’s goal is to maintain awareness of routine and personally relevant infor-

mation. Customizing the system itself is related to this goal, but is not the goal itself. As such,

the user’s motivation to perform such customization will likely relate to the perceived benefit of

performing such customization. Although supporting such awareness is an important function of

the software under study, it is beyond the focus of this research. While the software is designed

with the intent of promoting awareness, we make no claims about the effectiveness of the software

toward that purpose. Rather, we argue that users have expressed a desire to customize content to

their interests. Furthermore, it makes intuitive sense that content tailored to the user’s own interests

should be more useful than arbitrary content. As such, this research focuses on supporting such

customization within this awareness context.

4.1 Formative Interviews

In order to understand what sorts of information users might wish to see and what sorts of cus-

tomizations they might wish to make to the data, we interviewed twelve potential users of the

software. These interviews consisted primarily of lightweight information gathering sessions rather

then more stringent requirements analyses. Our goal was to understand both the kinds of informa-

tion that users expressed a desire toward seeing in such an information awareness tool as well as

their existing information monitoring and awareness practices.

We conducted interviews with twelve participants from the Georgia Tech community. All but

two of these interviews were conducted at the participants’ normal workplace. In the interviews,

25

we asked users to describe their typical day and the sorts of information they routinely access. This

included email, web sites, databases, etc., as well as offline media such as television and radio.

Our goal in this line of questioning was to identify what information sources might be important to

support in a personal information awareness application.

We then asked users to walk us through their bookmarks and web browser histories. For privacy

reasons, participants were given a chance to self-censor their bookmarks and web browser histories

before our interviews. For each web site, participants described how they used that resource. What

sorts of monitoring habits did they use? Did they tend to monitor a particular portion of a web page

or web site, or did they monitor the web site as a whole?

Additionally, we asked what kinds of customizations they had made to their software. Did they

change any of their preferences in any of their software applications? Did they use any mail handling

rules in their email client? Had they customized a web portal page? Had they ever downloaded

or used any software plugins or other types of hacks? In particular, we were interested in what

experience our participants had in customizing their software and to what degree they were willing

to do so.

Finally, we gave our participants a stack of index cards with various potential data sources on

them. We asked our users to rank each data source into three piles: those that they would particularly

like to see in the awareness application; those that they might like to see; and those that they did not

care about. For each source, they were then asked to describe why they cared about that particular

source and what sorts of customizations they might wish to make to them (e. g. location for the

weather).

These sources on the index cards included those used by the then-existing system along with

sources that we as the designers of the system thought might be useful to include and sources that

users had suggested in our pilot interviews. Finally, we also gave the participants a stack of blank

index cards on which they could add their own.

4.1.1 Interview Observations

Within the College of Computing, we interviewed three Professors, seven graduate students, an

administrative assistant, and an administrator, all working in Computer Science or related areas. The

26

College of Computing being a technical organization, we suspect that our participants demonstrated

a higher degree of capability and willingness to customize their software. We believe, however,

that this is also similar to the demographic that is most likely to use a customizable information

awareness application.

Interestingly, in our interviews, a quarter of our participants had used customizable portal pages

and all but one of them had customized their portal pages. The participant who had not performed

any customizations indicated that he had examined the options available but had chosen not to

use them because they were too rudimentary. Furthermore, of these users who had customized

their portal pages, none of them frequently visited those pages. These users had taken the time to

customize the portal pages, but did not actually use the resulting artifact. This lack of use suggests

that users may find portal pages too lacking in customization and/or presentation capabilities to be

useful. For example, one user remarked that he had customized his page to figure out what he could

do with the portal, but once he had done so, did not feel compelled to use it. Rather than condemning

portal pages or information awareness applications in general, we see this behavior as potentially

calling out the need for richer customization capabilities in information awareness applications. If

users are unable to adequately customize their awareness tools, they may be unlikely to use them.

Further study is necessary to tease out reasons for this behavior.

Our primary goal in probing our users for their information monitoring habits, however, was to

gain insight into the sorts of triggers that existed to their accessing particular pieces of information.

In Kellar et al.’s terminology for monitoring activities [56], we were looking at when participants

tended to monitor data sources for browsing, fact finding, or information gathering purposes. Each

of these different purposes suggests a different kind of interaction. For example, a user participating

in a browsing activity may be content merely to sit back and let the system determine what content

appears and when. For a fact finding activity, however, the user is motivated to see a particular

piece of information at a particular time. As such, a direct path to that data would need to be avail-

able. Therefore, an application such as The Buzz, which provides a slideshow style of presentation,

should provide a shortcut to an index of all of the available content if it is to support fact finding

activities.

Finally, we used the index cards to provide an indication of what kinds of data sources our users

27

News headlines (10), pretty things (8), Atlanta events (8), weather (8), weblogs (8), traffic (8), stocks
(4), comics (4), calendar events (4), class wikis (3), CoC calendar (3), todo items (2), MARTA
announcements (2), campus trolley times (2), class websites (2), radio listings (1), sports box scores
(1), jazz cds (1), Atlanta Journal-Constitution articles (1), public school alerts (1), Slickdeals.com
(1), airfare alerts (1), movie listings (1), grocery store sales (1), travel planner (1), instant messaging
buddy lists (1), local bulletin board (1), dating info (1), computer system status (1), conference
deadlines (1), TiVo listings (1), jokes (1), celebrity gossip (1), bible verse of the day (1), new mail
messages (1)

Figure 4: Potential channel information sources suggested by users in our interviews. Numbers in
parentheses indicate how many participants expressed a desire for that particular topic.

might want to monitor. While the standard sources such as news headlines, traffic, weather, and

stock quotes quickly rose to the top of the list, there were also some surprising sources identified.

One user described a “pretty things” collection of pictures she had taken on her travels: “It sparks

conversations and makes me happy.” Figure 4 summarizes the various items suggested by users in

interviews.

Other sources tended to be relatively one-off in nature. For example, a professor wanted to

see “what the snake says” on an introduction to programming class wiki. On the web page for the

class in question, the professor puts quick class announcements in a speech bubble next to a cartoon

Python snake. Seeing what the snake says would help him to keep in sync with the announcements

he or any of the other teaching assistants might be making to the class. This particular example

demonstrates an inherent limitation in awareness applications that focus on handling data in partic-

ular formats. Although data in semantic markup formats such as RSS is increasingly common, most

content is more ad hoc in nature. For example, the speech bubble of the snake is a clever presen-

tation trick made by the designer of the class web page. As a result, a general purpose heuristic to

extract the meaningful content from a web page is unlikely to find “what the snake says” without

some more specialized guidance. Instead, the “What the snake says” channel was implemented

using a custom extraction pattern.

4.2 Prototype Design Goals

Using these information sources as inspiration, we were able to identify a combination of both

popular information sources that the system should probably support, and sources that might pose

an interesting challenge to support. For example, eight of our twelve participants indicated that they

28

desired to see interesting pictures from their photo collections, others’ collections, or both. As such,

one of the concrete goals was to make sure that it was possible to create such a photo gallery using

the customization capabilities of the system.

Moreover, our primary goal in designing The Buzz was to provide extensive support for cus-

tomization. Such support should provide a flexible degree of control over the content, such that a

relatively novice user could perform comparatively basic customizations, while an advanced user

desiring to perform a complex task might be able to use an extensive customization interface. In this

way, the complexity of the interface should scale with the complexity of the task the user wishes to

perform.

One of our approaches to addressing this goal is, wherever possible and reasonable, to use gen-

eral purpose methods that could support configurability. By using these general purpose methods,

the system could more readily support users at defining different kinds of data or presentation meth-

ods without resorting to writing specialized code. Nonetheless, there is an ease-of-use tradeoff

between general purpose and specialized methods. We have attempted to balance these tradeoffs in

The Buzz by providing a combination of general purpose and specialized tools.

Further, in recognition of users’ practices of sharing customizations, we felt that it was important

to explicitly support this operation within the interface. If possible, the interface should help to foster

a community of sharing by promoting such behavior within the system. Through this mechanism,

users should be able to find, modify, and share customizations via a lightweight interface.

In addition to these customization goals, the awareness system should operate as a peripheral

interface. Although the system runs in both a shared, public context and as a secondary display on an

individual’s desktop, the latter environment is of primary focus. Both environments entail different

design decisions and use models. As such, where the two are at odds, we chose to optimize for

the individual. In this environment, the awareness display operates in close proximity to the user’s

normal work place. As such, it is especially important for the interface to remain in the periphery

unless explicitly called to the forefront of the user’s attention. As such, the interface should update

in a change-blind fashion [54] so as to minimize undesired interruption [14, 50].

Nonetheless, at some point the information presented by the system will transition from the

periphery of attention to the focus. Thus, while the system should avoid unintentionally drawing

29

the user’s attention, it should also support the transition to a focal task. Thus, if the user sees

information of interest and desires to follow up on it, the software should provide an appropriate

mechanism to transition to a more directed information-seeking task. As a result, The Buzz allows

channel designers to specify actions to be taken when the user clicks on a region in the presentation.

4.3 Iterative Prototypes

Using these interviews as a foundation, we identified technical capabilities the system would need to

possess. What kinds of data will the software need to be able to support? What kinds of behaviors

will it need to support, and how will the user need to be able to control them? What kinds of

customizations will it be necessary to rule out, given the relative complexity of supporting such data

sources?

By combining these technical requirements with user-oriented goals of the software, we began

designing the system. To help ensure that users would be able to make use of the customiza-

tion capabilities of The Buzz, we followed a user-centered design-based approach with a series of

increasing-fidelity prototypes. During this iterative prototyping process, we asked a small set of 3-4

potential users of the software to help critique the designs.

Initially, we created a collection of sketches of potential interface approaches. At this phase of

the design, it was not clear even what metaphor to use to represent a data source and presentation.

Through examining this collection of sketches and our lengthy discussions with users, we eventually

settled on a channel metaphor and a channel-selection interface reminiscent of a screensaver control

panel.

After selecting a metaphor and interface style from these sketches, we used paper prototypes

to examine the interaction of this interface. It was not until we had implemented a high-fidelity

prototype, however, that it became clear that the screensaver-style interface would not scale appro-

priately to support a large number of channels (see Figure 5). With a large number of channels, the

channel titles blended together and did not provide sufficient cues for the users to easily distinguish

them. As a result, we revised this interface to the one shown in Figure 8. The new channel browser

interface supports channel icons, which allow the user to more quickly recognize the channels based

30

Figure 5: The original channel selector interface, which was replaced by the channel browser shown
in Figure 8.

on their represented icon rather than requiring them to read and decipher the channel names1.

Once the system had evolved to the point of high-fidelity prototypes, we continued to ask our

user testers to perform various tasks in the interface while we observed. These users were encour-

aged to try to perform their tasks without intervention from the designer, but help was available if

they became stuck. By watching the users perform or fumble these tasks in the interface, we were

able to identify tasks and interface elements that were potentially too difficult to use.

4.4 Running The Buzz

The Buzz runs on an extra monitor on the desktop (see Figure 6) or on a large, public display (see

Figure 7). Approximately every minute, it cycles through a different slide, automatically generated

from a particular data source, or channel. These slides depict primarily web based content, such as

news headlines, weather, traffic, weblogs, photo galleries, organizational directories, etc. Although

content primarily comes from the web, content can also come from the local system, such as a local

Excel spreadsheet or the contents of an Apple Mail inbox.

When running on the desktop, The Buzz displays its slides on a dedicated secondary display.

While the user is focused on his primary task, this slide is intended to remain in the periphery.

Whatever content is displayed should remain outside of the user’s attention. At some point, when the

1The channel browser interface also supports additional capabilities that were added later in the design process. Con-
sequently, the channel selector does not support as many capabilities, such as sharing or copying channels.

31

Figure 6: The Buzz running on a extra monitor on the desktop (at right).

Figure 7: The Buzz running in a public lounge.

32

user takes a natural microbreak, such as to adjust his glasses or take a sip of tea, he may glance at the

display, opportunistically gleaning whatever information happens to be displayed at that moment.

If the information shown is irrelevant, the user can ignore the content and redirect his focus back

to his primary task. Because the encounter occurred opportunistically during a natural break, there

should be little additional cognitive cost associated with the user’s attentional shift [14].

If, however, the information displayed is relevant, the user may quickly digest it and return to

his primary task. For example, he may glance at the display, see that the weather forecast calls for

rain, and make a mental note to bring an umbrella tomorrow. Or, he may interrupt his original task

to dive more deeply into the information conveyed. For example, he may see that a student posted

a question to a class forum and redirect his attention.

As this example illustrates, it is important to recognize that, at some point, the information

shown on the display will transition from the periphery to the focus of attention. As such, it is

important for the system to accomodate this shift in attention. Too many interruptions can be detri-

mental to productivity, but relevant interruptions can be of benefit [50]. Thus, the system should

attempt to avoid unnecessary interruptions, but support the transition from peripheral task to focal

task. To support this transition, the user can click on an item in the slide. The system will open the

URL, application, or document related to the item shown on the screen.

To help avoid unnecessary interruptions, The Buzz displays only static content2—typically im-

ages and text. Furthermore, when the display updates from one slide to another, it uses a slow-in,

slow-out [61, 51], smoothly animated transition to promote change-blindness [54] and avoid inad-

vertently grabbing the user’s attention [85]. By using such smooth transitions, the user will ideally

only look at the display when she chooses to. There is a concern, however, that even if the infor-

mation display updates in a sufficiently change-blind fashion, it may ingrain itself into the user’s

habits, causing her to habitually glance at the display in much the same way that one instinctively

continues to reach for an open bag of potato chips, even when not hungry [50]. Nonetheless, as

much as is feasible, the display attempts to remain in the periphery of the user’s attention, unless

she explicitly glances at it.

2Although the system only display static content, it is possible for a plugin author to add support for dynamic, animated
content. Nonetheless, the system provides no explicit support for such visualizations and the designer discourages them.

33

In this way, The Buzz attempts to promote opportunistic information encounters. These op-

portunistic encounters are lightweight interactions intended to convey information briefly and with

minimal intrusion into the user’s primary task [111]. The Buzz uses a presentation style based on the

What’s Happening screensaver, which has been successful at promoting opportunistic information

encounters within the context of the community awareness domain [110]. Rather than running as

a screensaver, however, The Buzz runs on its own dedicated display. Additionally, The Buzz adds

extensive user customizability, whereas What’s Happening provides a one-size-fits-all solution.

4.4.1 Users of The Buzz

Many information awareness systems attempt to support end users at customizing their software.

But end users are not homogenous. Different people bring with them their own different sets of

skills, capabilities, and motivations. In fact, it is this very heterogeneity that boasts the need for

supporting customization in software.

As such, it is important to understand what is meant by “the end user.” Indeed, the term “the

end user” itself is potentially problematic because it conflates many different sorts of end users. In

reality, individual end users possess their own unique skills and motivations. As such, the various

triggers and barriers that might encourage or discourage one user from performing a particular task

may be very different from the triggers or barriers of another user.

This heterogeneity of skills, motivations, and information needs calls out the need for flexible

customizable software. In addition to possessing distinct skills and motivations, different users have

different interests. Information that is interesting to one user may be dull or irrelevant to another.

For example, someone who commutes via rail is unlikely to care about how heavy the traffic is on

the freeways. A field technician will likely need very different information about pending problem

tickets than a manager or executive. As such, the user should be able to customize the awareness

system to suit these different interests.

Not only do these users need to be able to express different information interests, but also they

need to be able to do so via interfaces that align with their particular skill sets and motivations. As

such, the interface should provide a flexible interface that allows the complexity of the interaction

to scale with the complexity of the task. Thus, we must consider the degrees of customization and

34

the complexity of the interactions in understanding the various information awareness systems.

4.5 Channels

Users can choose what information appears by subscribing to channels, which correspond to the

different slides that the system displays. Each channel encapsulates the process of gathering data

from various content publishers and transforming them into a representation on the screen. In this

way, channels are conceptually similar to widgets in the Dashboard systems.

In terms of the data pipeline (Section 2.2), the channel describes the process of extracting con-

tent from the data publishers and transforming those data into a suitable intermediate format to

visualize on the screen. It also provides various metadata suitable for the management of a collec-

tion of channels, called a “channel lineup” in The Buzz. (Section 4.9.4 describes the components

that control this process.)

As such, the channel is the primary artifact with which users interact in The Buzz. It controls

what content the system displays, when that content will be shown, and how. The channel is effec-

tively the document around which the user interacts. Users can interact with these channels both

within The Buzz user interface, or they can treat them as documents and interact with them through

the file system, just as they would with any other application document.

4.6 Customizing The Buzz

The channel, being the primary artifact of The Buzz, is what users see within the system and what

they customize to control their awareness content. The Buzz offers a flexible customization system

to support a range of different sorts of customization, from selecting amongst existing channels so as

to create a personal channel lineup to creating plugins that define new data extraction algorithms or

visualizations. These different customization capabilities focus on the different user roles within the

system in an attempt to make simple customizations simple and complex customizations feasible.

As such, these interfaces attempt to connect together fluidly so that the interface can support the

user as she transitions from one role to another.

Just as it is difficult to classify individual users into rigid roles—users instead transition from

role to role as their individual skills and motivations fluctuate—so, too, is it difficult to partition

the interface into distinct modes. Instead, one of the design goals of The Buzz is to provide cues

35

as to how to accomplish more complex operations, thus providing a link between more complex

user goals and the actions necessary to accomplish them [86]. In this way, the different interfaces

for accomplishing different tasks support the user at diving deeper into the configuration to control

increasingly complex and advanced capabilities. To support this diving to deeper levels within the

interface, each level provides cues to suggest that there are more advanced controls available.

The rest of this section focuses on some of the different tasks that users can perform with The

Buzz and the interfaces and interactions that support those tasks. These customization tasks are

broken into four high-level activities: creating a channel lineup from existing channels (Section 4.7),

modifying and creating channels (Section 4.8), extending the capabilities of the system with plugins

(Section 5.7), and sharing customizations (Section 4.10).

4.7 Creating a Channel Lineup

The first time the user launches The Buzz, the system displays a welcome screen that describes the

software and displays an overview of the channels in the user’s current lineup (see Figure 8). This

view presents the channels in the system’s default lineup, which is catered to the broader community

of Buzz users. As such, one of the user’s first goals will be to customize what information the system

conveys.

The channel browser consists of three primary regions: the middle region depicts the current

lineup of all loaded channels. On the right side of the screen are details about the currently selected

channel and controls to display and customize that channel. The left side of the screen allows the

user to switch between viewing the current channel lineup and browsing available channels from a

shared repository.

The channel list (in the middle of the screen) represents channels as icons, much in the same

way that they might be shown as icons on the file system Desktop. Each channel has its own icon,

to help the user to recognize and distinguish the various channels. The dots on the left side of the

channel convey the frequency with which the channel is to be displayed, much in the same way that

relevance bars convey relevance to query terms in search results. Thus, a channel with all four dots

will be displayed very frequently while a channel with no dots will not be shown.

On the right side of the screen is additional information about the currently selected channel.

36

Figure 8: Viewing the current channel lineup in The Buzz. Channels are shown in the middle
region. Information about the currently selected channel is shown on the right.

37

This detailed information is intended to help the user to more easily find a desired channel amongst

the list of many channels. While the icons may often help at such disambiguation, the detailed

summaries can provide additional aid when necessary.

At the top of this details panel is a preview of the most recent slide generated by the channel.

Below this preview is the title and detailed summary of the contents of the channel. Under this

summary, the control panel allows the user to show the currently selected channel on the main

display, to configure the selected channel, to adjust how often it is shown, or to share it.

The design of this interface is inspired by the design of the icon-based desktop. By mimicking

the desktop interface, the design of the system attempts to leverage the skills and capabilities that a

competent computer user will already possess. As such, the design attempts to make it easy for a

user to easily understand how to perform basic channel management operations: clicking a channel

to select it, double-clicking to open and modify a channel, etc. (Section 4.8 describes configuring

and modifying channels in more detail.)

When the user clicks the “Available Channels” button on the left side of the screen, the view

switches from browsing the user’s own channels to viewing channels in a shared repository of

channels (see Figure 9). This toggle again mimics the desktop interface, through which a user can

browse remote files in the network neighborhood using the same interface he would use to browse

his own.

Channels shown in the repository are broken into different categories, represented as folders.

Within these folders are the various channels available for the user to download. Just as the user

can click on one of her own channels to view a detailed summary and preview slide, so, too, can

she click on one of these shared channels to view the same summary and preview. The primary

difference between the two interfaces is that some of the available operations change their behaviors

to accomodate the difference between local and remote channels. For example, the controls to

configure the frequency with which a channel is shown disappears, since it does not make sense for

a channel not in the current lineup. Additionally, the “Configure” button changes to a “Download”

button, and double-clicking downloads the channel rather than configuring it.

In this way, a user can view additional available content directly within the interface, using

the same interactions to browse shared channels that she would use to browse her own channel.

38

Figure 9: Browsing available shared channels in The Buzz. Shared channels are broken into cate-
gories, which are represented by folders (top). When a user browses into a category, the channels
shared within the category are shown (bottom). Channels with a checkmark indicate that the user
already has downloaded that channel.

39

Figure 10: Downloading a shared channel that already exists in the user’s current channel lineup.

To help distinguish between new channels and those the user already has, badges on the icons

of shared channels indicate whether the user has already subscribed to a particular channel. A

user can download a channel simply by double-clicking on it. The system will automatically fetch

the channel and install it into the current channel lineup. No additional interaction is necessary.

Attempting to download a channel again will prompt the user to confirm whether she wishes to

overwrite the channel currently in the lineup with the shared channel (see Figure 10).

Once the user has downloaded the channel through the interface, the channel is a part of her

channel lineup, just as any other channel. This browsing interface allows the user to adjust his or

her own channel lineup at a relatively coarse level. The user can add and remove channels and can

adjust the relative frequencies with which the different channels are shown. In this way, the user

can exercise control over the content selection with a relatively straight-forward interface.

4.8 Modifying and Creating Channels

In a study of Unix users, Mackay identified various triggers that encouraged users to customize their

software [67]. In that setting, users typically customized their software when the software changed

(e. g. after software upgrades) and when faced with a software breakdown. Furthermore, in our own

interviews with users of customizable software, we found that those participants who customized

their software frequently explored software preferences the first time they ran the software and

subsequently when faced with a problem to “scratch an itch” (see Section 4.1).

Applying these observations to channels in The Buzz, users are most likely to customize a

channel the first time they run the system or when they load a new channel. For example, when a

user subscribes to a weather channel, one of the first actions is typically to set the location whose

40

weather to depict. Additionally, however, users are likely to customize a channel when faced with

a particular “itch” when the channel breaks down. Such a breakdown might involve displaying

different content than the user desires or displaying it in a different way. For example, a user might

grow tired of seeing the same content from an infrequently updated weblog and wish to modify the

channel to only show postings made within the past few days.

To address these two different common scenarios, The Buzz provides two primary means of

customizing a channel. First, when browsing the channel lineup, as is the case the first time the

software launches and when the user subscribes to new channels, the user can double-click to bring

up the channel customization interface. Additionally, when viewing the slideshow on the peripheral

display, a customize button appears when the user moves the mouse to interact with the system.

This button acts as a shortcut past the channel browser and directly into the customization interface

for the currently-displayed channel.

When the user begins customizing a channel, the system automatically and transparently creates

a copy of the channel for the user to work on. From the user’s perspective, he is directly customizing

the channel. This copy, however, enables two important capabilities: it is easy for the user to abort

the customization and revert to the channel’s previous state; and any changes made to the channel

can be saved as a copy without altering the original channel. Thus, if a user makes a change he

is uncertain about, he can save the channel as a copy instead. By always operating on a copy of

the channel and allowing the user to undo or cancel those changes at any point, we aim to foster

experimentation on the part of the user.

4.8.1 The Channel Editor

In order to customize the content and presentation of a channel, the user can open the channel editor

dialog (see Figure 11). Through this interface, the user can control what content to show, what pre-

sentation style to use, and various channel metadata such as its name, description, and icon. There

are many attributes of each channel that the user could potentially control. If all of these attributes

were to be put into a single dialog, the interface would quickly become overwhelming. Given the

complexity of the task, the dialog is already fairly complex. To help reduce this complexity, the

dialog makes use of three tabs to partition the tasks relating to the data, presentation, and channel

41

Figure 11: The channel editor in The Buzz.

info. Initially, the data tab is shown.

Most commonly, a user will edit an existing channel—whether to modify its behavior (e. g. to

show the weather for San Francisco instead of Atlanta) or to create a new derivative channel (e. g.

to apply the current presentation style to a different data source). Users rarely create a new channel

entirely from scratch [66]. As such, when the user sees the dialog shown in Figure 11, the channel

configuration is typically in a state that reflects the goals of the user. For example, when the user

modifies a Flickr channel to show a different collection of photos, the channel is already configured

to extract a particular set of photos from the Flickr photo sharing website and to apply a particular

slide layout to those photos. As a result, when the user desires to change the collection of photos,

she needs only to change those properties of the channel related to the photo selection criteria.

Channels provide different data gathering methods. Each of these data gathering methods, in

turn, defines various properties that are relevant to the method. Thus, a channel that gathers data

from Flickr will provide properties for tags, users, and groups, using Flickr terminology. In contrast,

a weather channel will provide a property for the zip code of the location whose weather to show.

42

Figure 12: Standard (left) and Advanced (right) options for configuring a Flickr channel.

The underlying data model for this process is described in more detail in Section 4.9.4.

In the previous examples, the channels have gathered data from specific sources using data

gathering methods specialized to the particular sources they use. As such, the Flickr channels can

use Flickr terminology and the weather channel can use terms relevant to the weather. The user can

choose which of these methods to use by selecting from the “Gather data” pulldown menu at the top

of the dialog. The particular data gathering method chosen determines the properties that the user

may choose. In this way, the number of configuration options for the user to fill in depend on the

particular data source being used. Thus, the weather can provide a single property for the user to

fill in: the zipcode. Meanwhile, Flickr can provide the user with more extensive control, choosing

amongst any combination of tags, users, and groups.

Nonetheless, there may still be additional properties over which the user may desire some con-

trol, but which are not strictly necessary for behavior of the channel. The designer must forge a

balance between the flexibility of the options over which the user can control and the simplicity of

the interface. In many customization domains, fewer options often lead to a more effective user

experience and, counterintuitively, encourage more customization.

To address this balance, The Buzz allows some of these properties to be defined as “advanced”

properties. As shown in Figure 12, these advanced properties are collapsed under the “Advanced

options” disclosure triangle. Thus, if some options may enable finer control over the data for some

users, but are not necessary for typical users, they can be hidden under the advanced options section.

This technique allows the designer to strike a balance between the simplicity of the customization

43

and its flexibility.

In addition to these specialized data gathering methods, which can tailor their terminology to the

particular data they gather, The Buzz also provides more general-purpose data gathering methods.

These methods, such as the web crawler and the RSS gatherer, operate at a lower, protocol level.

Because these methods are not tied directly to the content on which they operate, the terminology

that they use for configuration is not presented in task-related terms.

Consider, for example, a user who wishes to create a channel of the most recent travel photos

from the Flickr user “eaganj.” She could use the Flickr gathering method and supply the username

“eaganj” and tag “travel.” Or she could use the RSS gathering method, supply the URL to Flickr’s

RSS feed for all of eaganj’s photos, and apply a filter to omit any entries in the RSS feed that do not

contain “travel.” In the first case, the user is able to specify these customizations entirely in terms

familiar to a Flickr user: tags and users. In the second case, however, the user must first specify a

“magic” URL for the desired Flickr photostream and specify a filter using terminology relevant to

the underlying RSS and HTML protocols that encode each photo entry.

Although specialized data gathering methods offer the potential to provide easier interfaces

that are better tailored to a particular domain, they do not offer the same degree of flexibility of

general purpose methods. For example, to alter a Flickr channel to gather photos from a different

photo sharing service may require significant modifications to the underlying channel. Changing a

generalized data gatherer, in contrast, could potentially be as simple as adjusting the starting URL

and filtering criteria. Thus, while specialized methods can provide the user with a simpler interface,

a generalized method can be simpler to repurpose.

Although specialized methods may be able to provide the user with a more intuitive interface,

they do also present a more complex management problem. If the system provides a few general

purpose data gathering methods that handle most of the cases that the system might encounter, the

user only needs to choose from that small number of gatherers. If, however, the system provides

specialized methods, it will need to provide such a specialized gatherer for every potential data

source. The user would need to choose amongst a large number of data sources, necessitating a

higher level management scheme for gathering methods.

As such, there are tradeoffs to be made between general purpose and specialized data gathering

44

methods. Specialized methods offer the benefit that they can provide a user interface that more

closely aligns with the user’s task, but they take more effort to develop and manage, and they are

difficult to repurpose. General purpose methods offer greater flexibility and can be more easily

repurposed. Because of their generality, a relatively small number of such methods can resolve

many tasks. But they are also more difficult to customize and may require fairly technical expertise

to customize.

4.9 A Tale of Three Channels

To help illustrate how the user can create and configure a channel, let us consider three example

channels. In this section, we will create three channels from scratch to show the various options the

user can configure and how they interact. The subsequent sections will then describe some of the

underlying models on which these interfaces are built. There is a chicken-and-egg problem in this

discussion, in that the underlying models do not necessarily make sense without understanding the

interfaces they support. Similarly, the interfaces depend on the underlying models. Nonetheless,

this interface-first approach should help illustrate the underlying models, which will later help to

reinforce their design.

4.9.1 Webcams

One of The Buzz’s popular channels is the “My Webcams” channel, which displays a collage of

various webcams from around the world (see Figure 13). The channel maintains a list of webcams

that the user can modify and allows the user to change the layout of the various webcams, such as

to change the display from a collage of multiple webcams to a single one at a time. In this example,

we will examine how the user can customize this channel by adding a new webcam and alter the

presentation to show a particular layout.

A version of the “My Webcams” channel is included in the default channel lineup for The Buzz.

To configure what webcams the channel displays and the presentation it uses, the user can double-

click on the channel in the channel browser or click on the “Configure...” button, bringing up the

channel editor window, as shown in Figure 14.

In this figure, the user has clicked the + button to add a new webcam to the list. This task is

complicated by the fact that many webcam publishers make the camera image available in different

45

Figure 13: The “My Webcams” channel in The Buzz.

Figure 14: Editing the list of webcams used by the “My Webcams” channel.

46

Figure 15: Modifying the presentation of the “My Webcams” channel. The interface shows a
thumbnail mockup of the screen, comprising several regions the user can position and resize.

ways. Sometimes they may publish to a static URL, the contents of which update to show the most

recent image. The webcams at the top of the list simply refer to the image at the particular address

for the desired webcam.

Other webcams, however, use a different URL for each image and simply change the URL that

the embedding web page uses to reference the most recent image. This technique is often combined

with JavaScript or a CGI backend. In this case, there is usually a webpage with a static address,

but which embeds the image from the appropriate URL. In this case, a heuristic of grabbing the

largest image on that web page is usually sufficient. As such, when we add this new webcam, we

specify the URL of the web page that embeds the camera image and specifies that it should gather

the “Largest image on web page.”

After adding the new webcam to this list, we will modify the presentation. Instead of showing a

collage of five random webcams, we wish to see our new webcam displayed on every collage along

with four others, chosen at random. To modify the presentation, we select the “Presentation” tab at

the top of the screen. When we change tabs, the system will prompt us to reload the data, because

we have updated the data configuration.

47

Figure 16: Viewing the configuration for a region.

Figure 15 shows the presentation editor with the existing collage-like layout, which defines six

regions: a large, full-screen region bound to the Oregon Coast webcam (to act as a background);

and five smaller regions, each bound to a randomly chosen webcam. We will modify the middle

region to display the new webcam.

To modify the region’s properties, we can double-click on it, revealing the region editor, as

shown in Figure 16. At the top of this dialog, we can select which data entry to display in this

region. The default configuration binds this region to “Any item,” which selects an entry at random.

This pulldown menu is populated by each of the webcams added under the “Data” tab. By changing

this to our new webcam, as shown in the figure, we can change what is shown in the region. The

other options in this dialog allow us to change how the data are drawn. We will leave them as-is.

4.9.2 Digg

Digg is a social bookmarking community in which users submit links. The submitter includes a link,

a title, and a brief description of the link. People can vote in a thumbs-up/thumbs-down fashion

to promote or demote these submitted links. Additionally, people can discuss the links through

comment-areas associated with each link. In this example, we will create a channel to display the

articles on the front page of Digg.com, which contains the most highly dugg articles. Furthermore,

we would like to see any related images that might be embedded in the dugg page. Figure 17 shows

our goal.

48

Figure 17: The Digg channel in The Buzz.

Figure 18: Setting the name and description of a new channel.

We will begin by creating a new channel from scratch. To create a new channel, we can click on

the + button in the channel browser window (see Figure 8). When we click this button, The Buzz

will first prompt us to give a name and optional description of the channel (see Figure 18). Either

of these can be changed at any time.

The default gathering method for new channels is the RSS harvester. The Buzz is capable of

gathering data using a variety of methods, of which RSS is just one. Because RSS is the easiest

to configure gathering method that supports a wide variety of data sources, it is the default. These

gathering methods are discussed in more detail in Sections 4.9.4 and 5.3.

To configure the data, the user need only specify the URL for the RSS feed provided by Digg.

Most website operators make this RSS link readily available on their web pages, designated by

49

Figure 19: Configuring the Digg data gatherer.

either the label “RSS” or with a bright orange icon. The user can simply copy and paste this URL

into the configuration dialog.

This configuration will gather the titles, descriptions, and links to all of the Digg articles on the

front page, but because the feed does not include any images, it will not include any of the images

from the dugg articles. It is fairly common for publishers not to include any images in their RSS

feeds, even if there are images associated with the linked article.

Many publishers view their RSS feeds as “teasers” to lure readers to their web sites, which may

contain the full content of the article (and where they can generate ad impressions). As a result,

many RSS entries contain only a brief snippet of a linked article. These summaries are usually

ideally suited to the peripheral nature of The Buzz, where the user can follow up to the full article

if she is interested. But the presentation style of The Buzz is optimized toward image-oriented

content. To address this situation, The Buzz can gather all of the images embedded in the web page

linked by an RSS entry instead of just the images embedded in the RSS entry itself. Thus, the user

can change the “Gather images” pulldown from “All images in RSS entry” to “All images in RSS

entry link.”

For most cases, this change would be sufficient. However, Digg is different from most websites.

Rather than producing its own original content, Digg aggregates this content and augments it with

its users’ ratings and commentary. As such, the link in the RSS entry is not to the original article,

but to the Digg page that describes the original article. In order to gather the images associated with

50

Figure 20: A Digg article summary page. The link to the actual article itself is located in the lower
left, next to the “Source:” label.

the original article, we will need to add an extra layer of indirection, by following the link from the

feed entry to the Digg page, finding the link within this page, and gathering the images from that

page.

Unfortunately, there is no obvious generic way to find that link on the Digg page (see Figure 20).

To extract the link to the source article, the user must define an extraction pattern to find this link on

an arbitrary Digg article page. To handle this case, we must change the image gathering method to

gather “Items from a pattern-matched link on entry web page ...,” which allows the user to specify an

extraction pattern and an image gathering method (by default, “All images (with captions) on web

page”). The extraction pattern will be applied to the RSS entry’s linked web page (the Digg article

page) and the image gathering method will be applied to the web page that matches the extraction

pattern.

Writing extraction patterns is a challenging task. Pattern matching languages involve nuance

and subtlety. Even though these pattern languages do not contain branching or looping, they are

effectively a form of (non-Turing-complete) programming language. To simplify the task of writing

these patterns, The Buzz provides a pattern editor, as shown in Figure 21.

As the user enters a pattern, the pattern editor displays the matches found or any syntax errors

in the pattern. This immediate feedback provides for a tightly-coupled feedback loop in which the

51

Figure 21: The pattern editor in The Buzz. The top portion of the window shows the HTML source
to which the pattern will be applied. As the user types a pattern in the lower portion of the window,
the top portion updates to show matching text, or any syntax errors that might exist in the expression.

effects of the pattern are dynamically displayed. Thus, the user can more easily and quickly identify

any syntax or semantic errors in the expression as it is being written. While this feedback will not

instruct the user as to what pattern to enter, it will help him to refine it and more easily recognize

bugs in the pattern.

By providing this extensive scaffolding around the pattern writing task, The Buzz aims to narrow

the context in which the user must program. Without incorporating this pattern matching capability,

we would need to give up on gathering images from the source article, or we would need to write

a plugin to handle this special case. Instead of writing a complete plugin to implement this data

gathering method, we can write a comparatively simple extraction pattern.

With this pattern, The Buzz will now follow the link embedded in the RSS entry, apply our

matching pattern to the Digg article page, and extract all of the images on the web page loaded from

that match. We now need only to configure our presentation. In our case, the default presentation

template for the RSS data gatherer will be sufficient, yielding the slide in Figure 17.

4.9.3 NSF News

In the previous example, we explored some of the power that The Buzz provides in handling the

various complexities that publishers may cause in how they make their data available. In this last ex-

ample, we consider the flexibility that The Buzz affords in allowing the user to selectively determine

52

how much work she might expend in creating a channel.

The U.S. National Science Foundation (NSF) publishes a collection of news articles on its web

site. Because the NSF is a broad organization with many different scientific areas under its umbrella,

the web site allows one to filter these articles by NSF priority area. In this example, we will attempt

to create a channel that displays news articles (and their associated images) in the Computing &

Information Science & Engineering (CISE) priority area.

There are a several ways to create this channel. The easiest is to use their RSS feed. Unfortu-

nately, while the web site breaks the articles down by priority area (including CISE), the RSS feed

does not. As such, it would be difficult to use RSS to create a channel just for Computing news. This

particular limitation may not be a significant problem in that general scientific news is likely to be

of interest to computer scientists. Nontheless, the goal is to create a CISE news channel. Creating a

broader NSF news channel would be a (merely acceptable) compromise.

The RSS gatherer does, however, provide support for filtering entries. Using this filtering capa-

bility, we might able to configure the gatherer to ignore any entries in the feed that are not in the

CISE topic area. Filtering by topic, however, is complicated by the fact that neither RSS entry nor

the linked web page provides any indication as to which priority area(s) the article is in. The only

indication of where in this hierarchy the article lies is through the web site itself, which does allow

for a human-readable filtering of the articles by topic area.

In order to filter the RSS entries by priority area would then involve comparing the articles in

the feed with the articles on the web page. If an article in the feed is also linked by the CISE news

web page, then it should be accepted; otherwise it should be filtered out. This filter, however, is

further complicated by the fact that the NSF uses different link formats for the articles from the web

site versus from the RSS feed, even though either format will refer to the same article. Thus, such

a filter would need to dissect the relevant components from the URL and perform its comparison

against those components. The only way to define such a complex filter in The Buzz is to write it

in Python code and load it as a channel plugin. If a user were especially motivated and capable, she

might be able to write such a filter. For all intents and purposes, however, this approach is not well

supported by The Buzz.

The filtered list of articles may not be available through the RSS feed, but it is available on

53

Figure 22: Configuring the CISE News channel to gather CISE-related news articles from the NSF.
The advanced properties at the bottom of the screen are normally collapsed until needed.

54

Figure 23: Images extracted from the CISE section of the NSF News website.

the web site. Thus, we may still be able to create a CISE news-only channel using a web crawler.

Figure 22 shows the configuration for this web crawler. By setting the start URL to be the CISE

news index page and a depth of 2 (meaning that the crawler will traverse the start URL and any

pages linked from it), we can crawl all of the news articles linked from that page.

This crawl, however, will still collect too much data. It will include any page linked from the

index page, not just links to articles. As such, we will need to limit the articles to those accessed

through http://www.nsf.gov/news/news summ.jsp. Furthermore, we do not wish to include

header graphics or button, so we can set a filter to ignore images smaller than a certain size, say 100

by 100 pixels. We can control these behaviors through the advanced properties of the web crawler,

as shown in Figure 22

This web crawling method is well suited to creating indexes of images on web sites because it is

relatively straightforward to identify images in HTML documents. It does not, however, extract any

of the text from the articles. As such, this approach allows us filter the news articles down to CISE

news only, but it also eliminates the text of the articles, as can be seen in the slide in Figure 23.

In, instead, we wanted to gather not only the images but also titles and descriptions, similarly

55

Figure 24: Creating an extraction pattern for NSF News articles.

to what the RSS gatherer would extract, we will need to write our own extraction pattern to gather

these data from the article page. This technique requires significant effort, so if we are content with

extracting either all of the news articles, regardless of whether they pertain to the CISE focus area,

or just extracting the images without the descriptions, then we can limit ourselves one of the earlier

methods. If we truly wish to create a CISE News with summaries channel, however, we will have

to create an extraction pattern3, as shown in Figure 24.

As this example illustrates, content publishers often make their data available in ways that are

more or less amenable to data scraping techniques. Even when publishers are thoughtful enough

to provide RSS feeds for their content, these feeds may not necessarily align with the user’s goals.

Adapting to all of these special cases can be cumbersome.

Through this example, we have seen three different approaches that a user could take to create a

CISE News channel (see the final result in Figure 25). The first is to simply settle for the content that

is already available in an RSS feed, even though it includes extraneous data. If our user truly desired

only to see CISE news, she could expend a little more effort to configure a web crawler to extract

3Inference-based extraction pattern-generation schemes, such as used in [52, 108, 32], could obviate the need for
manually writing such patterns in many cases. The Buzz, however, does not currently support these techniques.

56

Figure 25: The CISE News articles channel, including article summaries.

only the images from the CISE news articles. Or with a bit more effort, she could write a pattern

extraction rule or even a custom filter plugin. Through this variety of methods, The Buzz supports

flexibility in the degree of customization that a user can perform, depending on the combination of

the particular data desired and the effort the user is willing to expend.

4.9.4 Channel Data Model

In order to understand how the data and presentation customization interfaces integrate, it is useful to

consider the underlying data model used by The Buzz. This data model reflects the data pipeline (see

Section 2.2), with various components to perform each of the stages of the pipeline. Thus, where the

data pipeline defines stages for extraction, transformation, a cache, and visualization, the channel

model defines harvesters, scrapers, filters, a database, and visualizers. As shown in Figure 26, the

harvester is responsible for gathering data from the content publishers and transforming them into

a format suitable for the intermediate database. The extraction itself is performed by the scrapers,

while the filters apply any transformations (including to the empty set, /0).

One of the goals of this data model is to provide flexible support for a variety of different types

57

Figure 26: The Channel model in The Buzz.

of data. Content publishers use a variety of different formats to encode their data, depending on

the kind of data they make available and their intended use model. For example, most publishers

on the web use HTML to encode their data, but are increasingly making their content available in

more interactive, richer presentation formats such as Flash, Java, and JavaScript. Furthermore, how

those data are encoded on the web page varies. Some publishers may take advantage of the spatial

layout of HTML to encode their data, where the positioning of content on the screen is important.

Others may simply use HTML as a branding mechanism to give their content a particular look and

feel. Finally, not all data are on web pages. For example, much useful data can be found in email

accounts, spreadsheets, and local databases (e. g. iPhoto).

All of these different approaches to content publishing influence the task of gathering the data

and extracting sufficient semantic structure to repurpose them for presentation within an awareness

system. The goal of The Buzz’s data model is to provide sufficient flexibility to handle a wide

variety of content, but simultaneously to scale the complexity of the customization interface with

the complexity of the user’s task.

In order to handle a wide variety of these data formats, The Buzz provides various data gathering

methods, called harvesters. Some of these harvesters are specialized toward specific data sources.

For example, the Flickr harvester accesses the Flickr APIs directly to specifically support extract-

ing content from Flickr’s database, and the Weather harvester accesses the U.S. National Weather

Service’s SOAP interface to extract local weather forecast data. Others of these harvesters are more

58

Figure 27: Configuring the presentation of a channel with potentially stale data.

general purpose in nature, crawling web pages or parsing syndication feeds (e. g. RSS, Atom).

The general purpose harvesters often perform the same high-level task but with different specific

behaviors. For example, crawling a website to extract all of the images on a photo gallery and

crawling a website to extract people’s profiles from an online directory both involve crawling a

website, but performing different actions with the individual web pages. To accomplish these tasks,

the harvesters allow the user to specify what content to extract. Thus, the user can configure the

web crawler to “Gather all images on web page,” implicitly specifying a scraper that will perform

the actual content extraction. (Section 5.4 describes scrapers in more detail.) Additionally, the user

can apply filters to modify the web pages or content that are extracted during the gathering process.

4.9.5 Channel Presentation Model

At the point that the user customizes the presentation, it is assumed that the data have already been

configured. This assumption is subtly implied by the order of the tabs at the top of the screen, with

the data tab first, followed by the presentation tab. This particular order is important for several

reasons. First, the order reflects the mental model implied by the data pipeline, where data is first

gathered from the various content publishers before eventually being presented to the user. Second,

by loading the data first, the interface can inspect the data to tailor the presentation options available

to those that are relevant to the underlying data format. Thus, for example, the interface can omit

configuration options that require images if a particular data source is purely textual.

By requiring the data to be pre-loaded, the interface can present the user with data-aware con-

figuration options, but this requirement does come with some cost. Most significantly, the data must

be loaded in order for this inspection to behave properly. The first time that a user customizes a

59

Figure 28: Customizing the presentation of a channel in The Buzz.

channel, however, no valid data will have been loaded. As such, the system must make the user wait

to customize the presentation until it has had a chance to load the data. For some data sources, this

data gathering process may take several minutes. As a result, if data are loaded, but may be poten-

tially stale (as the result of a change to the harvesting process), the system will allow the user to

continue without pre-loading the data (see Figure 27). If the changes the user has made do not alter

the overall structure of the data, then continuing with stale data is safe. Otherwise, the data-driven

customization may cause inappropriate configuration options to be shown.

60

Figure 29: Editing the bindings for a particular region in a channel’s presentation template.

4.9.6 Layout Templates and Regions

The Buzz attempts to provide a simple but flexible presentation model for the user to control how

the data for a particular channel are shown on the screen. To accomplish this goal, The Buzz uses

the notion of a layout template, through which the user sketches out the structure of the presentation.

Through this mechanism, the user can specify which data to draw on which portion of the screen

and how to represent them (see Figure 28).

In order to define the presentation of a slide, the user must specify one of these layout templates.

Each template represents the screen space used for a single slide, in device-independent coordinates.

The template itself is comprised of various rectangular regions, where each region designates the

space for a single data entry. The user can create new regions by clicking on the + button (see

Figure 28). She can then drag the region around on the screen using a direct-manipulation [93] style

interface, repositioning and resizing the region as desired.

By adding and positioning regions on the screen, the user specifies placeholders into which

different data elements will be drawn. In this way, he can “sketch out” the structure of the presen-

tation. To specify which information should be drawn in which region, the user can double-click

on a region to edit its bindings (see Figure 29). These bindings allow the user to define various

relationships between the various regions and the data. Regions can be bound to a particular data

61

entry (e. g. the five-day weather forecast or the freeway traffic sign at 10th St) or to a random data

entry (e. g. some photograph in a photostream or some news article). Additionally, regions can be

bound in such a way as to share a single data entry. Thus, if an RSS entry, for example, includes

many photographs, different regions can depict the different images from the same entry instead of

depicting different entries in each region.

This binding process can be tricky for users, since it involves such a low-level detail and a kind

of thinking that people typically do not exhibit in normal practice. As such, the different harvesters

define default templates and default bindings that attempt to provide what most people might expect

given the data. The RSS harvester, for example, provides a layout template the conveys four news

articles at a time in a tiled fashion (plus some jitter for aesthetic reasons). The web crawler, by

default, uses a collage-like layout to generate collages of all of the images from the same page

(data entry). Through this defaults mechanism, users do not need to edit the data bindings for their

templates, but they may do so if they wish to.

In addition to binding which data are shown in which region, the bindings also let the user

control the visualizers used to depict the data. By default, regions use an automatic binding scheme

whereby the visualizers inspect the data to determine the best visualizer, if any, to represent them.

Thus, a user need not specify a specific visualizer unless she wishes to override the automatic

mechanism (e. g. if multiple visualizers are capable of depicting the data and she wishes to use a

specific one). Finally, the visualizers can define configuration options to control their behavior.

Through this region editor, the user may adjust these properties to control scaling behaviors, jitter,

etc.

4.10 Sharing Customizations

Section 2.1 described an ecology of users in which individuals bring with them different sets of skills

and motivations. In this ecology, not all users are alike, and not all users perform the same kinds

of customizations. Despite these differences in skills and motivations, or perhaps because of them,

various patterns of sharing have been identified amongst users of customizable software [66, 40].

Various systems have taken it as an expressed goal to foster this kind of sharing. The Buttons

project [68], for example, explicitly aimed to foster a tailoring community. The Buzz strives to

62

Figure 30: Sharing a channel in The Buzz.

promote such a community of customization and sharing by including integrated sharing support

directly within the interface. In this way, sharing and finding customizations should be as easy a

task as is feasible.

As such, sharing a channel in The Buzz is a fundamental operation on a channel. In the channel

browser interface (see Figure 8 in Section 4.7), the user can share any channel in her channel lineup.

Next to the “Configure” button is another button, labeled “Share....” The first time the user selects

this button, she is prompted for her login credentials or to create them if she has not already done

so.

She is then prompted to update the channel’s name, description, and to supply any tags to cat-

egorize the channel, as shown in Figure 30. To make this process as lightweight as possible, these

fields (with the exception of the tags) are filled in with the channels current name and description.

When the user clicks the “Share” button, The Buzz automatically packages up the channel, com-

presses it, and uploads it to the shared repository, making it immediately available to all other users

of The Buzz.

While The Buzz attempts to make it easy to share channels directly within the interface, this

mechanism is not the only way for a user to share his channels. All channels are stored in a folder

in the user’s Documents folder. (See Figure 31.) The user can share any channel by finding it in this

63

Figure 31: The Channels folder containing all of the user’s subscribed channels.

64

Figure 32: Browsing shared channels through the web-based interface.

folder and sending it to another user via email, ethernet, sneakernet, or any other desired method.

Only channels shared from within The Buzz, however, will be available to all other Buzz users

through the channel browser interface. This interface integrates with a central repository of shared

channels. Through this interface, the user can, directly from within The Buzz, browse through a

listing of categories and channels made available by other users.

In addition to this built-in browsing mechanism, however, users may also browse this shared

repository using a web browser. (See Figure 32.) The repository exposes its interface in two forms:

a JSON encoding used by The Buzz client to query the repository, and an HTML representation of

the same JSON data. Thus, a user can browse channels and even send standard web links to any

channel in the repository.

By providing this flexible approach to sharing channels, we aim to reduce the barriers to sharing.

Users should not feel that it is a difficult task to share their content. By making it easy to browse

shared channels both within the interface and via a web browser, we hope to reinforce the sense

65

of sharing, that the existing channel collection is a living, breathing entity to which any user can

contribute.

66

CHAPTER V

THE BUZZ ARCHITECTURE

In this chapter, we examine the low-level system implementation of The Buzz. The challenges and

solutions that arise may be valuable for designers of future systems, but can be safely skipped by

others.

In order to provide a flexible and customizable approach to gathering, manipulating, and pre-

senting data to the user, The Buzz uses a modular design. We have already seen most of the com-

ponents of this architecture in our examination of the system. This section describes how how these

components fit together and discusses the primary components of the system in more detail.

Figure 33 shows an overview of The Buzz architecture. The central unit of this model is the

channel. The channel embodies the implementation of the data pipeline for a particular informa-

tive presentation, or slide, shown by the system. These channels use harvesters, scrapers, filters,

visualizers, and a database to implement the various stages of the data pipeline. To coordinate the

operation of multiple channels, the dispatch operates as a supervisor to control when each of the

various channels should update their data and/or presentation. These components are described in

more detail in the remainder of this section.

5.1 Database

The channel database serves as a cache, allowing the channel to refresh its display without re-

querying the content publisher. This cache allows the screen to redraw quickly and efficiently.

Furthermore, it also allows the channel to display different subsets of the data without reloading

the entire data set. For many data sources, the harvesting process is time consuming. For example,

generating the BBC World News channel involves processing the web page and images for each

article. Repeating that process for every data source used, every time a slide is shown is wasteful.

The database allows these data to be stored until explicitly refreshed.

Not only may the harvesting process be time consuming, but it may also be expensive. For

example, the Flickr harvesters use Flickr’s API, which imposes a limit on the number of API queries

67

Figure 33: The Buzz Architecture

68

Figure 34: A BBC World News article as stored in the channel database.

that may be performed without charge per day. Thus, this database can help to reduce the cost of

querying the underlying data sources.

Each channel in The Buzz has its own database, storing only the data for that particular channel.

This database uses a keyed index of entries. Each entry corresponds to an individual data item in

the database. This entry might encode a single entry from an RSS feed, the list of images found on

a single web page, or particular element of weather data, such as tomorrow’s probability of precipi-

tation. Each of these entries are encoded as dictionaries (hash tables) where each key indicates the

type of item in that particular field. Thus, for data from an RSS feed, this dictionary might contain

the keys, title, description, images, and link, where the title and description values are

HTML strings, the link is a URL, and images is a list of URLs. Figure 34 shows an example of

such an entry.

While the structure of each entry is itself a dictionary, the particular keys used are only loosely

defined. Particular entries may define arbitrary keys. Furthermore, the keys that are provided are

intended to reflect the function of the data rather than a particular format. In this way, the data entries

use a folksonomic tagging-style, wherein there is not a strict taxonomy of tags, but an evolving

set [102]. This folksonomic approach leads to more flexibility on the part of developers because the

system can grow to handle new tags and thus new data types very easily. This flexibility comes at

the cost of a lack of central control over the available tags, leading to potentially conflicting keys.

The Buzz design takes that approach that this problem can be ameliorated with discipline rather than

69

through a strict taxonomy. Nonetheless, it does require developers to exercise diligence. Thus, data

that comes from an Atom feed will still be stored in the database using a description key, even

though this field is called a summary in Atom. In this way, the underlying format of the publisher’s

data and the entry in the database are only loosely coupled.

5.2 Properties

Properties encode attributes over which the user should have control. These properties are used for

any configurable object in The Buzz—harvesters, scrapers, filters, and visualizers. In code, proper-

ties are a special kind of variable defined with additional metadata to describe the user interface for

configuring that variable. Because these properties are a special kind of variable in code, the devel-

oper of the module can simply refer to the property just as she would any other variable, assigning

values to it and using it as parameters to method invocations.

The associated metadata allows a user interface to be automatically generated to enable the

configuration of the properties. Currently, The Buzz defines 10 types of properties:

Number properties define variables that should only contain numeric values. The interface presents

a text field into which the user can enter a numeric value.

Fields define attributes of simple scalar strings. The interface presents these values in a standard

text field.

Schedules allow users to define a recurring schedule. This kind of property is used to specify, e. g.,

how often a harvester should run.

Patterns are a special kind of field that provides special support to help the user write regular-

expression-style patterns.

Choices provide the user with a popup menu from which to choose from a pre-defined list of

possible values.

Booleans are represented as simple checkboxes.

Factories are special properties whose values are arbitrary Python objects. These properties are

exposed as a pulldown list from which the user can make a selection. When the user chooses

70

a new item, the corresponding factory method is invoked to create the object. This kind of

property is most commonly used to allow the user to choose from a list of available scrapers,

filters, etc.

Lists are a compound property that represents an array of a particular other property type. This

property is represented as a single-column table whose rows depend on the particular property

type stored.

Dictionaries are another compound property type represented as a table of rows.

Custom properties allow the programmer to extend the property mechanism with special interfaces

when the standard mechanism is insufficient.

5.3 Harvesters

The harvester is responsible for gathering data from the publishers and storing them in the database.

The Buzz defines several kinds of harvesters (see Table 1). To control this process, each harvester

defines various properties that the user can customize. These properties are described in more detail

in Section 5.2. Each property encodes an attribute that the user can configure. These attributes are

then used to guide the harvester’s data gathering process.

As described earlier, some of these harvesters are general purpose in nature (e. g. the web

crawler), while others are tailored specifically to a particular data publisher or type of data (e. g.

the Flickr and Email harvesters). The specialized harvesters are typically implemented in an ad hoc

fashion. For example, the Flickr harvester communicates directly with the Flickr servers using their

web-based APIs and outputs directly into the database. Various properties control what pictures the

harvester gathers, but they do not control the overall behavior of the harvester. Because most of

this process is peculiar to the specific task of extracting photos from Flickr, there is relatively little

reusable code in the harvester.

The web crawler, in contrast, operates in a general purpose fashion. In this general purpose

harvester, the properties control the actual behavior of how the crawler traverses web sites to find

relevant web pages. To control the actual content extraction, however, the harvester uses various

lower-level scrapers. These scrapers are generic modules that operate on particular types of content.

71

Table 1: Built-in harvesters in The Buzz.

Web Crawler Starts at a specific web page and crawls to the linked web pages. The user can
control this process by adjusting the depth of the crawl, restricting the crawl to specific web
hierarchies (e. g. not follow links to other web servers or outside of the parent’s file path), and
specifying what content to extract from the various web pages.

Syndication Feed Loads an RSS, Atom, or RDF syndication feed. The user can control what
content to extract from feeds (by default, the title, description, and images included in each
entry) and specify filters (e. g. to ignore entries older than a certain threshold).

Flickr Gathers images from the Flickr.com photo sharing website. This specialized harvester lets
the user specify photo tags, users, and groups to control what photos are fetched. Because
this harvester uses the Flickr API, the user can control the size of the photos—a capability
not available through Flickr’s RSS feeds.

Weather Gathers weather data for a specified zip code and extracts local radar data, satellite im-
agery, a five-day forecast, a detailed daily forecast, and other misc. weather data. The user
specifies only a zip code to control the process. The harvester abstracts the process of con-
necting to multiple U.S. National Weather Service and National Oceanic and Atmospheric
Administration databases, each keyed by one of zip code or latitude and longitude.

E-Mail Interfaces with Apple’s Mail software and system-wide Address Book to collect unread
email messages. Stores the subject of the message along with the name of the sender and
associate image, if any, from the address book.

For example, the “Largest Image on Page” scraper inspects all of the tags in an HTML

document and yields the image with the largest area. In this way, the process of accessing the

content and the process of extracting the content are separate.

This separate approach allows scrapers to be reused for different kinds of data providers. Fun-

damentally, extracting all of the images on a web page and extracting all of the images in an HTML-

encoded RSS entry use the same process. Thus, the more general purpose harvesters delegate the

actual content extraction to a lower-level component, called a scraper.

5.4 Scrapers

While the harvester is responsible for gathering a collection of data from the publishers, the scraper

is responsible for extracting the relevant data from a single document or piece of a document.

Thus, the aforementioned “Largest Image On Page” scraper can extract the largest image in a single

HTML document. So long as its input is HTML, the scraper does not care whether it is operating on

72

Figure 35: Choosing how to extract data from an RSS feed.

a web page or a snippet of HTML embedded within another document (such as an HTML-encoded

entry in an RSS feed).

Thus, while the scraper performs the low-level data extraction, the harvester performs the higher

level process of gathering a collection of data. In some cases, particularly with the specialized

harvesters, these functions are merged directly into the harvester. Frequently, however, reusable

scrapers are applied to extract the data. In this way, a simple RSS harvester can extract a variety

of different kinds of data, from gathering all of the images in an RSS entry to gathering all of the

images in the web page linked by an RSS entry (both using the same scraper) to gathering images

resulting from an image search on the keywords in the article title.

In addition to performing low-level data extraction, some scrapers also define chaining behav-

iors. That is, some scrapers will use the result of another scraper as its input. For example, the

IndirectURLScraper lets the user specify a pattern to apply to a document, the result of which is

used as input to another scraper that the user can specify. Using this approach, the user can, e. g.,

specify a pattern to identify a particular link embedded in a web page and extract all of the images

from that web page instead of directly from the document itself. (This technique is particularly

useful for link aggregation sites, such as Digg.com, where the images relating to the content are not

on Digg itself, but on the site linked.)

73

Figure 35 shows a user choosing a scraper in the user interface. Although the underlying code

of The Buzz distinguishes between harvesters and scrapers, the term scraper is not exposed to

the user. Instead, these objects are referred to as gathering methods, depending on the particular

context of their use. Wherever possible, these objects use human terms rather than jargon. Fur-

thermore, all scrapers have functional labels in addition to their programmatic names. Thus, the

IndirectURLScraper appears in the user interface labelled by the kind of data it gathers: “Items

from a pattern-matched link on a web page.” While this distinction between harvesters and scrapers

is useful in the architecture of The Buzz, it is not necessary to expose it to the user. Users do interact

with the different objects, but special terminology for them is not necessary.

5.5 Visualizers

Visualizers are responsible from transforming a single entry in the database into a representation

on the screen. Different visualizers operate on different kinds of data. For example, the simple

ImageVisualizer displays an image and an optional caption on the screen. The CardVisualizer

displays data, such as from an RSS entry, on an index card-like region on the screen with a title,

summary text, and/or images, depending on the data.

Visualizers use a signature-based typing mechanism, or “duck typing [101]” to determine the

kinds of data they can depict. Under this duck typing scheme, the visualizer examines the data entry

to see if it contains the tags it needs to be able to render the data1. For example, the CardVisualizer

considers the data to have a conforming signature if it defines at least two of the tags title,

description/summary/captions, or images.

Using this duck typing approach, the visualizers and the harvesters can operate in a loosely-

coupled fashion. Because the visualizers look only for the tags they need, they are not dependent

on a type specification made by the harvester developer. Furthermore, the harvesters can output

different tags suitable for different representations of the data. For example, when the weather

harvester outputs the day-at-a-glance forecast it can output an image tag containing the forecast icon

for the day, a number tag containing the forecast high temperature, a description tag containing

a textual description of the day’s forecast, and any other custom tags that might be relevant to

1The term “duck typing” arises from the phrase, “If it looks like a duck and quacks like a duck, it must be a duck.”

74

the particular data, such as probability-of-precipitation. A generic visualizer such as the

CardVisualizer could then use those tags to generate an appropriate description of the weather

forecast, or a more specialized weather harvester could take advantage of the specialized tags output

by the harvester.

To control this inspection process, visualizers define two methods. The first, canHandleData,

simply responds as to whether the visualizer is capable of depicting a particular data entry. This

method is used to filter the list of visualizers to only those that are capable of rendering the data.

The second method, shouldHandleData, provides a confidence ranking of how well-suited the

visualizer is to depict the data. For example, the CardVisualizer provides a high ranking for data

entries output by the RSS harvester, which includes all of the desired tags. A data entry that only

provides a subset of those tags, however, will receive a lower ranking. Using this ranking, the system

can automatically select a reasonable visualizer to apply to a particular data entry. Alternatively,

users can override this decision to specify a specific visualizer. Section 4.9.5 describes how the user

combines these visualizers and data to construct a slide.

5.6 Dispatch

The dispatch acts as the supervisor coordinating the various channels. It controls when the various

channels’ harvesters should run to update their data. It also determines when to show each channel.

The dispatch thread typically runs its loop approximately every minute. Each time through the

loop, it first runs a maintenance process to cycle internal memory pools and to identify channels

with stale data. Any channels with old data are then added to the harvester queue.

A harvester thread monitors the harvester queue. To avoid overburdening the user’s CPU or

network connection, the harvester thread limits itself to updating three channels at a time. As long

as there are available slots, it will start the next harvester in the queue. Additionally, it imposes a

time limit of ten minutes on each harvester. If, after this time, a harvester has not completed, it is

assumed to have stalled and is halted. Any harvester that fails to complete, whether because of a

timeout or an uncaught exception, is marked as having suffered an error.

75

The dispatch keeps track of which harvesters have encountered errors and penalizes those har-

vesters with increasing penalties. If, for example, a publisher’s site goes offline and causes a har-

vester to malfunction, it will receive an increasing penalty each time the harvester fails. Thus, if

the publisher experiences a short downtime, the harvester may retry every few minutes and fail a

few times before eventually running successfully (when the publisher comes back online). If, how-

ever, the problem occurs over a longer duration, the harvester will be deprioritized sufficiently that

it might only retry once a day. Through this mechanism, the dispatch thread is able to balance

resilience to transient errors with the costs of repeatedly executing flawed code.

After the dispatch has queued up any stale harvesters, it selects the next channel to display.

Each channel has a particular display priority specified by the user. This priority controls how

frequently a channel is displayed: very frequently, frequently, occasionally, rarely, or never. The

specific meaning of these terms depends on how many channels the user has subscribed to. Thus,

if a user subscribed to a great many channels all to be shown very frequently, they might still only

be shown every few hours. A user with few channels, in contrast, might see a channel scheduled to

be shown rarely come up every few minutes. Nonetheless, the dispatch thread uses a priority queue

to control the display order of the various channels. Additionally, within each priority, the dispatch

uses a random permutation of the channels to control the display order. As such, a channel will not

be shown again more than once until all other channels with the same priority have been shown. If

an error occurs in displaying a channel (e. g. the channel has invalid data or a programming error

occurs), the channel is skipped and the next channel with the same or lower priority is shown.

In this way, the dispatch thread is resilient to data gathering and presentation errors. The effect

of a runaway data harvester or visualizer (either due to a programming error, transient network

anomaly, or invalid data from the publishers) is mitigated through the dispatch thread’s throttling

and timeout mechanisms. Nonetheless, the user can explicitly override any of these automatic

mechanisms and force a channel to run at any time. The user can instruct the dispatch to run a

particular harvester right away and can even monitor its progress in the channel browser, or she can

override the display priority queue and cause a particular channel to be shown immediately using

the playback controls.

76

5.7 Plugins

In addition to all of the built-in harvesters, scrapers, filters, and visualizers, developers can write

their own using The Buzz’s plugin mechanism. Thus, if a capable user wishes to augment the

behavior of the system in a way that is not readily accomplished with the existing customization

framework, she can write her own python plugin.

To support plugins, harvesters, scrapers, filters, and visualizers are Registerables. These

objects support dynamically loading new registerables and querying for which registerables are

available of a given type. They also define both the programmatic code for the object, but also the

user-readable descriptions of the object. Thus, a user could write a custom DiggHarvester that

integrates with the Digg.com APIs. In registering the new harvester, the developer must provide

a descriptive label for the harvester of the form “Gather from ...” and a longer description of the

harvester for use in a tool tip. Thus, the software can query the registered harvester to find out

it is defined in the class DiggHarvester and that it should be presented to the user as “Gather

articles from Digg.com” with the hint “Gathers a collection of articles submitted by the Digg.com

community.”

When The Buzz populates its list of available harvesters, scrapers, filters, or visualizers, it

queries for all of the available registerables of that particular type. Thus, a developer of a new

plugin needs only to write the appropriate object conforming to the appropriate harvester, scraper,

filter, or visualizer interface and register it with the registerable mechanism.

In most cases, the developer need only subclass the appropriate registerable and implement a

single method, although the various registerables do provide additional methods that the developer

may use to override the configuration behavior of the new object. Figure 36 shows an example

plugin scraper to extract the embedded images on a webpage linked from Digg.com.

Channels are stored on the filesystem as a file bundle, a directory with a special structure and

which is presented to the user as an opaque file. That is, it looks like a regular file to the user but

is actually a folder. A developer can add a new plugin to a channel by putting the python code for

the plugin object into the Extensions folder of a channel. See Figure 37. When the dispatch loads a

new channel, it will load any plugins that may be included in the channel.

77

import re

class DiggImageScraper(scraper.HTMLImageScraper):
’’’ Scrape images from the web page linked by the Digg article page. ’’’
__digg_exp_str = ur’’’<dt>Source:</dt>.*?<a href="(?P<url>[ˆ">]*)"’’’
__digg_exp = re.compile(__digg_exp_str, re.I|re.M|re.S)
def scrape(self, entry, harvester=None):

’’’ scrape(<RSS entry>, <Harvester>) -> [<data entry>, ...] ’’’
Load the Digg article and apply regular expression to find the
source article URL
html, base = loadURL(entry.get(u’link’, None))
m = self.__digg_exp.search(html)
if m is not None:

Extract matching URL and let our parent class scrape the HTML
for images.
url = m.group(u’url’)
html, base = loadURL(url)
return super(RSSDiggImageScraper, self).scrape(html, base)

No matches; return empty set
return []

Register the new scraper
Scraper.register(DiggImageScraper, u’All images in Digg article’,

description=u’Extracts all images in the source article ’
u’for each Digg entry in the RSS or Atom feed.’)

Figure 36: An example scraper plugin to extract images from articles posted on Digg.com.

Figure 37: The structure of a channel bundle on the file system.

78

CHAPTER VI

COMPARATIVE ANALYSIS

The Buzz lies at the intersection of two domains: end user customization and information awareness.

The primary goals of the user and of the system are to foster awareness of routine information.

Toward that end, the goal of this research focuses on how to support the user at customizing the

information the system conveys. These two distinct goals, while complementary, bring different

design implications across different design dimensions. In this chapter I describe this customization

and awareness space. Through various dimensions of this space, I examine existing approaches to

information awareness and customization applications, and I situate The Buzz with respect to these

approaches.

6.1 Gentle Slope

Within the end user programming community, a common way to examine programmable software

is in terms of both the expressive power of the customization or programming interface and the

effort required to make such an expression. These two dimensions define a two-dimensional space,

leading to the standard gentle-slope diagram [80]. From this perspective, plotting different kinds of

interactions with different tools can present a difficulty curve, in which simple customizations with

little expressive power lie in the lower, left corner and difficult customization with rich expressive-

ness lie in the upper right corner (see Figure 38).

Designers of customizable software then pursue two goals: (a) to keep that curve as low as

possible while also (b) avoiding steep increases in that slope, which represent barriers to more

expressive customizations. The first of these goals focuses on keeping tasks as simple as is feasible.

No matter how complex a task is, the system should support it as easily as is feasible. The second of

these goals focuses on the learnability of the software. An incrementally more complex task should

ideally require only an incremental increase in effort.

In the context of information awareness applications, the lower left corner of this space contains

simple behaviors such as using defaults or performing basic customizations to the content, such as

79

Figure 38: A gentle slope representing the effort and expressiveness of different awareness cus-
tomization activities.

changing the location for a weather data stream. These customizations are fairly simple to perform,

but also offer relatively little expressive capability. The upper right corner, by contrast, contains

advanced behaviors such as creating new awareness streams or even new reusable components for

defining such awareness streams. These sorts of customizations typically involve complicated in-

teractions, such as writing code, but also offer a high degree of expression.

There is a gap, however, in the middle of this space. Currently, systems typically focus on one or

the other of the corners, attempting to make it easier to perform simple customizations or by trying

to make programming interfaces more accessible to more users. For example, visual programming

interfaces attempt to lower many of the technical barriers to customization. But they still ultimately

require the user to possess programming capabilities.

In this middle space, however, users can go above and beyond providing simple data parameters

to the information awareness system. Users should be able to control the actual behaviors of the

system, controlling how the data are gathered and presented, rather than simply controlling what

data are gathered presented. Similarly, the user should be able to control such behaviors without

having to resort to programming.

In the spirit of the gentle slope, therefore, awareness systems should support customization

across the expressiveness spectrum as easily as is feasible. Thus, a user should be able to easily

80

choose what information to show, control simple parameters as in choosing to show the weather

forecast for multiple locations, create derivative content streams, or even define new ones altogether.

Most existing systems, however, focus only on the edges of this space: supporting simple content

selection and parameterization or supporting the programming of new content streams.

In this way, users fall under one of two roles: end user or developer. An end user cares only to

work within the confines of the system, subscribing to streams, widgets, gadgets, pipes, or whatever

metaphor the system uses to encapsulate types of information content. A developer, in contrast,

can create new streams, widgets, gadgets, or pipes by writing code. A user who wishes to per-

form any customization beyond the basic customizations the system supports must transition into a

developer’s role; there are no intermediate stages along the slope.

Furthermore, most systems treat these two roles as entirely distinct. A user is either an end user

or a programmer but not both. In Dashboard, Google Gadgets, Live Gadgets, Konfabulator, and

Sideshow, for example, the user can subscribe to widgets1 and can change the properties exposed

by the designer of the widget. If the user wishes to modify the widget, however, she must leave

the system and enter a separate developer’s environment, instead writing HTML, XML, JavaScript,

or even using C/C++-based APIs. Pipes recognizes that these two roles are fluid and provides a

transition between end user and programmer entirely within the interface. Nonetheless, these two

roles are treated as distinct—a user is behaving either as an end user by running pipes, or as a

developer by modifying their sources.

Nonetheless, while this rich customization space is sparsely populated, it is not entirely barren.

Various systems have taken different approaches to supporting the user at performing various de-

grees of customization. The rest of this chapter focuses on this customization space. Section 6.2

presents different approaches that have been taken to address customization relevant to information

awareness systems. These approaches help to illustrate many of the pitfalls and challenges that

arise. Section 6.3 uses these different approaches to help describe various dimensions of this cus-

tomization space. Thus, the rest of this chapter first describes the various awareness systems that

populate this customization space. Only after we understand the inhabitants of this space can we

1Unless otherwise stated, I use the term “widget” generically to refer to widgets, gadgets, pipes, or similar artifacts
created by the system, regardless of which term a particular system prefers.

81

use them to identify and illustrate the dimensions that make up this customization space.

6.2 Six Approaches

Various approaches have been taken to address the assorted customization tasks related to infor-

mation awareness systems. If we consider these tasks in terms of the stages of the awareness

data pipeline (see Section 2.2), it will help to categorize many of these customization dimensions.

The various stages of the awareness data pipeline describe the technical steps an awareness system

must perform to gather, aggregate, manipulate, mash up, and convey data as information. Through

this lens, Pipes and Marmite (Sections 6.2.1 and 6.2.2) focus entirely on the front end of the data

pipeline: extracting, aggregating, and transforming data from the sundry formats used by content

publishers. In contrast, the various widget systems (Section 6.2.3), Greenberg and Boyle’s Notifi-

cation Engine (Section 6.2.6), and Dontcheva’s Cards framework (Section 6.2.4) address all stages

on the pipeline, albeit in very different ways. Finally, Koala/Coscripter uses a programming by

demonstration approach to allow the user to create recordings of repetitive tasks, but does not ex-

plicitly focus on any particular stage of the pipeline or on awareness interfaces. Nonetheless, its

programming-by-demonstration approach makes it a valuable lens to consider.

In this section, I present six systems that demonstrate different approaches to supporting cus-

tomization. Most of these systems focus specifically on the information awareness domain. Some

of these systems, however, focus on problems that are relevant to, but not necessarily within, the in-

formation awareness space. An analysis of these systems will help to illustrate many of the concepts

and challenges that arise in support end user customization in this context.

6.2.1 Yahoo Pipes

Yahoo Pipes is a visual programming system that enables people to take data from one or more

sources, filter them, manipulate them, and create a single, derivative stream. With this approach, a

user could create a mashup of Craig’s List housing listings and Yahoo Maps, of New York Times

headlines through the lens of photos on Flickr, or just remove all the photos of flowers from a Flickr

photo gallery.

To define these streams, a user creates a pipe by connecting visual blocks, called operators,

together by drawing lines, or pipes, between them (see Figure 40). Each pipe combines simple

82

The Buzz

PlasmaPosters
Café

GroupCast

Notification Collage
MessyDesk

Dashboards

Sideshow

Buttons

InfoCanvas

Pipes
Marmite

Sifter
Dapper

Cards
Framework

Notification
Engine

Coscripter
C u s tomiza*on‐thr

ough‐u
se / G

roup
 Dis

p l
a
y
s

W

idg
e*ng

 Tools

Mashup Environments

De
m

on
str
a*ve Interfaces

Figure 39: An overview of systems in the awareness customization space. Systems drawn closer
to each other within a region are more similar than systems drawn farther apart. Those in bold are
spotlighted in this chapter.

operations together, chaining the output of one operation to the input of another. Much in the same

way that Unix pipes allow relatively simple commands to be combined to accomplish fairly complex

and application-specific tasks, Yahoo Pipes allow the combination of relatively simple operations in

order to generate more complex data streams.

Each Pipe gathers input from various sources, primarily RSS2, JSON, XML, and similar struc-

tured input sources. It then applies various operators to the data, such as filters, regular expressions,

loops, etc. The results are output as RSS, JSON, or KML. By combining different operators, users

can create pipes that aggregate data from different sources, perform certain kinds of manipulations

or normalizations on those data, and output mashed-up or other derivative data streams.

In this way, Pipes is primarily an aggregation or mashup tool. A user can find existing pipes

created by other users or create his own using a visual programming interface. The user typically

creates a pipe that aggregates data from multiple data sources, perhaps modifying the data in some

way, and outputs it as an RSS feed, photo gallery, or map, depending on the kind of data. In

this way, Pipes is especially useful for creating aggregations of data from multiple sources and

2and its cousins, such as Atom and RDF.

83

Figure 40: The Yahoo Pipes editor interface to create a mashup of headlines from the New York
Times with related photos from Flickr.

combining them with one of these interfaces.

A user can run a pipe in several ways. The Yahoo Pipes web site provides a web interface and

an RSS interface to each pipe, similarly to the way that many news publishers provide their content

both to the user on the web or via RSS. Thus, a user can view pipe output either in his or her web

browser or through any standard RSS reader. Additionally, the web interface provides a link to view

and/or modify the source for each pipe. In this way, the interface supports users at transitioning

from an end-user to a developer’s role.

The pipe editor interface uses a visual programming approach (see Figure 40). In this interface,

each operator is represented as a box on the screen. Each operator exposes various configuration pa-

rameters, but otherwise functions as a black-box entity. The user can then drag and drop connections

from one operator’s output to the input of another (see Table 2). Through this visual programming

interface, the user can define complex data flows.

For example, a popular pipe gathers news headlines from the New York Times RSS feed, ex-

tracts keywords from those headlines, and uses the keywords as query parameters for photographs

on Flickr.com. The pipe then outputs news headlines augmented by potentially related photographs

84

Table 2: A listing of operators available in Yahoo Pipes. Many operators are self-explanatory. Refer
to http://pipes.yahoo.com for their precise behaviors.

Sources Fetch CSV; Feed Auto-Discovery; Fetch Feed; Fetch Data; Fetch Page; Fetch Site Feed;
Flickr; Google Base; Item Builder; Yahoo! Local; Yahoo! Search

User Inputs Date Input; Location Input; Number Input; Private Text Input; Text Input; URL Input

Operators Count; Filter; Location Extractor; Loop; Regex; Rename; Reverse; Sort; Split; Sub-
element; Tail; Union; Unique; Web Service

URL URL Builder

String Private String; Yahoo! Shortcuts; String Builder; String Regex; String Replace; Sub String;
String Tokenizer; Term Extracter; Translate

Date Date Builder; Date Formatter

Location Location Builder

Number Simple Math

My Pipes Insert New Pipe; Dynamic list of my pipes

provided by the Flickr community. Another popular pipe gathers news articles from hundreds of

weblogs and merges them into a single RSS feed.

Pipes operates as a web service. All pipes are defined through the web-based interface, through

which the user defines the inputs, dataflows, and outputs for each pipe. All data processing is per-

formed by Yahoo’s servers. As such, users are limited in the ways in which they can extend the

available operators. First, a user can treat another pipe as its own operator, allowing for encapsula-

tion of pipes. Nonetheless, this mechanism does not allow the developer to create a new operator

beyond what can already be expressed with all of the existing operators. The only mechanism Pipes

provides for developers to define entirely new operators is to create and host their own web service,

to which a pipe can then delegate some of the data processing. For most purposes, therefore, Pipes

does not support extensible operators.

The focus of Pipes is primarily on data flows. That is, it is a tool to collect data from various

sources, aggregate them, manipulate them, and mash them up to define new, derivative data streams.

As such, the system provides little support for the presentation of those data. Through the web

interface, a user can display a pipe’s output as a list, as a slideshow of images, or on a map. Beyond

85

Figure 41: Creating a Marmite mashup of housing listings from Craig’s List with a Yahoo Maps
interface.

choosing which of those representations to use, the user has little or no control over the presentation.

The primary use model is to subscribe to the RSS feed output of the pipe. In this way, the

actual use of the data is delegated to the feed subscriber. Presentation of those data, beyond the

rudimentary interface described earlier, is beyond the scope of the system. As such, Pipes focuses

primarily on the front end of the awareness data pipeline described in Section 2.2.

6.2.2 Marmite

Like Pipes, Marmite [108, 107] provides a visual programming interface to support users at aggre-

gating, filtering, and mashing up data streams. Using Marmite, a user can define a dataflow to, e. g.,

extract addresses from housing listings on Craig’s List, filter out properties above a certain price,

and convert those addresses to latitude and longitude coordinates so that they can be placed on a

Yahoo map interface.

Instead of acting as a web service, however, Marmite operates as a Firefox web browser plugin.

Through the plugin, users can create a dataflow using an interface similar to that of Apple’s Automa-

tor tool [10], which allows users to visually define automated workflow processes. For example, in

Automator, a user might start with a folder of images, pass the images to a photo manipulation tool

to scale them down to a web-scale, create an archive of the resulting images, and attach them to an

86

email message.

Marmite, like Pipes, allows the user to connect together different operators in order to define

the process of gathering, manipulating, and outputting data. Marmite, however, restricts these to

linear data flows. The output of one stage is passed to the next stage in the pipeline, or workflow.

No support exists for branching or merging dataflows.

The user begins a workflow by specifying an input operator. Marmite offers input operators for

extracting data from web pages or from the UpComing.org or Eventful.com event listing services.

The web page input operators allow the user to click on a rendered web page to specify the attributes

to extract. The system then uses techniques adapted from Sifter [52] to infer an extraction pattern

to apply to other instances of the same web page. Thus, by selecting, for example, the names and

prices on a web page of housing listings, the system could infer a rule for extracting listings from

web pages from the same publisher but for a different location.

The user can then apply new operators to the extracted data, for example to convert a street ad-

dress to a latitude and longitude. At each step along the dataflow, the system updates a spreadsheet-

like representation of the data. In this way, the user can more easily trace the progress of the dataflow

in order to verify its correct behavior or to identify bugs.

In terms of the awareness data pipeline, both Pipes and Marmite perform a similar function.

Both systems focus on the front end of the pipeline, extracting data from content publishers and

transforming it in some way, before outputting a derivative data stream. Marmite provides two

mechanisms, however, to try to better support end users at programming these data flows: operator

hints and the aforementioned spreadsheet data representation.

When the user begins creating a dataflow, Marmite provides hints as to which operators are

appropriate at the current stage of the dataflow. Thus, at the beginning, Marmite suggests using one

of the source operators to extract data from some particular data publisher. At the next stage, the

system provides hints as to which operators might be appropriate given the output of the previous

operator. Thus, if an operator outputs addresses, Marmite might suggest the use of a geocoding

operator to transform the addresses to latitudes and longitudes. A geocoding operator might suggest

the use of a map sink to visualize the output data points on a map, or a sink to output KML map

markup data.

87

Figure 42: A collection of Dashboard widgets running in Apple’s Dashboard.

Through the use of these hints and the spreadsheet data representation, a user study has found

that most users with spreadsheet experience are able to create such dataflows in Marmite [108].

This result suggests that the Marmite visual programming approach is able to help lower the thresh-

old required for end users to program within this particular domain. Nonetheless, the study also

found that participants who did not already have experience with spreadsheet programming found

it difficult to create such dataflows. As such, this visual programming approach is no magic bullet.

Because Marmite runs as a Firefox browser plugin rather than on Yahoo’s servers, it does not

have the same security limitations on creating new operators. As such, Marmite allows develop-

ers to extend the system with new operators written in a combination of JavaScript and Mozilla’s

XML Binding Language (XBL). Thus, there are two kinds of users the system supports: end user

programmers, who create their own data flows, and developers, who can define new operators for

themselves or other end user programmers. Nonetheless, the system itself provides no mechanism

to support the exchange of data flows or operators amongst fellow users.

88

6.2.3 Konfabulator/Dashboard/Google/LiveGadgets

Konfabulator [6], Apple’s Dashboard [11], Google Gadgets [4], and Microsoft’s Live Gadgets [75]

all provide a similar widget-based information awareness approach. For most purposes, these sys-

tems can be treated as equivalent. Konfabulator was the first of these systems created and was

subsequently acquired by Yahoo. Each of these systems enables the user to download information

widgets, or applets. These widgets are typically small objects on the screen and which convey

a specific piece of information and/or support a specialized task, much in the same way as But-

tons [92, 68]. Information-only widgets include the Weather, Traffic, and Day in History widgets

shown in Figure 42. The figure also includes interactive task-oriented widgets, such as the Dictio-

nary, Wikipedia, and Translation widgets.

These dashboard systems make it relatively easy for users to find information applets that pro-

vide a highly specialized interaction. Information-only widgets might present specific information

such as the weather in Poughkeepsie or the number of active bugs in the company bug tracking sys-

tem. Task-oriented widgets might provide an applet that is optimized for looking up package status

based on UPS tracking numbers. Although all of these are tasks that are possible through existing

web-based interfaces, these widgets provide a narrow, “just the facts, ma’am,” tool for common

tasks. These tools let users find and use such widgets and provide support libraries and frameworks

for developers to write these widgets.

These widgets are popular among users because they provide a simplified interface for a special-

ized task, usually without excess user interface cruft or too many options necessary in a general-use

interface. They are also popular among developers because they are relatively simple to create,

given existing web development skills.

In each of these systems, users can browse a shared repository of available widgets and select the

ones they wish to use. Depending on which system is used, these widgets float above the desktop,

or in a sidebar, appear overlaid above the desktop when a hotkey is pressed (as in Figure 42), are

embedded within a web page, or some combination of the above. Regardless of the framework

within which these widgets operate, however, the interaction style is essentially the same. For

information-only widgets, the user quickly glances at the widget to gather a status update. For

89

interactive widgets, the user might monitor the state and possibly follow up with a quick interaction.

For example, the Address Book widget shown in Figure 42 serves as a shortcut to the Mac OS

X integrated address book database. Rather than requiring the user to launch the Address Book

application, the address book widget can be preloaded in the background and available whenever

the Dashboard hotkey is pressed.

Similarly, widgets can provide a shortcut for common and well-structured tasks, such as tracking

the status of an airline flight, also shown in the figure. Such a widget can provide a specialized

interface for a recurring task. Many such widgets have been created by the active communities

around each of the respective systems. A user can simply browse the library of available widgets

and subscribe the ones of interest. They will then appear on the dashboard, sidebar, or web page.

Furthermore, many widgets offer various tailored properties available for customization, such as the

zipcode for a weather widget or the language to use for an international widget.

When no pre-existing widget is available for a particular need, however, a user must transition

into the role of a developer. Although each of these widget systems may differ in how they present

the widgets, they all use the same approach to supporting developers at creating widgets. And unlike

Pipes, they do not provide an integrated editing environment. Instead, the developer must load

a separate development environment3. Widgets are then created using a combination of HTML,

XML, and JavaScript. As such, even the widget systems that appear to run as desktop applications

or applets still run each widget within a web-based framework.

By using a web-based framework, these systems allow those with already-existing web devel-

opment skills to create their own applets. The skills from the one transfer to the other. Furthermore,

web development tools provide extensive support for controlling the appearance of the artifacts cre-

ated, making it easier for developers to create specialized visualizations or depictions of certain

kinds of data.

Nonetheless, these systems still require the user to demonstrate significant technical skill. Re-

gardless of the development environment, widget developers must write markup or code. As such,

these systems treat end users and developers as distinct.

3Although some systems, such as Dashboard, do provide an Integrated Development Environment (IDE) specialized
for the development of widgets, others rely on the widget developers to use their own preferred environment.

90

6.2.4 Summaries Framework and Cards

Dontcheva et al.’s Cards Framework [32] focuses exclusively on helping end users at creating new

information mashups without programming. Users can define extraction patterns by clicking on

items on web pages. Items extracted are added a to a card. By dragging from an item on one card

to another, the user can specify a relationship between the items, so that when one card is loaded,

its data can transfer to the new card so as to merge the two.

Using this technique, a user can create a restaurant listing card stack, where the user can view

restaurant pricing and hours gathered from one site, integrated with reviews from another site, and

a map with driving directions from yet another. As such, the Cards Framework is primarily an

information aggregation tool.

Under this framework, there is no distinction between different classes or roles of users. End

users do not transition into a developer role. Instead, the focus is on letting the end user define

extraction templates and relations between the data through a direct manipulation interface.

Under the Cards Framework, users can define extraction templates to gather data from various

data sources. For example, a user could define a template to extract restaurant review data from a

yellow pages service. In the interface, the user clicks on the various elements of the rendered web

page to specify the desired data. The system then infers the template to extract the specified entities

from the underlying HTML. Using this template, the extracted data are then laid out on an “index

card” on the screen.

The user can combine multiple extraction templates by browsing to another website, for exam-

ple, a restaurant review service. In the same way as before, the user specifies an extraction template

to gather the name and overall rating of the restaurant from this new service, creating a new index

card for the restaurant reviews.

In order to link these two cards, the user draws a link between the fields for the restaurant

name on the two cards. In this way, the user can create a new, derivative card that displays the

combined information from the multiple data sources. Now, when the user adds a new card for a

new restaurant, the system automatically applies same templates to create the appropriate derivative

cards, unifying the data from multiple sources.

91

Figure 43: Coscripter (in a sidebar on the left) running a script on the ACM Portal.

Like Pipes and Marmite, this approach relies on the user to interact with a direct manipulation-

style interface in order to create a data manipulation program. However, by restricting the kinds of

relations the user can define on the data, the Cards Framework is able to provide such an interface

without requiring the user to program. The user defines graphical relations from which the system

infers the underlying programming. As long as the user is only concerned with specifying these

data relations, the Cards Framework can provide a simplified customization interface. If the user

need more complex data manipulations, however, the Cards Framework will be insufficient.

In this way, the Cards Framework supports a users at extracting data, aggregating them, and

creating new presentations of the data without requiring the user to perform any programming. As

such, the system focuses on all stages of the awareness data pipeline: content extraction, transfor-

mation, and presentation. Furthermore, it does so by operating squarely in the middle region of the

expressiveness versus effort space (Figure 38).

6.2.5 Koala/Coscripter

Coscripter [63], the recording artist formerly known as Koala [64], focuses on the problem of au-

tomating repetitive browsing tasks. Using Coscripter, a user can press a “Record” button to store

the steps necessary to accomplish a particular task, such as filling out an expense report after a trip.

Coscripter monitors the actions taken and stores those steps in a human-readable script. By slightly

92

modifying the script, the user can replay the steps taken in order to fill out future expense reports.

Whereas the awareness data pipeline describes the process of transforming a publisher’s data

into knowledge in the head, Coscripter tries to simplify the process of taking knowledge from the

user’s head and transforming that into the steps necessary to accomplish a cumbersome action. As

such, Coscripter does not sit in the information awareness space. It’s end user customization tech-

niques, however, are relevant to the task of supporting end users at defining methods for extracting

data from web pages and describing processes on them.

Coscripter operates as a Firefox web browser plugin. With Coscripter, a user can automate

a recurring tasks by recording the steps necessary to perform it. Using this programming-by-

demonstration [29] approach, a user simply performs an action in the web browser while the system

watches the steps performed. This recording takes the form of a human-readable list of steps, such

as “Go to http://portal.acm.org,” “You enter your query into the ‘Search the ACM Digital Library’

textbox,” and “Click the ‘Search’ button.” Figure 43 shows Coscripter in operation.

Steps in a script that start with “you” indicate steps that are to be performed by the user. Thus,

in the above script, the system performs the first and last steps, while the user performs the middle

step. Furthermore, each step in the script is user-editable. Changing the middle step from “You

enter your query...” to “Enter ‘End User Programming’ into the ‘Search the ACM Digital Library’

textbox” will appropriately transform the script into a fully automated one.

In this way, a user can program recipe-style scripts simply by performing the action. These

scripts are recorded in such language that they serve not only to record the steps necessary for the

system to perform, but also in clear enough language that many users exchange these scripts with

each other via other means, such as email. For example, an administrative assistant using the system

recorded a script for all of the workers she supported, not to automate the task, but to create a set of

instructions [63].

6.2.6 Notification Engine

The Notification Engine [43] allows users to create collages out of clippings from web pages. These

clippings might consist of a region of a web page that frequently changes, such as the image portion

of a webcam, a daily comic strip, an at-a-glance weather forecast, or news headlines, and more. To

93

Figure 44: The Notification Engine.

create a notification, the user selects these portions of a web page in a special notification composer

interface. She can then compose those portions of the region to create a notification. She can then

assemble a collection of notifications from different web sites into a collage, as shown in Figure 44.

To generate this collage, the system monitors the rendered output of the tracked web pages

for changes. When it detects a visual change in one of the specified regions, it generates a new

notification to replace the old one on the collage. Playback controls at the bottom of each notification

allow the user to step through recent notifications.

Through its use of rendered output, or surface representations, the Notification Engine is able

to handle nearly any underlying data format that the web browser is capable of displaying. Even

though the Notification Engine has no understanding of HTML, Java, Flash, or any other format that

might occur in a web page, the system is still able to generate notifications from these data formats.

Because it uses the rendered output of the web browser, however, this approach prevents semantic

understanding of the underlying data. From the system’s perspective, the extracted data are merely

a collection of meaningless pixels. As such, the user can compose notifications based only on visual

94

changes, not on the actual content themselves.

In many practical examples, however, understanding the data is not necessary. As long as the

relevant data can be extracted and presented to the user, the user can make sense of the data himself.

Thus, this surface representation approach can be useful to handle many underlying data formats as

long as the source presentation itself is sufficient to convey the desired data.

6.3 Customization Space

Each of the systems presented in Section 6.2 illustrates some of the many approaches that have been

taken to support users at customizing their information systems. The various presentation interfaces

they use and the various interaction styles they employ all influence the various design decisions

each of the systems’ authors make. As a result, there are many design dimensions on which to

analyze these systems. What kind of user does the system support? How does the user specify the

content or the presentation of the system? Can the user specify the content or the presentation that

the system uses? The remainder of this chapter describes these dimensions from the perspective of

the six systems described earlier.

Even among these dimensions, there are different approaches to supporting the user at express-

ing her intent. She might use a direct-manipulation [93] to perform her customizations. Or, perhaps,

a programming-by-demonstration [29] interface might infer how to perform the task in the future

by monitoring how she performed that task. Agent-based approaches might personalize the system

by monitoring her activities beyond the awareness system.

When she explicitly customizes the software, she might do so by writing a program, or by

writing dotfiles. Perhaps she uses a structured rule editor, such as in Figure 45. Or she might use a

visual programming environment, as in Yahoo Pipes and Marmite. A wizard interface might help

to guide her through the customization process.

Each of these approaches will have an influence on the overall ease of use of the particular task

the user is performing. Which style of interface is most appropriate will depend on the particular

task the user is performing within a particular domain. For example, a programming interface might

not be appropriate to support a user at subscribing to specific channels, but if she wishes to define

an arbitrary visualization of a complex collection of data, it might be the ideal tool. The style of

95

Figure 45: A rule editor interface from Apple’s Mail program.

interface used might influence where a system lies on a particular dimension.

To help understand this vast multidimensional space, we consider it in terms of the awareness

data pipeline. This data pipeline represents, from a system-perspective, the various steps necessary

to transform a data stream into a presentation. Thus, the pipeline can help to structure the various

system processes that the system will have to perform.

Because the pipeline focuses only on the data streams relating to a single presentation, however,

it does not address relationships across representations, or how they are ultimately consumed by the

user. As such, while the pipeline model is useful to help structure our analysis of these customization

dimensions, it is important to recognize that there is a broader space beyond that which the pipeline

encompasses. As such, additional dimensions arise when we consider not only the individual data

pipeline, but also the collection of multiple data pipelines.

We consider this space first in terms of the user: who is he or she, what kinds of skills and

motivations does she possess, and what is she trying to do (Section 6.3.1)? With an understanding

of the makeup of the user, we can then focus on the technical tasks that he or she must accomplish

(Sections 6.3.2 and 6.3.3). As we consider each of the stages of the pipeline, we also consider the

implications of a multiplicity of such concurrent pipelines. Finally, we can then consider the design

implications of the broader awareness context in which these systems are to be used (Section 6.3.4).

96

No Roles Fluid Roles

Pipes

Marmite

No3fica3on
Engine

Cards Framework

Coscripter

Dashboards The Buzz

Figure 46: Fluidity of user roles in customizable software systems.

6.3.1 The User

Section 2.1 describes a user ecology, in which users typically fall into different roles: end-users,

tinkerers, and developers. These roles, however, are fluid, rather than static. An individual user’s

skill level and inherent motivation might determine a baseline role, but various triggers and barriers

might alter the role a particular user demonstrates at a particular moment of interaction.

A typical administrative assistant, for example, is often a competent computer user with no

intrinsic interest in how the computer works. It is merely a tool for a job. However, many such users

create spreadsheets with complex conditional logic in them when it helps them in their work. Thus,

an end-user might assume a developer role given appropriate motivation and surmountable barriers.

Similarly, many computer scientists, with extensive technical skill, are often content to use their

software in its default configuration. Consider, for example, the case of the Unix guru on the Mac.

Just because a user possesses a tremendous technical proficiency does not imply that she desires

to exercise it. Instead, she may be content to use a system that just works, and only leverage her

advanced skills if the need arises.

As such, one important dimension to consider in analyzing such customizable software is the

degree to which it supports these different roles of users. For example, systems such as the Notifi-

cation Engine [43] and the Cards Framework [32] support only a single role of interaction. There

is a single style of interaction through which the user creates his or her customizations. The user

simply generates his or her collages/cards by specifying the relevant portions of web pages. The

system itself is a black box, over which the user cannot take control beyond its typical use.

Alternatively, systems such as Dashboard [11, 4, 75, 6] and Marmite [108] support multiple

distinct user roles. In Dashboard, a casual user can select from existing widgets and configure basic

properties to customize which content the awareness system presents. Marmite allows the user

to perform more advanced customizations using its dataflow model. Furthermore, both systems

97

also support developers at creating new content through a developers interface, whether through

standard tools, a standalone IDE, or through Firefox development libraries (e. g. XUL). In this way,

Dashboard explicitly supports end users and developers, while Marmite supports the tinkerer and

developer roles.

The Buzz, Coscripter [63] and Pipes [7] extend this support for multiple user roles by making

the transitions between the roles more fluid. In Coscripter, the user can restrict him- or herself to

just using the script playback controls or the automatic script suggestion features of the interface,

or he or she can modify or create scripts by editing the text in the sidebar. In this way, the interface

provides a natural transition from the end user running scripts to the tinkerer modifying or creating

scripts4.

Similarly, in Pipes, the user can browse and run pipes found in the vast online shared repository

populated by the abundant users of the system. Or a user can modify an existing pipe, including ones

created by others, simply by clicking the conspicuous “View Source” button. Thus, like Coscripter,

Pipes provides a transition from one role to another entirely within the interface.

The Buzz further supports all three user roles: end-users, tinkerers, and developers. End-users

can customize the system by merely selecting from existing content and altering basic properties

for those channels. Tinkerers can adjust the actual layout and presentation of the channels or even

modify some of the data extraction behaviors, while developers can write plugins in code. With the

exception of the transition from tinkerer to developer, the interface attempts to provide a gradual

transition between each of these roles, where each interface presents cues as to the steps that a user

might need to take to perform a more advanced customization.

Within this customization space, the fluidity of these user roles as supported by a particular

system will cut across many of the other dimensions. For example, a system that supports only

a single role will provide only a particular style of interaction for customizing the data gathering

process, if it even allows such customization. Whereas a system that supports multiple fluid roles

may provide a variety of such styles of interaction.

4One could argue to whether the complexity of the scripts written might boost a user performing a particular interaction
into more of a programming role. Nonetheless, the natural-language-like syntax used by Coscripter and its lack of
complex programming constructs, such as loops or conditionals, suggests that it focuses more heavily on the tinkerer
rather than the end-user programmer.

98

General
Purpose

Specialized

Pipes (developer)
Marmite (developer)

No9fica9on
Engine

Coscripter (user)

Dashboards (user)

The Buzz

Coscripter (developer) Pipes (user)
Marmite (user)

Dashboards (developer) Cards Framework

Figure 47: Generality versus Specialization.

6.3.2 Data Extraction and Transformation

The information awareness data pipeline describes the various technical steps necessary to create

a single information stream: gathering data from content publishers; transforming the data into a

suitable representation; and conveying those data as information to the user. The first half of the

pipeline focuses on this data extraction and transformation process.

6.3.2.1 Specialization

Although the data pipeline focuses on the process from a technical perspective, there are many

approaches that systems can take to support the user’s goal—to tell the system what to show. The

Dashboard systems let the end user accomplish this task by selecting from existing content and

possibly configuring simple properties. Alternatively, the developer can create any ad hoc widget

in code.

These two approaches differ in several ways. Not only do they focus on different user roles,

as discussed in the previous section, but also, these two approaches differ in generality. When a

user selects a particular widget, the options that he or she can configure are highly specialized to

the specific widget. For example, a stock widget provides parameters for the list of stocks in a

user’s portfolio. A flight tracker widget asks for airline, city, and flight number information. These

parameters are tightly coupled to the specific task the user is trying to accomplish.

The widget developer interface, in contrast, operates at a very general level of granularity. The

interface provides support for loading URLs and painting to the screen. As such, the developer must

concern herself with details such as what URL, webservice, or query parameters to supply in order

to get the data for a particular airline flight, or how to render a particular piece of data to the screen.

99

While the widget user operates at a concrete level, the widget developer operates at an abstract level.

Although the Dashboard systems segregate abstract and concrete interactions by user role, these

abstractions are not necessarily always so segregated in other tools. For example, Yahoo Pipes

provides a combination of general and specialized operators for the Pipes developer to use. For

example, a Pipes developer can use an RSS operator to gather photos from Flickr, or he could use

the specialized Flickr operator. In the former case, the developer would need to translate photo tags,

groups, usernames, etc., into the appropriate query parameters to the RSS feed. In the latter case,

however, the developer simply provides those properties to the operator, which abstracts away the

details of extracting the data from Flickr.

In this way, there is an inherent tradeoff between general-purpose mechanisms and concrete.

General purpose approaches tend to be reusable to support a broad variety of tasks, but typically

require more effort to tailor the particular approaches. For example, a web crawler is well-suited for

gathering a wide variety of data types found on the web. But the user must control many esoteric

details of the process. For example, the shallowness or depth of the web hierarchy on a particular

server might influence how deeply to crawl. Or, should the crawler restrict itself from following

links to other web servers? Many publishers use farms of webservers (e. g. www1, www2, ...,

or images, ads, content, db, etc.), while other publishers provide unrelated content on different

subdomains (e. g. news.bbc.co.uk for news services versus www.bbc.co.uk for TV services).

Further still, some services, such as Digg.com, provide aggregations to other sites. As such, the

desired behavior of the crawler depends heavily upon the particular context in which it is being

used and in ways that are difficult to predict a priori. In this way, the flexibility offered by such

general-purpose tools comes at the detriment of added complexity.

In addition to the technical task itself being complex to express, the user must also control the

mechanism using terminology that is unrelated to the user task that he or she is trying to accomplish.

Thus, instead of instructing the system to gather all photos on the Flickr photo sharing website

that are tagged with “zebra,” the user must describe how to crawl flickr.com without crawling

too deeply or accidentally following a link offsite, but while still getting content from the various

servers in the image-hosting farm. As such, there is a cognitive disconnect between the user’s goals

and the system’s expression of that goal.

100

More specialized approaches can address this cognitive disconnect between the interface and

the user’s goal. A widget or operator that is tailored for Flickr, can use terminology that matches the

user’s mental model of the service. But if the user wishes to include photos from, e. g., the Picasa

photo sharing service instead, the user must resort to another method. The Flickr operator is too

specialized to be useful for such a purpose. In this way, specialized operators lack the flexibility

necessary for the user to easily repurpose them to another task.

While specialized approaches may restrict the ability of the user to repurpose them, they do

provide greater flexibility through their focus on a specific information stream. For example, not

only can a Flickr operator provides its customization interface in terms relevant to a Flickr user, but

also it can provide access to data that might not be available through the general approaches. For

example, an RSS operator tailored to Flickr through special query parameters may not be able to

access the full breadth of features that the underlying data embodies. Many publishers, including

Flickr, provide web-based APIs to their data. Through these APIs, a specialized Flickr module can

access low-level data features, such as the comments on a particular photograph, that might not be

easily accessible through the general-purpose tools.

For each custom API, however, someone must take the time and effort to create an interface

to that API. For an awareness system to support the Flickr API, a developer must take the time

to implement a widget, gadget, channel, or operator that interfaces with the API. As the publisher

updates the API, the developer must update the widget. Multiply this effort by the number of

publishers and APIs that the system is to support, and this task can quickly become overwhelming.

Nonetheless, these specialized approaches may be worth the extra effort of writing an ad hoc

interface to the particular data source. The Dashboard systems, for example, exclusively use these

specialized approaches. Each widget is written specifically to present a particular interface to a

particular kind of data. Each of the widgets shown in Figure 42 uses separate code to gather data and

present the appropriate interface to the user. Most of these widgets were written by distinct authors,

yet relatively few users actually write their own widgets. In this way, specialized approaches can

take advantage of the user ecology, in which users fall into the different roles of end users, tinkerers,

and developers and in which users frequently share their customizations with each other.

101

Customiza*on Personaliza*on

Pipes
Marmite

No*fica*on
Engine

CoscripterDashboards

The Buzz
Cards Framework

Figure 48: Personalization vs. Customization in Awareness Systems

The Buzz, in contrast, does not partition these approaches across the user and developer inter-

faces. Rather, it uses a combination of both general and specialized data gathering methods. Thus,

a user can view the available gathering methods. If a specialized method is available for the task she

wishes to perform, she can use that method. If, however, no specialized method is sufficient for her

task, she may be able to use one of the general data gathering methods to gather her data. Allowing

the user to choose this method, however, does potentially add complexity to the interface. If too

many methods are available, selecting an appropriate method can in and of itself become a cumber-

some task. Nonetheless, though this approach, The Buzz crosses the generality and specialization

ends of this spectrum.

Thus, there is a tradeoff between the generality of the interface, which allows for greater flex-

ibility, and the specialization of the interface, which allows the designer to focus more closely on

concrete user goals. The different approaches may affect both the baseline usability of the system

and how readily users may be able to transition between roles. As such, different systems take

different approaches to supporting generalizable customization mechanisms.

6.3.2.2 Personalization vs. Customization

So far, we have considered the tailoring of the awareness system in terms of user customization—

where the user explicitly expresses his or her desires to the software system. An alternative ap-

proach, however, is for the system to observe the user’s interaction and to infer from those actions

what information is relevant. That is, instead of the user explicitly stating his preferences (cus-

tomization), the system infers them (personalization) [69, 94].

Under a customization approach, the user dictates her desires to the computer. The user is

entirely in control of the process. With the control, the computer will only behave as instructed—

any unexpected behaviors are the result of erroneous configuration. That is, the computer will only

102

do what the user tells it to do. This approach has the advantage that any unexpected behaviors are

attributable to the user’s configuration of the system rather than to a mysterious autonomous agent.

The obvious drawback, however, is that the user must explicitly instruct the software on every action

it should take; the system will not make a best effort to infer such actions.

There are, however, varying degrees of personalization. On one end of the spectrum, an interface

may be controlled entirely through an agent. This agent might, for example, monitor the user’s web

browsing habits and infer that the user frequently visits the ESPN golf section and infer the relevant

content on the various pages. On the opposite end of this spectrum, the same user would need to

explictly specify that the awareness system should monitor certain pages in the ESPN golf section

and define what content on the pages is relevant.

Intermediate approaches, however, can blend machine-learning and computer recognition ap-

proaches with explicit user customization. Although none of the systems highlighted in this chapter

uses full-fledged agent-driven personalization, Marmite, the Cards Framework, and Coscripter do

infer content based on what the user specifies. In both Marmite and the Cards Framework, the user

browses to an instance of a web page and selects examples of relevant content on the rendered page.

Using an approach from Sifter [52], the system uses each mouse click to infer which rendered item

the user was referring to, which underlying HTML renders to that item, and whether that item is an

instance of a class of similar items on the screen. Thus, if the user clicks on a single article headline

on a page listing many articles, the system may infer that the user meant to include all of the article

headlines in the listing.

Similarly, Coscripter [63] uses a programming by demonstration [29] approach wherein the user

teaches the system how to perform a task by performing it herself. The system monitors the steps

that the user performs and infers the actions necessary to perform it. (See Section 6.2.5 for more

details.) In this way, Coscripter uses a combination of user-driven interaction with system inference.

While not strictly personalization—the system does not learn and evolve—this approach enables the

system to demonstrate a task rather than programatically defining it.

Both of these approaches offer their own relative benefits and disadvantages. Personalization

can free the user from having to explicitly state his or her preferences to the system. The software

simply monitors the user’s actions and infers desires from them. The user need not rigorously define,

103

e. g., extraction rules, scheduling concerns, data dependencies, etc. In contrast, customization can

allow the user to explicitly define complex behaviors that may potentially lie beyond the capabilities

of the system to learn.

Consider, for example, a user who regularly commutes by subway, but drives to work on Fridays.

Depending on the dimensions a personalization system uses for learning, the system may be unlikely

to infer that it should show transit system information during rush hour Monday through Thursday,

but traffic information on Fridays. Even if the system might be able to identify such patterns, it may

take some time for the system to learn. Thus, the customization system could potentially offer the

user greater control, but at the expense of some effort.

These approaches, however, are not mutually exclusive. For example, a personalization ap-

proach could integrate user customization by overriding various dimensions with a high weight. Al-

ternately, the system could use personalization to complement the customization subsystem. Mar-

mite and the Cards Framework use this approach by allowing the user to specify some elements

manually, while the system infers others. A system could carry this further by, for example, infer-

ring relevant widgets from user behavior. Thus, a user who frequently visits the Foxtrot comic strip

might find the awareness system automatically subscribed to a Foxtrot feed, in addition to the feeds

to which the user had already explicitly subscribed.

As it is implemented, The Buzz lies squarely on the customization end of this spectrum. The sys-

tem provides no capabilities to infer behaviors based on the user’s actions. Intermediate, inference-

based extraction techniques could, however, be added into The Buzz fairly easily by developing new

harvesters or scrapers that allow the user to, e. g., use a programming-by-demonstration approach

to define extraction rules. If such a harvester or scraper were added, the system could potentially

extend toward the personalization side of this spectrum.

6.3.3 Data Presentation

The second half of the awareness data pipeline focuses on presenting the extracted data to the

user. There are many approaches to visualizing information [19, 95] and to designing informative

interfaces suitable for promoting information awareness. These approaches may be highly coupled

to the particular data being conveyed, as in most Dashboard widgets, or they may be more general

104

in nature, as in the Notification Engine.

6.3.3.1 Awareness Interfaces

Awareness systems typically use ambient, peripheral, or notification-driven interfaces to convey

their data. Although there is no strict consensus as to the precise definition of these terms, I will use

the following distinctions in considering these interfaces. Ambient interfaces can be characterized

by their use of subtle perceptual channels, which remain beyond the user’s attention, but still convey

data. Similarly, peripheral interfaces remain beyond the user’s active attention under normal use,

but are readily available to convey information should the user redirect her active attention. Finally,

notification systems assert themselves in such a way as to attract the user’s attention when various

events occur.

Pousman and Stasko’s taxonomy describes different dimensions relevant to the design of ambi-

ent and peripheral awareness interfaces [87]. Although these dimensions of the awareness interface

presentation itself are beyond the scope of this document, each of these different approaches will

influence the capabilities of the awareness system. An ambient interface, for example, is useful to

promote relatively simple awareness dimensions, but is unlikely to be scalable to convey complex

data without overloading perceptual channels. Furthermore, an ambient or peripheral awareness

system will need to avoid distracting transitions [54] and make judicious use of animation [85] if it

is to avoid unwittingly drawing the user’s attention. As such, the high level class of the awareness

system will influence the sorts of customizations that the system will need to support.

Although there are many approaches that these awareness systems have taken to convey individ-

ual data streams to the user, there are two techniques that have been used extensively to support the

aggregation of multiple data streams: temporal multiplexing and spatial multiplexing. Under a tem-

porally multiplexed approach, the system conveys different information sources and presentations

at different times, as in slideshow-driven systems, including The Buzz [34, 111, 73, 89]. In contrast,

spatially multiplexed systems depict multiple information sources simultaneously, as in at-a-glance

informative dashboards [6, 96, 18, 45].

In both of these approaches, the content from each individual data stream is treated separately

from the others. Although it is possible to merge content from multiple data sources in such a way

105

Fixed Layout Arbitrary Layout

Pipes
Marmite

No6fica6on
Engine

Dashboards (user) Cards Framework Dashboards
(developer)

The Buzz

Figure 49: Customizing the Presentation.

that their presentation blends elements of each other, most general-purpose awareness systems use

the multiplexing approaches. Such a blending typically requires more complex visualization tech-

niques than are typically available in most general purpose systems. Furthermore, such integration

would be relatively data-dependent, restricting the general-purpose methods that could be used. As

such, current awareness systems tend to depict individual data streams independently, but combine

them using one of these spatial or temporal approaches.

6.3.3.2 Customizing the Presentation

There are many approaches a system can take to enable the user to customize the presentation.

Figure 49 depicts various approaches that have been taken. RSS readers, for example, used a fixed

presentation style—the user cannot control how the data are presented. Similarly, the Dashboard

widget subscriber typically is unable to control the presentation of the content. He may be able to

control what data are shown (e. g. the particular stocks to display), but not how to do so. Still others

allow the user to define any arbitrary rendering of the data, as is the case for the Dashboard widget

developer. Most systems, however, provide intermediate approaches through which the user can

express a more limited degree of control over how to render data to the screen, usually with less

significant investment of effort.

These approaches can be broken down into three coarse categories: fixed presentation; template

or layout based; and programming based. These three categories are rough clusters of different

approaches that have been taken. As such, different systems and different user roles within those

systems may demonstrate distinct interaction styles within the same cluster. Nonetheless, the class

of customization approach used influences the kind of interactions the user will perform with the

system and the control she will have over the view.

Fixed presentation approaches restrict the user’s ability to tailor the presentation. The user may

106

be able to select properties of what to display, but not how to do so. For example, RSS readers allow

the user to control what content to show, but the presentation is typically restricted to a small set of

standard representations. Similarly, the Dashboard systems allow the user to subscribe to various

widgets, but the user cannot control the presentation within an individual widget. RSS readers

typically use this approach because the data are too heterogeneous. Although RSS feeds provide

machine-readable structure for the title, author, and timestamp of various data, the data themselves

are fairly free-form (though typically plain text or HTML). Widgets typically use this approach

because they are ad hoc creations tailored specifically toward the data they depict. As such, the

tailoring is delegated to a benevolent big brother: the widget developer.

To give the user additional control, various systems use template-based or layout-based ap-

proaches wherein the user can define the spatial placement of the various data. The Buzz, the

InfoCanvas [96], Cards Framework [32], Notification Engine [43], and Dashboards [11, 75, 4, 6]

use this approach. The Buzz provides users with a default layout template through which the user

can adjust the regions on the screen in which different data will be drawn. Under the InfoCanvas,

the user can define points or regions on the screen in which to depict different data elements using

a particular rendering method. The Cards Framework lets the user layout data within individual

cards and define collections of those cards. The Dashboards let the user create arbitrary layouts to

assemble the various widgets, while the Notification Engine lets the user layout not only the compo-

sition of the various data sources but also the various data elements within a particular data source’s

presentation.

Although all of these systems use very different presentation styles, they all support the user at

making similar sorts of customizations to those presentations: defining positions on the screen in

which to draw data and optionally choosing parameters to control how the data are rendered to that

particular location.

Finally, the Dashboards also give the widget developer full programmatic control over the con-

tent within the widget’s region on the screen. The developer can create any arbitrary rendering

expressible through the combination of JavaScript, HTML, and XML, although most widgets typi-

cally use relatively simple combinations of images and text. Few widgets actually define their own

visualization techniques to render complex data.

107

Similarly, The Buzz allows plugin developers to write new visualizers. These visualizers give

the programmer full control over the contents of an individual region. With such a plugin, a devel-

oper could define new representations of the data using Python code.

Although most of these systems fall primarily within one of these categories, it is important to

observe that different interactions within the Dashboards fit within each of the categories. The user

selecting widgets has no control over the presentation within the widget itself, but does have control

over the composition of the collection of widgets. Furthermore, the developer creating a particular

widget has the highest degree of control over the content within the widget itself, being granted

essentially a blank canvas with which to work.

6.3.4 Beyond the Data Pipeline

So far, we have considered customization through the lens of the awareness data pipeline. This

pipeline is useful in considering the various technical stages required to transform data from the

publishers to information representations for the user. But these individual data streams are not al-

ways independent. Thus, the data pipeline does not reflect the challenges that arise when combining

multiple data presentations into a single awareness system. This section surfaces above the data

pipeline to consider some of the broader dimensions beyond individual streams.

6.3.4.1 Specifying Relationships

To better support the relationships between multiple data streams, the awareness system may need

to be able to model aggregation, integration, and the mashing-up of the various data. In this section,

we consider the effort versus expressiveness space for specifying such data relationships. Under this

model, we examine various awareness systems that model the relationships between data in various

ways and consider both the power of that expression and the relative effort required to make those

kinds of expressions.

Figure 50 shows several different approaches that have been taken to model the relationships

between data streams. Most awareness systems fall under the first grouping and do not provide

any explicit support for the modeling of such relationships. Dashboard, the Notification Engine,

and Coscripter treat individual data streams or processes as separate. The user can not express

dependencies between data in one stream and the data or behavior of another. For example, the user

108

No Data
Rela*onships

Arbitrary Data
Rela*onships

Pipes
No*fica*on Engine

Dashboards (developer)
Dashboards (user)
Coscripter

Marmite

Cards Framework

The Buzz

Figure 50: Expressiveness of data relationships.

could not create a stream that embeds the output of another, in part or in whole.

The Cards Framework, however, enables the user to identify relations between elements in the

data. By drawing a connection from an element in one card to an element in another card, the

user can specify that a second element derives from the first. When a new card is created, the first

element can be propagated to the second in another card. Thus, a card that represents restaurant

listings and another that represents restaurant reviews can combine their data into a composite card,

with the two restaurant name fields from the two different data providers linked into a single view.

In this way, with a few relatively intuitive strokes of the mouse, the user can specify links be-

tween data in different sources and integrate data from multiple data sources. The relative simplicity

of this style of interaction to the kinds of relationships the user can specify make this approach es-

pecially elegant. Furthermore, the incremental cost of providing this kind of interaction above

fixed approaches is marginal. If the interface allows the user to examine the data prototypes, then

specifying the relationships minimally alters the complexity of the interface. It well embodies the

notion that a slightly more complex task should require only a slightly more complex interaction

and interface.

The next step up on the expressiveness scale is embodied by systems such as Marmite, which

allows the user to move beyond specifying simple relationships between the data. With Marmite,

the user can describe linear data flows and transformations to apply to the data. Thus, in one step

the system might be able to extract the name of a restaurant and it’s reviews, while the next step

might be able to transform the street address of the restaurant to a latitude and longitude suitable for

placement on a map.

Moving farther along, Yahoo Pipes extends the data flows the user can specify to support the

109

No Support Extensive
Support

PipesMarmite

No4fica4on
Engine

Dashboards

Cards Framework

The Buzz

Coscripter

Figure 51: Support for and encouragement of sharing/browsing content.

creation of nonlinear data flows. Creating these flows comes at the cost of a more cluttered interface,

where the flows are not necessarily as straightforward for the user to follow. Instead, she must

be able to trace the flow of data through branches and merges and even across into other Pipes.

Nonetheless, the system does support linear data flows in a way that, were the two systems actually

related, could be implemented in a way that negligibly alters the complexity of the interface when

creating linear data flows. As such, although the transition between simply specifying relationships

to specifying linear data flows is substantial, the transition from linear to branching data flows

reflects only the complexity of the underlying data flow itself.

Finally, the Dashboards allow the user to define arbitrary widgets in code. As such, there is

a significant hurdle to cross when transitioning to this style of interaction. Even simple programs

present a significant barrier to all but the most skilled of users.

The Buzz, however, provides capabilities at various points along this space, depending on the

role of interaction the user is exhibiting. While channels themselves cannot reference data from

other channels, individual channels can potentially gather data from multiple data sources, depend-

ing on the configuration of the various harvesters and scrapers used. Through The Buzz’s Wizard-

like interface, the user can define such data relationships in a space that lies between that of the

Cards Framework and that of Marmite. This interface does not support the same kinds of relation-

ships definable by Marmite and Pipes, but it also poses a more constrained set of steps to the user,

limiting the choices she must make to express herself.

6.3.4.2 Sharing and Browsing Content

Recall from Section 2.1 that many users rarely create their own customizations from scratch. In-

stead, many borrow customizations from others and use those as a starting-off point [66]. In the

context of many systems, this sharing behavior takes place in an ad hoc fashion. The system itself

110

Not Aligned Aligned

Pipes
Marmite

No3fica3on
Engine DashboardsCards Framework

The Buzz Coscripter

Figure 52: Alignment of customization task to user task.

provides no explicit support for sharing. Instead, users modify each others’ configuration files and

share them using established communication channels (e. g. email).

Nonetheless, because of the recognized patterns of sharing amongst users of customizable soft-

ware, many systems do provide such explicit support. The various Dashboards provide support

directly within the interface to browse available widgets that have been created and shared by other

users. The Buzz extends this capability by allowing users to share their customizations from directly

within the interface. (It also allows users to use external methods, such as email, to share their chan-

nels.) Coscripter further adds the ability to suggest relevant scripts based on the the user’s browsing

habits, in addition to allowing users to submit their scripts to a shared repository from within the

Coscripter interface. In this way, the design of the system helps to lower one of the barriers to shar-

ing. The user need not make a deliberate decision to leave the interface and package up an artifact

for sharing. Instead, she can make a more impulsive choice. Finally, Yahoo Pipes not only allows

such sharing within the interface, but also shares derived pipes by default—if a user wishes not to

share a pipe, he must deliberately choose not to pass it around.

6.3.4.3 Customization-through-use

Although we have focused on customization as a deliberate user task, some systems provide for

customization-through-use. As a user interacts with the system, that use itself provides the cus-

tomizations to the content. Instead of being a meta-task, customization itself becomes the task.

Compare, for example, the Notification Engine [43] and the Notification Collage [45]. Despite the

similarities in their names and in the screenshots of the systems, the two focus on different problem

domains. The Notification Engine supports the user at monitoring web sites for changes, while the

Notification Collage promotes group activity awareness. As such, they also provide very different

styles of interaction.

111

Under the Notification Engine, the user explicitly customizes the system, defining mechanisms

to extract notifications from web pages. The user’s primary goal is to receive notifications, but the

user’s task in interacting with the system is to configure the software to extract those notifications

from the data publisher. In this way, there is an added layer of indirection between the user’s primary

goal and the task that he must perform with the software system.

Under the Notification Collage, however, those two tasks align. The user’s goal in interacting

with the system is to share awareness artifacts or to browse those artifacts that have been shared

by others. As such, posting notifications directly accomplishes the first user goal, while viewing

the current notification collage directly accomplishes the latter. In this sense, use of the system and

customization of the system are the same.

Such alignment is not necessarily feasible in many awareness contexts. The Notification Collage

is particularly able to leverage this kind of customization because of its focus on user-generated con-

tent. Nonetheless, this difference demonstrates the importance of this last dimension: the alignment

of the customization task with the user’s system-use task.

6.4 Customization Space Summary

Figure 53 presents an overview of systems in the awareness customization space. It breaks the

space into five regions, or clusters, of systems that operate in a similar fashion. Within each of these

regions, systems that are more similar to each other are drawn closer together. Systems that function

within the same cluster but are drawn farther apart are less similar to each other.

The first of these clusters is comprised of “Demonstrative Interfaces.” These are systems for

which the user points out, or demonstrates, the various information entities in which she is inter-

ested. In the Cards Framework, Dapper, and Sifter, this interaction consists of clicking on entities

in web pages, such as the title text of an article, the photo of the article author, or a comic strip.

In this way, the user’s customization action is primarily to indicate “This is what I want.” The

Cards Framework further allows the user to define relationships between data by drawing connec-

tions between their representations, hence pulling it farther from the pack. The Notification Engine

similarly lets the user identify visual regions of web pages to control what content to extract. It,

however, uses a different technique to accomplish this extraction, operating on the rendered output

112

The Buzz

PlasmaPosters
Café

GroupCast

Notification Collage
MessyDesk

Dashboards

Sideshow

Buttons

InfoCanvas

Pipes
Marmite

Sifter
Dapper

Cards
Framework

Notification
Engine

Coscripter
C u s tomiza*on‐thr

ough‐u
se / G

roup
 Dis

p l
a
y
s

W

idg
e*ng

 Tools

Mashup Environments

De
m

on
str
a*ve Interfaces

Figure 53: An overview of systems in the awareness customization space. Systems drawn closer
to each other within a region are more similar than systems drawn farther apart. Those in bold are
spotlighted in this chapter.

rather than making an inference as to which data was identified. Finally, Coscripter records the

actions the user takes in the web browser in order to support replaying those actions. In this way,

the user demonstrates a task once and the system records it. As such, while all of these systems use

a demonstrative style and some even use a programming-by-demonstration approach, they are not

all programming-by-demonstration tools.

The next cluster represents “Mashup Environments.” These are tools whose explicit goal is

to support users at integrating data from multiple sources into a single source. Both Pipes and

Marmite accomplish this mashing up through their own visual programming interfaces. Through

these interfaces, the user can construct a data flow, where data are gathered from their sources,

connect to various operators that manipulate them, and aggregate them into a single stream. The

InfoCanvas operates in a very different way. Instead of mashing up the underlying data, it mashes

up their representations, creating an aggregate display. These representations use simple, user-

selectable rules to govern how individual data entities are to be drawn. All of these systems focus

primarily on integrating data from multiple sources and changing their data interfaces.

The “Customization-through-use” or “Group Displays” cluster represents two different ways of

113

looking at each of the systems in this space. They all share in common that the user’s interaction

with the system to perform any customizations is the same interactions the user would perform

to accomplish his system-task goals. For example, the Notification Collage provides a space into

which users can post various notifications—text, images, weblinks, etc. Through the user’s normal

interaction, he customizes the content and presentation of the display. These systems are also called

“Group Displays” because they all happen to focus on supporting group collaboration or awareness.

In most of these systems, any customizations that a user makes to his display are replicated to all of

the other displays. In this sense, the individual user does not take ownership of the display.

“Widgeting Tools” focus on a bicameral style of customization, where users are divided into two

camps: widget authors and widget users. The authors create new widgets, which represent a single

kind of information or provide a simplified interface or shortcut to a common task. The widget

users can use these created widgets to create their own collection of these pre-packaged information

tools.

Finally, The Buzz overlaps with these last three regions because it shares many interaction styles

in common with them. Through the way the user can combine harvesters and scrapers and can create

layout templates to integrate data from multiple sources, The Buzz supports elements of the creation

of mashup environments. Although The Buzz does not provide support for customization-through-

use, its presentation style makes it amenable to use for group displays. Its capabilities with regard to

supporting direct interaction are limited, but as a display space that can be shared among members

of a group, it may be able to support shared community awareness and involvement. In fact, this

very goal is at the origins of The Buzz [110]. The third region with which The Buzz overlaps is that

of widgeting tools. Just as these tools support different users creating and sharing their artifacts, so

too does The Buzz. The Buzz’s primary distinction in this regard is that it attempts to support users

at further refining their widgets (channels).

6.5 Dimensions Overview

Figure 54 depicts an overview of the dimensions described in Section 6.3. It presents the seven

different dimensions using a parallel coordinates representation. For some of these dimensions,

there is no “good” or “bad” meaning to be ascribed to a whether a particular system lies higher or

114

Fluid Roles

No Roles

Specialized

General
Purpose

Personaliza5on

Customiza5on

Arbitrary
Layout

Fixed
Layout

Arbitrary
Data

Rela5onships

No Data
Rela5onships

Extensive
Sharing
Support

No
Sharing
Support

High Task
Alignment

No Task
Alignment

Pipes

Marmite

No5fica5on Engine

Dashboards

Cards Framework

The Buzz

Coscripter

Figure 54: A summary of the information awareness customization space.

115

lower in the chart. Where there is a perceived better or worse in a particular dimension, the better

position is oriented toward the top. However, the ideal position along the axis may depend upon the

goals of the system.

Additionally, some of these systems may not occupy a fixed point on these dimensions. For

example, both The Buzz and the dashboards support the expression of arbitrary data relationships

or of no data relationships, depending on which style of interaction the user is in.

Along these axes, it is important to note that The Buzz is not unique in its position on any

one dimension in particular. What does make it distinct, however, is the particular combination of

positions it occupies. For example, on the Specialized vs. General Purpose axis, The Buzz occupies

a range along the axis that depends not on what role the user is in but on what particular interface she

is using for a particular task. For example, a user can create a channel from a Flickr photostream

using a webcrawler to extract photos from Flickr web pages, using an RSS harvester to extract

photos from an RSS feed, or using the dedicated Flickr harvester to gather photos with particular

tags. Depending on which interface the user chooses, the system can provide a general-purpose or

a specialized customization interaction. Thus, while other tools may also occupy the same points in

the space, they do so in a very different way.

Furthermore, when we consider the various dimensions of the space, we can see that The Buzz

ranks highly on most dimensions with the exception of the Customization vs. Personalization di-

mension. What this chart shows is that The Buzz occupies at least a reasonably good position across

a large number of these dimensions, supporting a combination of customization styles that are not

common among other systems. The Buzz provides support for fluid user roles, allowing a wide

range of specialized or general customizations styles, allowing users a good degree of control over

the presentation layout of their data, and with a high degree of extensive sharing support. By com-

bining flexibility and generality, The Buzz is able to provide a “jack of all trades, master of none”

approach to supporting customization.

6.6 Challenges and Limitations

Although the various systems described in this chapter take very different approaches to supporting

customization and support different stages of the awareness pipeline, they all share in common the

116

notion that they help the user to access and repurpose data. They enable the user to create new uses

and new representations of data made available by the various content publishers. This repurposing

of data, however, presents significant challenges and limitations to the use of the data. By the very

nature of repurposing data, the goals of the user or of the software system differ from the goals of

the publisher.

These differences can manifest themselves as both technical and social challenges. Technically,

the publisher may make the data available in a format that is undocumented or that does not neces-

sarily align with the user’s particular intended use. Socially, the publisher’s business model might

not be compatible with alternative uses of their data, leading many publishers to discourage such

repurposing activities.

These differences in goals between the user and the data publisher present challenges and limi-

tations for any system that aims to repurpose data, as is typically the case for information awareness

tools. Section 6.6.1 discusses these challenges in general. Section 6.6.2 further discusses challenges

that arise as a result of The Buzz’s approach.

6.6.1 General Limitations

Information awareness systems typically repurpose the data that they convey. That is, they use data

from a publisher in a fashion other than explicitly intended by the publisher. Publishers typically

have a particular intended mode for the consumption of their data, such as viewing it through their

web site. Some publishers will intentionally obfuscate these data so as to discourage data scraping

or to hinder embedding the data elsewhere. Other publishers, in contrast, may actively encourage

the repurposing of their data, explicitly providing these data in more accessible formats. Most,

however, take neither approach.

There are various organizational reasons why a publisher may wish to discourage or encourage

the use of their data. The Weather Channel’s weather.com, for example, actively discourages data

scraping. Different page loads to the same data may produce subtly different templates with alter-

nate underlying HTML. These templates themselves are also frequently changed. These changes

may not affect anyone accessing the data through a web browser—most people are unlikely to

notice—but will confuse a web scraper that expects the data to be in a particular format.

117

The Weather Channel performs this obfuscation because their business model depends on the

value of their weather data. For consumers, they rely on ad impressions on their web site. Any

consumer use of their data that reduces this number of ad impressions will affect their revenue

stream. In this way, The Weather Channel has a business interest in preventing tools from scraping

their data.

The U.S. National Weather Service, however, makes their data readily available in various for-

mats. Like The Weather Channel, weather data are available through a web interface. However,

these data are also available in various formats. There are even web APIs for querying raw weather

observations, forecast data, and radar imagery. One reason why the National Weather Service may

so actively encourage the use of its data is that it is a government organization. Its operations are

paid for by the taxpayers; consequently it operates as a public service. The Weather Channel, by

contrast, needs to generate its own revenue. In the former case, the data are a public good; in the

latter, they are a business asset.

Any meaningful information awareness application will need to repurpose information in some

fashion, even if that repurposing merely involves collecting information as-is with other informa-

tion. Such repurposing activities disalign the goals of the awareness application from the goals of

the publisher. When the differences in alignment are minor, such repurposing may be relatively sim-

ple to accomplish, such as when a publisher makes available an RSS feed that includes exactly the

content the awareness system needs. When the two goals are not well-aligned, however, such repur-

posing activities may be more difficult. Any awareness application, therefore, will face challenges

relating to the relative alignment of its goals and the data publishers’ goals.

In terms of the data pipeline, these common challenges arise at the front end of the pipeline: in

gathering the data and transforming them into a suitable representation for the awareness applica-

tion’s purposes. The first of these challenges arises from addressing limitations: the system must

be able to find the data it is to operate on. Different challenges then arise depending on whether

the data are in a machine-readable semantic format, such as the National Weather Service APIs, in

a format intended for human presentation, such as a typical web page, or if the system uses sur-

face representations rather than the underlying data encoding. The next few sections focus on these

general challenges.

118

6.6.1.1 Addressing Limitations

Regardless of how an awareness system is going to use the data, it must somehow be able to refer

to it. If the data comes from a dedicated API, this task may be relatively straightforward—the API

probably has well-defined entry points. When the system is repurposing data, however, such entry

points may not be well-defined. For example, some content management systems (CMS) generate

URLs for web pages that relate solely to the content and that may change whenever the dynamic

content updates. For example, entries in the College of Computing faculty directory at one point

had the format: www.cc.gatech.edu/content/view/12/345/ where the numbers might change

as the structure of the underlying data updated. In this way, these URLs are both meaningless to a

human and are not persistent. Some changes to the underlying data change the URLs for the same

content.

These addresses might also change according to a more meaningful format. For example, many

online comic strips use a date-driven URL for the image containing the most recent comic. The

web page for the comic strip typically exists at a fixed URL and updates the URL for the image

embedded within the webpage whenever a new comic is published. In this case, the publisher’s

model implicitly expects that data consumers will visit the webpage. The fact that the image is not

at a known URL is not a problem under the publisher’s use-model. Addressing that image, however,

requires either reverse-engineering the naming scheme for the image address, or adding a level of

indirection to load the web page that embeds the image and then identifying the relevant image in

that page. Both of these approaches are fairly fragile: the naming scheme may be complex or may

change. The format of the embedding web page might also change.

Finally, some publishers intentionally obfuscate the entry points for their data. For example,

Gas Buddy publishes listings of gas prices at local gas stations, helping people to find the cheapest

gas in their area. To access their listings, the user must first load a “landing page.” This page uses

JavaScript in the browser to generate a unique URL and key for that particular user. Although this

method is transparent to the user, it requires significant sophistication for an automated tool to be

able to mimic the complex behaviors of a web browser. As a result, a system that does not support

the specific behaviors of the web browser will not be able to access content that is protected in such

119

a way. Furthermore, CAPTCHA-driven systems [103, 104], which attempt to require a human to

solve a problem, will make it difficult to automatically gather data without human intervention.

6.6.1.2 Limitations of Extracting Content from HTML

The web evolved around the transmission of data in HTML documents. As such, most information

will be encoded within such web pages. While these pages are good at integrating multiple media

into a single document for presentation to a human user, it is difficult to extract semantic meaning

from those data. HTML is a presentation language, describing how to display data. It does not

provide semantic information about the data being displayed. Thus, the document may describe

that the author of an article should be drawn in a particular font face, but it does not indicate that the

text drawn in that font face is the author of the article.

As such, awareness tools that extract content from HTML documents are limited by their ability

to reverse engineer the underlying structure of the data elements within the page. Such parsers are

often fragile, either being so strict as not to handle an extra HTML tag that might arise, for example

if an HTML <table> is included within the body of an article that is otherwise normally encoded

within a layout <table>. Or the parser might be too tolerant, accidentally extracting spurious

content, for example when a field is omitted. Because many web pages are written by hand without

any formal validation, many web pages involve broken HTML that does not conform to any of the

numerous HTML standards. Most web browser include a “quirks mode” to handle such HTML,

leading to web pages that appear to work in some web browsers, but which are not well-formed.

Because these pages are intended for human consumption, their layouts may frequently update

as the publisher modernizes its looks or undergoes a rebranding campaign. As such, a data extraction

template that was robust for a particular web site might suddenly fail when the publisher changes

the presentation of the site.

Finally, many web pages use more complex markup techniques, such as embedding plugins or

using dynamic code, such as written in JavaScript. These pages contain dynamic content that must

be loaded from another source and which may consist entirely of executable code. Extracting data

embedded within these plugins is frequently infeasible.

As such, there are many sorts of data in web pages that are difficult to extract using existing

120

web scraping methods. The data may be difficult to interpret or may involve executing potentially

untrusted code or embedding a complete web browsing environment. Finally, these methods are

fragile against changes, because no formal “contract” exists to describe the data format.

6.6.1.3 Limitations of Extracting Content from Semantic Formats

Machine readable semantic formats can help to ameliorate the problems with extracting data from

web pages. These formats provide an encoding of the data that includes semantics of their meanings.

For example, in an RSS feed, there is no presentation markup; instead, items such as the title, date

published, article author, and article contents are included in the feed. As such, using an RSS parser,

one can extract these various data elements from the document. The format is also extensible,

so new elements can be added to a feed. Thus, an RSS feed containing weather data might also

include fields for the forecast high/low temperature. The meaning of these fields, however, must be

discerned by a human programmer.

These semantic formats, therefore, can be useful for identifying different data, but require spe-

cialized code to be able to handle the various data elements that are relevant to the system. A system

that handles RSS, for example, may be able to automatically extract the basic data from an RSS feed,

but might need a specialized extension to handle additional data within the feed. Furthermore, data

that does not necessarily fit within the structure of RSS will require additional specialized handlers.

For example, many web sites provide web-based APIs to their data. These APIs provide rich

access to the underlying data, but require a specialized interface to access those data. For each

such API, some programmer must have written an interface to it. Thus, an awareness system that

uses many such APIs is limited by its ability to communicate with so many different interfaces,

potentially increasing the complexity of the underlying software.

6.6.1.4 Limitations of Using Surface Representations

The previous two sections describe limitations that affect systems that parse data from various for-

mats, whether intended for human or machine presentation. Instead of using the underlying data

format, however, an awareness system could use the surface representation: the artifact shown to

the user. That is, instead of extracting data from the underlying HTML for a web page, the system

can simply extract a clipping from a rendered web page. At its most naı̈ve, this approach simply

121

involves rendering a web page and printing its contents to an image buffer. Thus, any data that the

web browser is capable of displaying, the awareness system is capable of accepting as input.

While this approach solves many problems, it is not without its limitations. First, the naı̈ve

approach described above still requires timing problems to be addressed. For example, many web-

pages take some time to load. While a web browser may be able to indicate when it has finished

loading the collection of elements of a web page, plugins may indirectly load other data and present

them through an animation. If the system screen-scrapes the rendered output too soon, it may end

up capturing an intro-animation instead of the desired content. If it waits too late, the animation may

have cycled on to other content. Without semantic understanding of the content, it may be difficult

or impossible to appropriately guess the correct timing. Human configuration or intervention be

able to help reduce this limitation.

In addition to timing limitations, most web pages include extraneous content to what the aware-

ness system needs. For example, the web page may include navigational links and ads, in addition

to the desired data. Although some methods do exist to handle some of these challenges [43], they

suffer much of the fragility of web data scrapers, as described earlier. Small changes to the web

page, whether by a change to the publisher’s branding or by embedding an ad of a slightly differ-

ent dimension, might have radical effects on the layout of the page. Any approach that involves

reverse-engineering the data publisher’s format, whether it uses the underlying data or the surface

representation, will involve complexities and ambiguities that contribute to the frailty of the method.

Finally, the surface representation is useful for conveying the data as-is to the user. It does

not, however, allow the system to infer underlying semantics from the extracted representation. If

such semantics are necessary, the system must somehow augment its data extraction beyond using a

simple image buffer, suffering the challenges and limitations of existing data extraction approaches.

As such, while surface representation approaches can allow the system to handle a much richer set

of data sources, it is not a magic bullet. There are still limitations on the kinds of data the system

can handle, and the approach still limits the kinds of uses the system can make of those data.

122

6.6.2 Limitations of The Buzz

In addition to the general limitations that all information awareness systems face, the design of The

Buzz introduces more specific limitations. The most significant of these limitations derives from

its extensive decomposition of the data pipeline. The Buzz architecture breaks the stages of the

data pipeline down into separate independent components and provides relatively little feedback

capabilities. As such, the various stages are treated linearly: the output of one stage feeds into the

next stage.

In this way, the behavior of a particular channel is determined solely by the combination of its

inputs and the particular data gathered. Thus, a channel cannot adapt the data it gathers based on

behaviors that occur at later stages of the pipeline. Ideally, for example, all behaviors relating to

the presentation of the data will occur by one of the visualizers. However, if a data harvester is

to short-circuit its data gathering based on the number of large images it has extracted from a web

page, it must calculate image sizes in the data harvesting process. The process is not bidirectional.

Feedback is limited to maintaining a snapshot of the previous state when a data gatherer operates.

Thus, a harvester can reuse previous data values if the same entity exists in a later harvesting

operation. For example, if an RSS feed has three new entries and ten old entries (that the harvester

had previously gathered), then the harvester need only fetch the three new entries. This limitation,

however, prevents the harvester from changing its behavior based on operations that occurred in a

later stage. For example, a harvester cannot modify its behavior to include more data or to exclude

an item based on whether a user has clicked on it when it was being displayed. Such a feedback

mechanism does not currently exist.

Additionally, The Buzz treats each channel as an independent data stream. The content or

presentation of a channel cannot depend on the contents of another. Instead, each data gathering

process and each presentation process for each channel is treated independently from those of all

other channels. Thus, if there were a weather channel and a pollen forecast channel, it might make

sense to merge those two data sources, such as by embedding the pollen forecast within the other

weather forecast items in the display. However, the current design of The Buzz does not allow for

such integration.

123

Hooks do exist to support such integration in a future implementation of The Buzz, however, by

allowing an item in one presentation to reference the data in other channels. Nonetheless, even with

such hooks, the current design does not support feedback from other channels, so a traffic channel

could not update its behavior depending on data in a weather channel (for example to suggest routes

that tend not to be backed up in rainstorms).

Finally, the presentation template approach used by The Buzz treats each individual region

independently from the others. A region cannot resize itself or adjust the overall layout based on the

content in it. If two regions are next to each other and one region contains a large image while the

next region contains a small image, the two regions cannot share their allotted space. This approach

simplifies the user’s task of mapping data items to regions on the screen, but it also limits the kinds

of layouts the user can create. Furthermore, while The Buzz does provide support for extending

many of its components, the layout mechanism is not such a component. A developer can write a

plugin to extend the rendering of data within a specific region, but not the layout of all of the data

items within the collection of regions.

As such, The Buzz’s extensive decoupling of its various components allows for a certain degree

of flexibility within an individual component, but limits the interactions and influences those com-

ponents can have on each other. Earlier components in the pipeline operate independently of later

components in the pipeline due to the lack of a strong feedback mechanism, and channels operate

independently of each other.

124

CHAPTER VII

DEPLOYMENT STUDY

In order to get a better sense of how people would use the software on their own, we conducted

two pilot deployment studies within the College of Computing. The first of these studies involved

deploying the software to a group of six members of the College of Computing community, some

of whom had participated in the earlier interviews. The second study involved running the software

on a large, public display in a heavily-trafficked lounge area.

Both of these studies were relatively small in nature, using only members of the local College

of Computing community. Usage observations, therefore, can help to suggest how people might

use the software on their own, but will be biased through the lens of a community of technologists.

Because of this demographic, participants are more likely to possess a stronger degree of technical

skill and will probably have a stronger proclivity to use it. Nonetheless, these observations can

help to suggest real world usage patterns and to provide insight into how well the system is able to

support its goals.

7.1 Desktop Deployment

Our goals in conducting these deployments were to gain insight into how our community would use

the software capabilities provided. Would people customize their awareness experience, and if so,

how? Would users stick to the default channel lineup, perhaps making minor adjustments to those

channels? Would they browse available channels created by other users? Would they share their

own?

We recruited six members of the College of Computing community. These participants were

colleagues of the primary investigator on this project, including two members of this dissertation

committee. As such, these participants had at least passing knowledge of the goals of research, and

one participant was involved in design meetings. The remaining participants knew of The Buzz, but

had not been involved in its design or creation.

Participants were asked to download and run the software. When the software was initially

125

launched after downloading, it presented the user with a brief overview of the system and included

a reference to a web-based listing of available channels. Additionally, participants were encouraged

to ask for help with the software if necessary, and to suggest any channels that they might like to

see.

During the deployment, The Buzz collected log data on the participant’s own machine. This log

data recorded various user events, such as advancing or replaying slides, pausing the slide playback,

configuring channels, and browsing or sharing channels. Each time a user performed one of those

actions, the software recorded the event to a local file. By storing the file on the user’s own computer,

we aimed to mitigate participants’ potential privacy concerns. Thus, although the software logged

all events, the participant had to explicitly choose to send those log data to us.

Using these log data, we attempted to identify capabilities of the software that our participants

used. Of the six users, all performed at least basic customizations to the system such as subscribing

to or unsubscribing from channels. Additionally, five of the six users created derivative channels

by modifying the configurations of existing channels. For example, one participant modified the

“Your Photos Here” Flickr channel to display photos from the Atlanta Photo Group. Most of these

configuration changes involved editing basic channel properties, such as the tags used in a Flickr

query or the URL of an RSS feed.

Two users, however, created more complex customizations. For example, one user created a

new channel from scratch using the web crawler to traverse his personal website and generate a

collage of his wedding photos. Another user created a channel to gather his family vacation photos

from Google’s Picasa photosharing site instead of Flickr. He further shared that channel with other

users of the system.

Although the software provided some limited programming capabilities in the form of writing

pattern extraction rules, none of our participants created any channels that performed such com-

plex extraction. The system designer, however, did create several channels using this mechanism.

Specifically, the Digg channel used a custom extraction pattern to follow the link to dugg web pages,

and the CS1315 and CS1316 channels used a custom pattern to extract “What the snake says” and

“What the bean says,” respectively, for these Python and Java-based courses. Although no users

created any channels or examined the extraction patterns of any channels that used this capability,

126

one participant did subscribe to the CS1316 channel and another to the Digg channel. Log data sug-

gests, however, that neither of these participants actually used the configuration interface on either

of these channels. As such, it is not clear whether the participants did not use this capability because

the need never arose, or if the need arose but they did not know that such a capability existed or how

to access it.

Additionally, although a plugin capability existed, this capability was neither documented nor

made known to the users. As such, no participants wrote such plugins to extend the capabilities of

the software with new harvesters, scrapers, or visualizers. One participant, however, did enquire

about the ability to write a custom visualizer, but did not seriously follow up on this capability.

As such, although log data shows that all users performed some form of customization to their

channel lineup, the bulk of these customizations consisted of relatively basic modifications of the

sort typically available through other awareness systems, such as the Dashboards. Some users,

however, did use channels created by the designer of the software that would have been much more

difficult to create using other means. For example, the “Digg”, “What the snake says,” and “What the

bean says” channels would have involved creating a new widget from scratch using a separate IDE

under one of the dashboard systems, whereas they required only writing a single pattern specified

within the interface using The Buzz. In this way, The Buzz deployment suggests that, while the

software itself may enable a user to create a broad class of customizations, few users appear likely

to utilize those features. The bulk of customizations will likely, even amongst very technical users,

involve basic customization of the software. The question does remain, however, whether more

participants might have used these capabilities if the designer of the system had not been available

to create those channels himself.

7.2 Lounge Deployment

The system also ran on a large public display in a busy hallway for over a year (see Figure 7).

People walking by could glance at the screen and glean whatever happens to be showing at the

time. In its configuration, the software focused on community-relevant content. Content came

from within the College of Computing community, coupled with “value-added” content that was

likely to be useful to members of the community. The primary content used an index of all of the

127

web pages on the College of Computing web server to generate collages of images found on the

web server. The system then frequently displayed a collage assembled from a particular web page

selected at random. Through these collages, users could potentially keep track of what’s going

on within a relatively large and diverse community that is spread across three different buildings.

The system aimed to help members of the community keep aware of their peers’ activities through

their web postings. In this way, users could see vacation and baby pictures when people updated

their websites. Or they could see figures from research project websites, potentially encouraging

collaboration among people who might not have known they shared a common research interest.

In addition to data found by crawling the community web server, which includes a combina-

tion of research and personal web pages, the software also specifically indexed the research web

pages within GVU Center, the organization within which the software is deployed. In this way,

the collages depicted a higher quantity of research-related content to help showcase the work con-

ducted within the community. Additionally, another channel gathered names, pictures, and research

summaries from the GVU faculty and staff directory, showing dossiers on the various members of

the organization. Through these channels, the software aimed to help promote awareness about the

other members within a growing organization.

Finally, the software also provided support for user-submitted photographs via a special tag

on Flickr.com. Any photographs tagged 4thebuzz on Flickr would get indexed by The Buzz and

appear in a collage in the lounge. Even though the software did not support walk-up-and-use inter-

actions in the public environment, users still could share their content with the community.

The Buzz ran in this shared space for over a year. During this time, anyone who passed through

the busy hallway lounge could view the collage, photo gallery, news article, weather forecast, or

any other content that was shown on the screen. During this deployment, we informally observed

use of the system by casually noting the behaviors of people as they walked past the display. These

observations were typically performed when the observer himself walked by the display, during

routine maintenance, or when the observer was using the shared lounge area. In these informal

observations, people would often glance up at the screen and pause briefly while they read a news

article or weblog posting that caught their attention.

128

7.3 Lounge Deployment Observations

Although The Buzz did not support direct interaction with the system when running in the public

lounge, users were able to control what content appeared on the display and did adjust their own

web presence specifically for the purpose of changing how their web pages were displayed by The

Buzz. One user was a hobbyist photographer, who took some amazing photographs and shared

them through a photo gallery linked from his personal web page. When his photos never appeared

on The Buzz, however, he discovered that the web crawler used to index the College of Computing

web server only indexed images that were stored on the local web server or were embedded on a

web page stored on the local server. His photo gallery software, however, stored all of the photos on

a remote web server and only linked to the images on the local server. As a result, he modified his

photo galleries to embed the offsite images in a local HTML file, so that his photos would appear

on The Buzz.

Another user also modified his web site, but this time to remove content from The Buzz. This

user was an undergraduate student at Georgia Tech, who posted pictures from his parties on his

web page. Although all of the pictures he posted were well within the University’s Acceptable Use

Policy, they depicted some drunken party antics. This student posted these photos in a gallery on

his web pages so that he could share them with his friends. However, after he walked through the

corridor and saw a large photo of himself in a potentially embarrassing situation projected on the

wall in the lounge, he decided to remove those photos from his web site. Before he had seen his

photos projected on the wall, he had thought that his photos were somewhat more private, despite

being shared on a public web server.

In this way, The Buzz actually helped the user to structure the way he presented himself to

others. By walking by the display, he was able to see that his partitioning of his different roles [41]

had broken down. Pictures that he had intended only to share with a smaller group of his friends

were available to anyone. While the public aspect of content on the web is well known, many people

think that no one else will actually be looking at their content. As a result, it was not until he saw

his photos projected large on the wall of the office corridor that he realized just how public content

on the web was and took appropriate steps to change how he presented himself on the internet, at

129

least with regard to his personal pictures.

Similarly, a popular channel in The Buzz was the College of Computing Birthdays channel.

On someone’s birthday within the community, a collage would appear periodically throughout the

day to wish that person a happy birthday. On several occasions, people commented that they really

enjoyed the birthday channel and would describe occasions on which they had caught someone

off guard by wishing them a happy birthday. They described it as helping them in a small way to

help maintain those small social interactions to help maintain relationships. By wishing someone a

happy birthday, it helps to reinforce a small sense of connectedness. Sometimes, however, someone

would comment that they were disturbed by the fact that their birthdays were available to anyone

passing by. Although many people do enjoy being wished a happy birthday, other feel some degree

of invasion to their privacy.

Finally, six other users tagged their photos on Flickr with the special 4thebuzz tag. These par-

ticipants posted photos they had taken around Atlanta, vacation photos, images of their children,

and even user-interface glitches in various software. This feature, however, was not widely adver-

tised, so it saw relatively little use. As a result, many participants may not have known about that

capability.

7.4 Deployment Conclusions

These two deployments suggest that The Buzz is able to support a range of customization styles. The

desktop deployment shows how some users can create their own derivative channels and even share

them with their fellow users. Although no users actually performed complex customizations using

the software, they did subscribe to such customizations that were created by the system designer.

The lounge deployment shows another way for users to customize the awareness experience.

Because the software was running in an environment in which the users of the system did not

actually have access to the software itself, some were able to configure the experience by adapting

their other content publishing practices. That is, some users changed their own practices in order to

control the content that appeared on the display.

130

CHAPTER VIII

CONCLUSION

With increasingly abundant access to information and to the internet, and with decreasingly expen-

sive display technologies becoming more pervasive throughout the environment, come new infor-

mation awareness systems that offer the potential to help people better manage their attention. These

awareness systems can help to calmly convey information to the user in the periphery, helping to

avoid distracting the user and avoiding interruptions. These approaches offer the potential to help

the user glean information casually throughout the day via these unobtrusive interfaces, rather than

through explicit information foraging activities.

In order for these systems to effectively help the user to manage information overload, however,

they must convey the right information. Because different people have their own unique needs

and interests, many of these systems support customization in order to tailor their content to the

individual user. Supporting such customization, however, is difficult. If a customization interface

provides too fine a granularity of customizability, the interface may be overwhelming for the user.

If the interface operates at too coarse a level, the user will be incapable of expressing her needs to

the system.

To address these concerns, most systems focus on providing customization at an intermediate

level. Others still might provide two forms of customization: one interface for end users and an-

other for more advanced users (usually developers). In Section 6.2, we examined some of these

approaches that have been taken to support users at customizing their awareness systems and the

various approaches that they have taken to conveying information.

Throughout this document, we have explored the notion that it is possible to provide increased

power and flexibility in customization interfaces, beyond what is provided by current systems, with-

out requiring significant programming effort. In order to demonstrate this ability, we examined The

Buzz in Chapters 4 and 5. The first of these chapters presented the user experience of The Buzz—

what it does and how the user would make use of it. We explored the various interfaces that support

131

users at being about browse available channels created by other users of the software. We saw how

the user can modify those channels to create his own derivative, one-off channels, or how he could

create his own channel from scratch, and share any of these new channels with other users of the

system, contributing back into the channel ecosystem.

In Chapter 5, we explored the underlying architecture of The Buzz. It’s modular design enables

various smaller components that perform relatively simple and straightforward tasks to be combined

into a larger components. Through this mechanism, the various harvesters and scrapers can combine

to handle a large variety of different data publishers’ formats. Furthermore, the underlying plugin

architecture allows developers to create new modules that can be applied to a variety of contexts.

Chapter 6 then explored the awareness application customization space using six other cus-

tomizable awareness applications. With these systems as a lens, we extracted various dimensions

that help to define this customization space, and helped to show how The Buzz is situated within

this space. In this way, we characterized the customization space for information awareness appli-

cations.

In order to get a sense of how real people will use The Buzz, we conducted two deployment stud-

ies. Chapter 7 described these two deployments and examined how users actually made use of the

customization capabilities of the software. These studies show that, even though the software pro-

vided extensive customization support, even amongst advanced computer users, these capabilities

were rarely used. Instead, observed use resembled that of systems like the Dashboards [11, 75, 4, 6]

and Yahoo Pipes [7], where users typically fell into one of two roles: end-user or developer. The

participants fell under the class of end-users, while the system designer served as a channel devel-

oper.

Despite users typically falling into two classes, end-users did still perform more customizations

than would be possible for an end-user of the Dashboards. In these systems, users must transition

to a developer interface and write code in order to modify their information content streams. In the

desktop research probe, we observed users who created new derivative channels that presented data

from different information sources. For example, the participant who created a new channel for

his wedding photos created a new channel from scratch using a web crawler to extract photos from

his personal web gallery. This capability does not exist in the Dashboards without writing code;

132

Yahoo Pipes may be able to accomplish such a task depending on various implementation details of

the underlying web gallery software, but even if such a task is possible, it would involve writing a

visual program to process the data. In this way, even though most users’ standard state was that of

end-user, some users did dive into the role of tinkerers.

Even though these tinkerers did not use all of the advanced customization capabilities of the

software, they did demonstrate the ability and desire to modify and create channels in ways that

would have been difficult with other awareness tools. As such, The Buzz appears to enable end-

users, tinkerers, and developers to use, modify, create, and share customizations across a wide swath

of the information awareness customization space.

Throughout this analysis, we have been motivated by several research questions:

RQ1 Is it possible for an information awareness application to give users increased power in their

customizations without requiring significant programming effort?

RQ2 Is it possible for an information awareness application to give users increased flexibility in

how they create their customizations?

RQ3 What dimensions characterize the customization space for awareness applications?

RQ4 What kinds of customizations can users create with a powerful, flexible customizable infor-

mation awareness application?

The first of these questions, RQ1, focuses on the relative power of a customization system that

does not require significant programming effort. The first component of this question relates to

increased power relative to existing customizable awareness interfaces. In Chapter 6, we charted

the existing customization space and various related software systems that inhabit it. Taking these

systems as indicative of the state of existing awareness applications, we showed that The Buzz is

able to give users more power in their customizations than these systems do without significant

programming effort.

In Chapter 6, we established this baseline against which to compare. The examples in Sec-

tion 4.9 along with the analysis in Chapter 6 helped to demonstrate that the The Buzz does indeed

133

enable the creation of new channels that would not be possible using existing, non-programming-

based, systems. While some of the software systems within this space may provide specific inter-

actions that are beyond the capabilities of The Buzz, on the whole The Buzz is able to support a

wider range of powerful customizations across the data extraction, transformation, and presentation

space.

The second of these questions, RQ2, uses this same baseline to ask whether it is possible for

an information awareness application to give increased flexibility in the creation of customizations.

In Section 4.9.3, we used the NSF News example to examine how The Buzz provides significant

flexibility to the user in how she can create new channels that align closely to her goals depending on

both the effort she is willing to expend to customize the system and the complexity of the underlying

data. This example, combined with the analysis in Chapter 6 demonstrates how The Buzz does

provide for increased flexibility in customization relative to existing awareness tools.

RQ3 asks what dimensions characterize the information awareness customization space. In

Chapter 6, we explored the various systems within the awareness customization space to identify

the various dimensions of this space. These dimensions are depicted in Figure 54.

The last research question, RQ4 asks what kinds of channels users can create with an inter-

face such as The Buzz. In Section 4.9, we demonstrated three typical examples of channels that a

user could create. In particular, the NSF News (Section 4.9.3) and Digg (Section 4.9.2) examples

demonstrate channels that require increased power, while the NSF News example further explores

the utility of the increased flexibility of The Buzz. Furthermore, the deployment study in Chap-

ter 7 demonstrates that real users in an in-the-wild setting did, to some extent, create their own new

channels.

In this way, the answer to RQ1 and RQ2 is yes, with The Buzz demonstrating such a system.

RQ3 is answered through the comparative analysis performed in Chapter 6. Finally, RQ4 is demon-

strated through the examples in Section 4.9 and through the channels described in Chapter 7. With

these research questions affirmed, and with these characterizations performed, the answers to these

questions affirm the thesis statement that:

It is possible for an information awareness application to enable end-users, tinkerers,

and developers to use, modify, create, and share powerful, flexible customizations over

134

the content and presentation that the system provides. Such an application can pro-

vide more extensive customization capabilities than existing systems without requiring

significant programming effort.

There are two primary research contributions that derive from this work. The first is a set of

abstractions and components to support flexible and general customizations within this domain.

Together, the design of The Buzz demonstrates the capabilities of this set of abstractions. The

second of these contributions is an enumeration and a taxonomy of the important characteristics

of the awareness application customization domain. Through this enumeration and taxonomy, we

provide a characterization of this customization space, as demonstrated in the Comparative Analysis

chapter.

Although The Buzz demonstrates increased power and flexibility over existing customizable

information awareness applications, it does still have some significant limitations. First, there are

various data gathering techniques described in the related work (Chapter 3) that provide more user-

friendly techniques to support various kinds of data. In particular, the techniques used by the Cards

Framework [32] and by Marmite [108] to allow the user to visually define data extraction patterns

would greatly enhance the range of customization supported by The Buzz. These techniques could

significantly reduce the number of cases for which it is necessary to hand-write extraction patterns.

Similarly, the surface representation technique used by the Notification Engine [43] could satisfy

many use cases in which no semantic representation of the data is necessary.

Not only would these techniques improve the power and reduce the complexity of many kinds

of customization with The Buzz, but also they could integrate well into The Buzz’s existing archi-

tecture. These techniques satisfy the role of a data scraper. For example, if The Buzz provided a

data scraper for a visually-defined pattern extractor, the Digg (Section 4.9.2) and NSF News (Sec-

tion 4.9.3) examples could use those extractions patterns in lieu of the regular expression-based

pattern extractor, reducing a significant barrier to such customizations.

Additionally, while The Buzz does provide support customizing the presentation of channels,

these capabilities are relatively crude. There is room for significant work to identify new techniques

to allow users to define more complex representations of their data. In the terminology from North

and Shneiderman’s Snap-Together Visualizations work, The Buzz’s non-programming interfaces

135

operate on Level 2. There is room to explore Level 3 interactions, where the user can control the

presentation with finer granularity.

In addition to improving the technical capabilities of The Buzz’s customization components, the

configuration interfaces through which users create these customizations still offer significant room

for improvement. These interfaces could be improved through simple refinements or more radical

changes. A minor improvement would involve augmenting the harvesters, scrapers, and filters to

tag the kinds of data they accept as inputs and produce as outputs. Through such changes, the

interfaces could update to show only components that are relevant given a particular kind of data

input or output. More radical changes could involve replacing the existing wizard-style interface

with alternative approaches. For example, a direct manipulation interface may simplify certain

kinds of customizations.

When creating these customizations, the existing interface provides limited debugging capabili-

ties. The state of the underlying system and of the data are often hidden from the user, making errors

difficult to detect or diagnose. Systems such as Marmite [108] and Yahoo Pipes [7] provide much

more extensive support for monitoring data as they are processed. The End User Programming

community has also produced numerous techniques that could help to improve these operations.

Finally, more study is necessary to identify how real users are able to take advantage of this

increased power and flexibility. The deployment studies documented in Chapter 7 were limited

in scale and in scope. They involved a small number of users within a very technically-oriented

institution. As a result, the observations from that study are likely to skew in a particular direction.

Conducting a larger study with a broader user population would likely provide some more insightful

indications of how the broader user ecology might customize their awareness software.

Similarly, do the patterns of sharing and customization in the awareness domain resemble those

from other domains? The preliminary observations from the deployment study suggest that they do,

but they provided too limited a scope to create a larger sharing community. Do the same kinds of

patterns of gardeners and gurus [40] emerge?

Finally, these awareness systems offer the potential to help people to manage information over-

load, but do they actually work? Do they improve awareness? Do they provide added distraction?

In informal observations during The Buzz deployment, several users observed that their information

136

access habits had changed. For example, one participant who read a large number of weblogs, would

frequently take explicit breaks throughout the day to launch his RSS reader. By several weeks into

the deployment, however, he had stopped using his RSS reader and only viewed the weblog entries

that happened to come up on The Buzz. Not surprisingly, he indicated that he was definitely reading

far fewer weblog articles. Surprisingly, however, despite missing far more articles, he felt more

informed, as if he were better keeping aware of those articles that he did see. Perhaps exposure to

fewer articles enables him to better retain them. Or perhaps he only has a false perception of being

more aware.

Regardless of the specific answers to these questions, it is clear that there is significant room for

more study in the domain of customization and of information awareness applications. The Buzz

provides an approach to provide more extensive customization by a broad variety of users in many

different contexts. More work, however, is needed if we are ever to realize the dream of universal

customization.

137

REFERENCES

[1] “Dapper.” Retrieved June 13, 2007 from http://dappit.com.

[2] “Digg API.” Retrieved August 11, 2007 from http://apidoc.digg.com/.

[3] “Flickr API.” Retrieved August 11, 2007 from http://flickr.com/services/api/.

[4] “Google gadgets.” Retrieved August 6, 2007 from http://www.google.com/apis/
gadgets/.

[5] “Technorati.” Retrieved November 26, 2006 from http://technorati.com/about.

[6] “Yahoo! Konfabulator.” Retrieved June 13, 2007 from http://widgets.yahoo.com.

[7] “Yahoo! Pipes.” Retrieved June 13, 2007 from http://pipes.yahoo.com/.

[8] “Yahoo! Search Web Services.” Retrieved August 11, 2007 from http://developer.
yahoo.com/search/.

[9] “RDF/XML syntax specification (revised),” W3C Recommendation, World Wide Web Con-
sortium (W3C), February 2004. Retrieved August 11, 2007 from http://www.w3.org/TR/
rdf-syntax-grammar/.

[10] “Apple, Inc. Automator,” 2005. Retrieved June 13, 2007 from http://www.apple.com/
macosx/features/automator/.

[11] “Apple, Inc. Dashboard,” 2005. Retrieved June 13, 2007 from http://www.apple.com/
macosx/features/dashboard/.

[12] AHLBERG, C. and SHNEIDERMAN, B., “Visual information seeking: tight coupling of dy-
namic query filters with starfield displays,” in CHI ’94: Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, (New York, NY, USA), pp. 313–317, ACM,
1994.

[13] AHLBERG, C., WILLIAMSON, C., and SHNEIDERMAN, B., “Dynamic queries for informa-
tion exploration: an implementation and evaluation,” in CHI ’92: Proceedings of the SIGCHI
conference on Human factors in computing systems, (New York, NY, USA), pp. 619–626,
ACM, 1992.

[14] BAILEY, B. P., KONSTAN, J. A., and CARLIS, J. V., “Measuring the effects of interrup-
tions on task performance in the user interface,” in IEEE Conference on Systems, Man, and
Cybernetics 2000, pp. 757–762, IEEE, IEEE Computer Society Press, 2000.

[15] BAILEY, B. P., KONSTAN, J. A., and CARLIS, J. V., “The effects of interruptions on task
performance, annoyance, and anxiety in the user interface,” in Proceedings of INTERACT
2001, 2001.

138

[16] BOLIN, M., WEBBER, M., RHA, P., WILSON, T., and MILLER, R. C., “Automation and
customization of rendered web pages,” in UIST ’05: Proceedings of the 18th annual ACM
symposium on User interface software and technology, (New York, NY, USA), pp. 163–172,
ACM Press, 2005.

[17] BURNETT, M., COOK, C., PENDSE, O., ROTHERMEL, G., SUMMET, J., and WALLACE,
C., “End-user software engineering with assertions in the spreadsheet paradigm,” in ICSE
’03: Proceedings of the International Conference on Software Engineering, pp. 93–103, May
2003.

[18] CADIZ, J. J., VENOLIA, G., JANCKE, G., and GUPTA, A., “Designing and deploying an
information awareness interface,” in Proceedings of the 2002 ACM conference on Computer
supported cooperative work, pp. 314–323, ACM Press, 2002.

[19] CARD, S. K., MACKINLAY, J. D., and SHNEIDERMAN, B., Readings in information visual-
ization: using vision to think. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1999.

[20] CHANG, A., RESNER, B., KOERNER, B., WANG, X., and ISHII, H., “Lumitouch: an emo-
tional communication device,” in CHI ’01 extended abstracts on Human factors in computing
systems, (New York, NY, USA), pp. 313–314, ACM Press, 2001.

[21] CHERVANY, N. L. and DICKSON, G. W., “An experimental evaluation of information over-
load in a production environment,” Management Science, vol. 20, pp. 1335–1344, June 1974.

[22] CHRISTENSEN, E., CURBERA, F., MEREDITH, G., and WEERAWARANA, S., “Web Service
Definition Language (WSDL),” W3C Note, World Wide Web Consortium (W3C), March
2001. Retrieved August 8, 2007 from http://www.w3.org/TR/wsdl.

[23] CHURCHILL, E. F., NELSON, L., DENOUE, L., HELFMAN, J., and MURPHY, P., “Sharing
multimedia content with interactive public displays: a case study,” in Proceedings of the 2004
conference on Designing interactive systems, pp. 7–16, ACM Press, 2004.

[24] CHURCHILL, E. F., NELSON, L., and HSIEH, G., “Café life in the digital age: augmenting
information flow in a café-work-entertainment space,” in CHI ’06 extended abstracts on Hu-
man factors in computing systems, (New York, NY, USA), pp. 123–128, ACM Press, 2006.

[25] CLARK, J. and DEROSE, S., “XPath (XML Path Language),” W3C Recommendation,
World Wide Web Consortium (W3C), November 1999. Retrieved June 13, 2007 from
http://www.w3.org/TR/xpath.

[26] COX, K., HIBINO, S., HONG, L., MOCKUS, A., and WILLS, G., “Infostill: A task-oriented
framework for analyzing data through information visualization,” in Proceedings of the 1999
IEEE Symposium on Information Visualization Late Breaking Hot Topics, pp. 19–22, October
1999.

[27] CRESCENZI, V., MECCA, G., and MERIALDO, P., “Roadrunner: automatic data extraction
from data-intensive web sites,” in SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, (New York, NY, USA), pp. 624–624, ACM
Press, 2002.

139

[28] CUTRELL, E., CZERWINSKI, M., and HORVITZ, E., “Notification, disruption, and memory:
Effects of messaging interruptions on memory and performance,” in Proceedings of INTER-
ACT 2001, 2001.

[29] CYPHER, A., HALBERT, D. C., KURLANDER, D., LIEBERMAN, H., MAULSBY, D., MY-
ERS, B. A., and TURRANSKY, A., eds., Watch what I do: programming by demonstration.
MIT Press, 1993.

[30] DAVENPORT, T. H. and BECK, J. C., The Attention Economy: Understanding the New
Currency of Business. Cambridge, MA: Harvard Business School Press, June 2001.

[31] DEVICES, A., “Ambient Orb.” Retrieved August 11, 2007 from http://www.
ambientdevices.com.

[32] DONTCHEVA, M., DRUCKER, S. M., SALESIN, D., and COHEN, M. F., “Relations, cards,
and search templates: user-guided web data integration and layout,” in UIST ’07: Proceed-
ings of the 20th annual ACM symposium on User interface software and technology, (New
York, NY, USA), pp. 61–70, ACM, 2007.

[33] DOURISH, P., LAMPING, J., and RODDEN, T., “Building bridges: customisation and mutual
intelligibility in shared category management,” in GROUP ’99: Proceedings of the inter-
national ACM SIGGROUP conference on Supporting group work, pp. 11–20, ACM Press,
1999.

[34] EAGAN, J. R. and STASKO, J. T., “The Buzz: Supporting user tailorability in awareness
applications,” in CHI ’08: Proceedings of the SIGCHI conference on Human factors in com-
puting systems, (New York, NY, USA), pp. 1729–1738, ACM Press, 2008.

[35] FAABORG, A. and LIEBERMAN, H., “A goal-oriented web browser,” in CHI ’06: Proceed-
ings of the SIGCHI conference on Human Factors in computing systems, (New York, NY,
USA), pp. 751–760, ACM Press, 2006.

[36] FASS, A., FORLIZZI, J., and PAUSCH, R., “MessyDesk and MessyBoard: two designs in-
spired by the goal of improving human memory,” in DIS ’02: Proceedings of the conference
on Designing interactive systems, (New York, NY, USA), pp. 303–311, ACM Press, 2002.

[37] FLORES, F. C., QUINT, V., and VATTON, I., “Templates, microformats and structured edit-
ing,” in DocEng ’06: Proceedings of the 2006 ACM symposium on Document engineering,
(New York, NY, USA), pp. 188–197, ACM Press, 2006.

[38] FOGARTY, J., FORLIZZI, J., and HUDSON, S. E., “Aesthetic information collages: gener-
ating decorative displays that contain information,” in Proceedings of the 14th annual ACM
symposium on User interface software and technology, pp. 141–150, ACM Press, 2001.

[39] FUJIMA, J., LUNZER, A., HORNBÆK, K., and TANAKA, Y., “Clip, connect, clone: com-
bining application elements to build custom interfaces for information access,” in UIST ’04:
Proceedings of the 17th annual ACM symposium on User interface software and technology,
(New York, NY, USA), pp. 175–184, ACM Press, 2004.

[40] GANTT, M. and NARDI, B. A., “Gardeners and gurus: patterns of cooperation among cad
users,” in Proceedings of the SIGCHI conference on Human factors in computing systems,
(New York, NY, USA), pp. 107–117, ACM Press, 1992.

140

[41] GOFFMAN, E., The Presentation of Self in Everyday Life. Anchor, 1959.

[42] GOMES, L., “Will all of us get our 15 minutes on a YouTube video?,” The Wall Street
Journal, vol. 248, p. B1, August 2006.

[43] GREENBERG, S. and BOYLE, M., “Generating custom notification histories by tracking
visual differences between web page visits,” in GI ’06: Proceedings of the 2006 conference
on Graphics interface, (Toronto, Ont., Canada, Canada), pp. 227–234, Canadian Information
Processing Society, 2006.

[44] GREENBERG, S. and FITCHETT, C., “Phidgets: easy development of physical interfaces
through physical widgets,” in UIST ’01: Proceedings of the 14th annual ACM symposium on
User interface software and technology, (New York, NY, USA), pp. 209–218, ACM Press,
2001.

[45] GREENBERG, S. and ROUNDING, M., “The Notification Collage: posting information to
public and personal displays,” in CHI ’01: Proceedings of the SIGCHI conference on Human
factors in computing systems, (New York, NY, USA), pp. 514–521, ACM Press, April 2001.

[46] GUDGIN, M., HADLEY, M., MENDELSOHN, N., MOREAU, J.-J., NIELSEN, H. F., KAR-
MARKAR, A., and LAFON, Y., “SOAP version 1.2 part 1: Messaging framework (second
edition),” W3C Recommendation, World Wide Web Consortium (W3C), April 2007. Re-
trieved August 8, 2007 from http://www.w3.org/TR/soap12-part1/.

[47] HAN, W., BUTTLER, D., and PU, C., “Wrapping web data into xml,” SIGMOD Record,
vol. 30, no. 3, pp. 33–38, 2001.

[48] HEINER, J. M., HUDSON, S. E., and TANAKA, K., “The information percolator: ambient
information display in a decorative object,” in Proceedings of the 12th annual ACM sympo-
sium on User interface software and technology, pp. 141–148, ACM Press, 1999.

[49] HUANG, E. M. and MYNATT, E. D., “Semi-public displays for small, co-located groups,”
in Proceedings of the conference on Human factors in computing systems, pp. 49–56, ACM
Press, 2003.

[50] HUDSON, J. M., CHRISTENSEN, J., KELLOGG, W. A., and ERICKSON, T., “”I’d be over-
whelmed, but it’s just one more thing to do”: availability and interruption in research man-
agement,” in Proceedings of the SIGCHI conference on Human factors in computing systems,
pp. 97–104, ACM Press, 2002.

[51] HUDSON, S. E. and STASKO, J. T., “Animation support in a user interface toolkit: flexible,
robust, and reusable abstractions,” in UIST ’93: Proceedings of the 6th annual ACM sympo-
sium on User interface software and technology, (New York, NY, USA), pp. 57–67, ACM,
1993.

[52] HUYNH, D. F., MILLER, R. C., and KARGER, D. R., “Enabling web browsers to augment
web sites’ filtering and sorting functionalities,” in UIST ’06: Proceedings of the 19th annual
ACM symposium on User interface software and technology, (New York, NY, USA), pp. 125–
134, ACM Press, 2006.

[53] IETF - THE INTERNET SOCIETY, “RFC 4287: The Atom syndication format,” December
2005. Retrieved August 11, 2007 from http://www.ietf.org/rfc/rfc4287.txt.

141

[54] INTILLE, S. S., “Change blind information display for ubiquitous computing environments,”
in Proceedings of the 4th International Conference on Ubiquitous Computing (BORRIELLO,
G. and HOLMQUIST, L. E., eds.), pp. 91–106, Springer-Verlag: Berlin, September 2002.

[55] ISHII, H. and ULLMER, B., “Tangible bits: towards seamless interfaces between people,
bits and atoms,” in CHI ’97: Proceedings of the SIGCHI conference on Human factors in
computing systems, (New York, NY, USA), pp. 234–241, ACM Press, 1997.

[56] KELLAR, M., WATTERS, C., and INKPEN, K. M., “An exploration of web-based monitor-
ing: implications for design,” in CHI ’07: Proceedings of the SIGCHI conference on Human
factors in computing systems, (New York, NY, USA), pp. 377–386, ACM Press, 2007.

[57] KELLEHER, C. and PAUSCH, R., “Lowering the barriers to programming: A taxonomy
of programming environments and languages for novice programmers,” ACM Computing
Surveys, vol. 37, no. 2, pp. 83–137, 2005.

[58] KHARE, R., “Microformats: the next (small) thing on the semantic web?,” IEEE Internet
Computing, vol. 10, no. 1, pp. 68–75, 2006.

[59] KO, A. J. and MYERS, B. A., “Debugging reinvented: asking and answering why and why
not questions about program behavior,” in ICSE ’08: Proceedings of the 30th international
conference on Software engineering, (New York, NY, USA), pp. 301–310, ACM, 2008.

[60] LAENDER, A. H. F., RIBEIRO-NETO, B. A., DA SILVA, A. S., and TEIXEIRA, J. S., “A
brief survey of web data extraction tools,” SIGMOD Rec., vol. 31, no. 2, pp. 84–93, 2002.

[61] LASSETER, J., “Principles of traditional animation applied to 3d computer animation,” in
SIGGRAPH ’87: Proceedings of the 14th annual conference on Computer graphics and
interactive techniques, (New York, NY, USA), pp. 35–44, ACM, 1987.

[62] LERNER, R., “At the forge: Creating mashups,” Linux Journal, vol. 2006, no. 147, p. 10,
2006.

[63] LESHED, G., HABER, E. M., MATTHEWS, T., and LAU, T., “Coscripter: automating &
sharing how-to knowledge in the enterprise,” in CHI ’08: Proceeding of the twenty-sixth
annual SIGCHI conference on Human factors in computing systems, (New York, NY, USA),
pp. 1719–1728, ACM, 2008.

[64] LITTLE, G., LAU, T. A., CYPHER, A., LIN, J., HABER, E. M., and KANDOGAN, E.,
“Koala: capture, share, automate, personalize business processes on the web,” in CHI ’07:
Proceedings of the SIGCHI conference on Human factors in computing systems, (New York,
NY, USA), pp. 943–946, ACM, 2007.

[65] LYMAN, P. and VARIAN, H. R., “How much information.” Retrieved November 8, 2006
from http://www.sims.berkeley.edu/how-much-info-2003.

[66] MACKAY, W. E., “Patterns of sharing customizable software,” in Proceedings of the 1990
ACM conference on Computer-supported cooperative work, (New York, NY, USA), pp. 209–
221, ACM Press, 1990.

[67] MACKAY, W. E., “Triggers and barriers to customizing software,” in CHI ’91: Proceedings
of the SIGCHI conference on Human factors in computing systems, pp. 153–160, ACM Press,
1991.

142

[68] MACLEAN, A., CARTER, K., LÖVSTRAND, L., and MORAN, T., “User-tailorable systems:
pressing the issues with buttons,” in CHI ’90: Proceedings of the SIGCHI conference on
Human factors in computing systems, (New York, NY, USA), pp. 175–182, ACM Press,
1990.

[69] MAES, P., “Agents that reduce work and information overload,” Communications of the
ACM, vol. 37, no. 7, pp. 30–40, 1994.

[70] MARLOW, C., NAAMAN, M., BOYD, D., and DAVIS, M., “Ht06, tagging paper, taxon-
omy, flickr, academic article, to read,” in HYPERTEXT ’06: Proceedings of the seventeenth
conference on Hypertext and hypermedia, (New York, NY, USA), pp. 31–40, ACM Press,
2006.

[71] MATTHEWS, T., “Peripheral Display Toolkit: A toolkit for managing user attention in pe-
ripheral displays,” Master’s thesis, Computer Science Division, University of California,
Berkeley, 2004.

[72] MATTHEWS, T., DEY, A. K., MANKOFF, J., CARTER, S., and RATTENBURY, T., “A toolkit
for managing user attention in peripheral displays,” in UIST ’04: Proceedings of the 17th
annual ACM symposium on User interface software and technology, (New York, NY, USA),
pp. 247–256, ACM Press, 2004.

[73] MCCARTHY, J. F., COSTA, T. J., and LIONGOSARI, E. S., “UniCast, OutCast & GroupCast:
Three steps toward ubiquitous, peripheral displays,” in Proceedings of the 3rd international
conference on Ubiquitous Computing, pp. 332–345, Springer-Verlag, 2001.

[74] MCCRICKARD, D. S., “Maintaining information awareness with Irwin,” in Proceedings of
the World Conference on Educational Multimedia/Hypermedia and Educational Telecommu-
nications (ED-MEDIA ’99), (Seattle, WA), June 1999.

[75] MICROSOFT, “Vista Sidebar,” 2007. Retrieved August 30, 2007 from http:
//www.microsoft.com/windows/products/windowsvista/features/details/
sidebargadgets.mspx.

[76] MILLER, R. C. and BHARAT, K., “Sphinx: a framework for creating personal, site-specific
web crawlers,” in WWW7: Proceedings of the seventh international conference on World
Wide Web 7, (Amsterdam, The Netherlands, The Netherlands), pp. 119–130, Elsevier Science
Publishers B. V., 1998.

[77] MILLER, R. C. and MYERS, B. A., “Outlier finding: focusing user attention on possible
errors,” in UIST ’01: Proceedings of the 14th annual ACM symposium on User interface
software and technology, (New York, NY, USA), pp. 81–90, ACM Press, 2001.

[78] MILLER, R. C. and MYERS, B. A., “Lapis: smart editing with text structure,” in CHI ’02
extended abstracts on Human factors in computing systems, (New York, NY, USA), pp. 496–
497, ACM Press, 2002.

[79] MILLER, T. and STASKO, J., “The infocanvas: information conveyance through personal-
ized, expressive art,” in CHI ’01 extended abstracts on Human factors in computing systems,
pp. 305–306, ACM Press, 2001.

[80] MYERS, B. A., SMITH, D. C., and HORN, B., “Report of the “End-User Programming”
working group,” Languages for Developing User Interfaces, pp. 343–366, 1992.

143

[81] NARDI, B. A., A small matter of programming: perspectives on end user computing. MIT
Press, 1993.

[82] NARDI, B. A., MILLER, J. R., and WRIGHT, D. J., “Collaborative, programmable intelli-
gent agents,” Communications of the ACM, vol. 41, no. 3, pp. 96–104, 1998.

[83] NORTH, C. and SHNEIDERMAN, B., “Snap-together visualization: can users construct and
operate coordinated visualizations?,” International Journal of Human-Computer Studies,
vol. 53, no. 5, pp. 715–739, 2000.

[84] O’REILLY, T., “What is Web 2.0,” September 2005. Retrieved August 11, 2007
from http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/
what-is-web-20.html.

[85] PLAUE, C. and STASKO, J., “Animation in a peripheral display: Distraction, appeal, and
information conveyance in varying display configurations,” in GI ’07: Proceedings of the
2007 conference on Graphics interface, Canadian Human-Computer Communications Soci-
ety, 2007.

[86] POLSON, P. G., LEWIS, C., RIEMAN, J., and WHARTON, C., “Cognitive walkthroughs:
a method for theory-based evaluation of user interfaces,” International Journal of Man-
Machine Studies, vol. 36, no. 5, pp. 741–773, 1992.

[87] POUSMAN, Z. and STASKO, J., “A taxonomy of ambient information systems: four patterns
of design,” in AVI ’06: Proceedings of the working conference on Advanced visual interfaces,
(New York, NY, USA), pp. 67–74, ACM Press, 2006.

[88] RADEMACHER, P., “Housing maps,” 2005. Retrieved March 27, 2007 from http://www.
housingmaps.com/.

[89] RAMAKRISHNAN, S. and DAYAL, V., “The pointcast network (abstract),” in Proceedings
of the 1998 ACM SIGMOD international conference on Management of data, p. 520, ACM
Press, 1998.

[90] REAS, C. and FRY, B., Processing: A Programming Handbook for Visual Designers and
Artists. Cambridge, MA: MIT Press, 2007.

[91] REDSTRÖM, J., SKOG, T., and HALLNÄS, L., “Informative art: using amplified artworks
as information displays,” in Proceedings of DARE 2000 on Designing augmented reality
environments, pp. 103–114, ACM Press, 2000.

[92] ROBERTSON, G. G., D. AUSTIN HENDERSON, J., and CARD, S. K., “Buttons as first class
objects on an X desktop,” in Proceedings of the 4th annual ACM symposium on User interface
software and technology, (New York, NY, USA), pp. 35–44, ACM Press, 1991.

[93] SHNEIDERMAN, B., “Direct manipulation: A step beyond programming languages,” IEEE
Computer, vol. 16, pp. 57–69, August 1983.

[94] SHNEIDERMAN, B. and MAES, P., “Direct manipulation vs. interface agents,” interactions,
vol. 4, no. 6, pp. 42–61, 1997.

[95] SPENCE, R., Information Visualization: Design for Interaction (2nd Edition). Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 2007.

144

[96] STASKO, J., MILLER, T., POUSMAN, Z., PLAUE, C., and ULLAH, O., “Personalized pe-
ripheral information awareness through Information Art,” in Proceedings of UbiComp ’04,
(Nottingham, U.K.), pp. 18–35, September 2004.

[97] SUGIURA, A. and KOSEKI, Y., “Internet scrapbook: automating web browsing tasks by
demonstration,” in UIST ’98: Proceedings of the 11th annual ACM symposium on User in-
terface software and technology, (New York, NY, USA), pp. 9–18, ACM, 1998.

[98] TUFTE, E. R., Envisioning Information. Graphics Press, 1990.

[99] U. S. NATIONAL WEATHER SERVICE, “National digital forecast database.” Retrieved Au-
gust 6, 2007 from http://www.weather.gov/ndfd/.

[100] U. S. NATIONAL WEATHER SERVICE, “National Digital Forecast Database (NDFD) WSDL
interface,” August 2004. Retrieved August 11, 2007 from http://www.weather.gov/
forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl.

[101] VAN ROSSUM, G., Python Tutorial, ch. Appendix D. Python Software Foundation, Septem-
ber 2006. Retrieved January 23, 2007 from http://docs.python.org/tut/tut.html.

[102] VANDER WAL, T., “Folksonomy definition and Wikipedia,” November 2005. Retrieved
March 27, 2007 from http://www.vanderwal.net/random/entrysel.php?blog=1750.

[103] VON AHN, L., BLUM, M., HOPPER, N. J., and LANGFORD, J., CAPTCHA: Using Hard
AI Problems for Security, vol. 2656/2003 of Lecture Notes in Computer Science. Springer-
Verlag: Berlin, 2003.

[104] VON AHN, L., BLUM, M., and LANGFORD, J., “Telling humans and computers apart auto-
matically,” Communications of the ACM, vol. 47, no. 2, pp. 56–60, 2004.

[105] WEISER, M. and BROWN, J. S., “The coming age of calm technology.”

[106] WINER, D., “RSS 2.0 specification,” tech. rep., Berkman Center for Internet & Society at
Harvard Law School, October 2002. Retrieved August 11, 2007 from http://cyber.law.
harvard.edu/rss/rss.html.

[107] WONG, J. and HONG, J., “Marmite: end-user programming for the web,” in CHI ’06 ex-
tended abstracts on Human factors in computing systems, (New York, NY, USA), pp. 1541–
1546, ACM Press, 2006.

[108] WONG, J. and HONG, J. I., “Making mashups with Marmite: towards end-user program-
ming for the web,” in CHI ’07: Proceedings of the SIGCHI conference on Human factors in
computing systems, (New York, NY, USA), pp. 1435–1444, ACM Press, 2007.

[109] WORLD WIDE WEB CONSORTIUM (W3C), “Semantic web.” Retrieved August 8, 2007
from http://www.w3.org/2001/sw/.

[110] ZHAO, Q. A., Opportunistic Interfaces for Promoting Community Awareness. PhD thesis,
College of Computing, Georgia Institute of Technology, August 2001.

[111] ZHAO, Q. A. and STASKO, J., “What’s Happening?: Promoting community awareness
through opportunistic, peripheral interfaces,” in Proceedings of the Advanced Visual Inter-
faces Conference, (Trento, Italy), pp. 69–74, May 2002.

145

[112] ZUR MUEHLEN, M., NICKERSON, J. V., and SWENSON, K. D., “Developing web services
choreography standards: the case of REST vs. SOAP,” Decision Support Systems, vol. 40,
no. 1, pp. 9–29, 2005.

146

