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‘We present a novel control algorithm for simulating an articulated character
performing a given reference motion and its variations. The unique feature
of our controller is its ability to make a long-horizon plan at every time
step. Our algorithm overcomes the computational hurdle by applying modal
analysis on a time-varying linear dynamic system. We exploit the properties
of modal coordinates in two ways. First, we design separate control strate-
gies for dynamically decoupled modes. Second, our controller only applies
long-horizon planning on a subset of modes, largely reducing the size of the
control problem. With this decoupled and reduced control system, the char-
acter is able to execute the reference motion while reacting to unexpected
perturbations and anticipating changes in the environment. We demonstrate
our results by simulating a variety of reference motions, such as walking,
squatting, jumping, and swinging.
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1. INTRODUCTION

The ability to respond to the changes in the environment and predict
the consequences of our own action is fundamental for everyday mo-
tor tasks. Physically simulating a virtual character who exhibits both
reactive and anticipatory behaviors presents immense challenges in
many facets. First, the human motor system is both under-actuated
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and redundant. The former leads to complex issues with balance
while the latter results in a high-dimensional and underconstrained
problem. Second, the interaction with the environment via contacts
is discrete in nature. The discontinuity introduced by the change
of contact states further complicates both simulation and control
problems.

One possible approach to achieving both a reactive and anticipa-
tory virtual character is to formulate a long-term planning problem,
such as spacetime optimization, and update the plan at every time
step according to the current state of the character and of the envi-
ronment. Motion produced by long-term planning usually appears
more compliant because the character is not always in the urgency
of matching the immediate goal. In addition, the frequent replan-
ning allows the character to respond to unexpected perturbations in
a timely manner. Though straightforward, this problem is extremely
difficult and prohibitively expensive to solve in practice. Long-term
planning on a full human dynamic system requires us to resolve all
the aforementioned challenges. To date, offline solutions to opti-
mal trajectory problems are very sensitive to parameters and initial
conditions of the problem. We certainly cannot apply such brittle
solutions at every time step in an online fashion.

This article tackles a more feasible problem: designing a control
system capable of long-term planning and frequent replanning for
simulating a specific motion sequence. We introduce a new control
system that tracks the reference motion while reacting to unexpected
perturbations and adapting to anticipated changes in the environ-
ment. Our key insight is that the long-term planning can be largely
simplified by approximating the dynamic system using modal anal-
ysis. In our formulation, we do not solve one long-term planning
problem in the generalize coordinates, rather, we formulate a set of
control strategies in a reduced and dynamically decoupled modal
coordinates. Modal analysis offers two advantages to our problem.

—Independent control. In the modal space, each mode is gov-
erned by an independent equation of motion. This reduces a
N-dimensional optimal control problem to N independent one-
dimensional problems.

—DModel reduction. Modal analysis organizes modes by the natu-
ral frequencies of the dynamic system. Typically a few modes
are sufficient to capture the dynamic behaviors of the system.
This property potentially reduces the dimension of the control
variables.

In spite of these great advantages, modal analysis is only suited
for linear dynamic systems. We circumvent the issue by linearizing
the nonlinear dynamic equations around the current state at each
time step, resulting in a time-varying linear dynamic model.

We propose a new control system that makes long-term plans
based on the reference motion and revises the plan at every time
step in response to perturbations in the environment. We present
our results by simulating a few drastically different human mo-
tions, including walking, squatting, jumping, and swinging. The
virtual character can passively respond to external forces and ac-
tively replan for new tasks. For example, we demonstrate an online
modification of a normal walk motion to walk on slopes, with dif-
ferent step sizes and different timing of steps. We also show that
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anticipated changes can be achieved by modifying the reference
motion on-the-fly, such as modification of a squatting action to pick
up a heavy box, or transition from a broad jump to swing.

2. RELATED WORK

Synthesizing natural motion for virtual characters has been a long-
standing challenge in computer animation. For offline applications,
physics-based trajectory optimization is able to create human-like
motion that exhibits anticipatory behaviors [Witkin and Kass 1988;
Cohen 1992; Liu et al. 1994; Popovi¢ and Witkin 1999]. With some
variations in formulations, these methods essentially solve for a
motion sequence while minimizing a chosen objective function un-
der physical constraints, such as the equations of motion, joint
limits, or contacts. Due to high dimensionality and nonlinearity in
constraints or objective function, these methods are limited to simu-
lating simple characters [Cohen 1992; Liu et al. 1994; Popovi¢ and
Witkin 1999] or simplified dynamics [Liu and Popovi¢ 2002; Fang
and Pollard 2003]. Researchers have utilized motion capture data
to reduce the dimensionality of the motion [Safonova et al. 2004;
Sulejmanpasi¢ and Popovié¢ 2005], but the problem remains highly
nonconvex and prone to local minima. Our method takes a different
approach to simplifying the long-horizon planning problem using
an approximate dynamic system. We leverage the advantages of
modal coordinates such that the optimization only involves a subset
of decoupled dynamic equations.

Departing from the offline approach, physics-based simulation
methods coupled with active control are capable of synthesizing
responsive motion in an interactive setting. Much research has fo-
cused on designing controllers for performing specific tasks such as
standing balance [Raibert 1986; van de Panne and Lamouret 1995;
Sharon and van de Panne 2005; Abe et al. 2007; Kudoh et al. 2006;
Macchietto et al. 2009], locomotion [Hodgins et al. 1995; Laszlo
et al. 1996; Yin et al. 2007; Shiratori et al. 2009; Wang et al. 2009],
or other complex human movements [Hodgins et al. 1995; Wooten
1998; Faloutsos et al. 2001]. These controllers generate impressive
results, but they usually depend on highly customized control pa-
rameters or prior knowledge of the motion. Consequently, they do
not generalize well to other types of activities. Our method makes no
assumption of the underlying reference motion, leading to a generic
control algorithm suitable for a wide variety of motions.

Recent research work in physics-based locomotion controllers
[Coros et al. 2010; de Lasa et al. 2010; Mordatch et al. 2010; Wang
et al. 2010; Wu and Popovi¢ 2010] improves upon the previous
work in terms of robustness to changes in environment, charac-
ter topology, and physical properties. Intuitive interfaces to author
controllers for responsive and robust locomotion tasks are presented
[Coros et al. 2010; de Lasa et al. 2010]. Several methods special-
ize in adapting walking characters on uneven or unknown terrains
[Mordatch et al. 2010; Wang et al. 2010; Wu and Popovi¢ 2010].
In contrast to all these methods that employ strategies specific for
locomotion, our method is generic to execute different tasks. The
ability to replan and change the reference trajectories online makes
our method suitable to adapt to different situations.

Incorporating motion capture data with dynamic controllers has
a potential to create more natural and human-like motion. A num-
ber of control algorithms have been proposed to directly track the
reference mocap motion using Proportional-Derivative (PD) servos
and their variations [Zordan and Hodgins 2002; Yin et al. 2003;
Abe and Popovi¢ 2006; Sok et al. 2007; Allen et al. 2007]. With
proper physical parameters for the controllers, these methods can
effectively generate passive responses to external perturbations.
However, many of these methods require fine tuning of physical
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parameters or expensive precomputation specific to the target mo-
tion and the skeletal model. The former limits the range of the
variations generated by the controller, while the latter eliminates
the possibility to modify the reference motion on-the-fly. Our con-
trol system does not require manual tuning of physical parameters
or any precomputation, making it suitable to track reference tra-
jectories that can be modified online. In a recent work, Lee et al.
[2010] demonstrated a locomotion controller that modifies the ref-
erence motion by synchronizing it with the online simulation based
on the contact changes. This results in improved robustness of the
tracking controller while retaining the quality of motion capture
data. However, their method is based on SIMBICON-style control
[Yin et al. 2007] for locomotion making it hard to generalize to
completely new motions.

To generalize control methods for different activities, many re-
searchers suggested exploiting optimization techniques to compute
control forces based on the current state of the character. Quadratic
programming is applied to regulate body center of mass [Abe et al.
2007] and momenta [Macchietto et al. 2009]. Multiple quadratic
objectives can also be organized by prioritized optimization control
[de Lasa and Hertzmann 2009]. Similarly, nonconvex optimization
can be used to directly control kinematic goals [Jain et al. 2009].
The control forces computed from an optimization process usu-
ally result in more robust motion than simple PD tracking, but these
methods still rely on short-horizon optimization, lending themselves
poorly for activities that require long-term planning. In contrast, our
method optimizes a window of the control forces towards a future
goal, rather than meeting the immediate goal.

To circumvent the issues of short-horizon planning, some re-
searchers explored optimal feedback control techniques which con-
sider the entire motion trajectory for computing the control forces.
da Silva et al. [2008] applied a Linear Quadratic Regulator (LQR) to
control a simplified model for maintaining dynamic balance in lo-
comotion. The optimal control policy derived from the LQR frame-
work minimizes the cost throughout the entire trajectory, taking into
account the future. Their controller tracks a reference motion and
allows some variations due to perturbations. Muico et al. [2009]
modified the time-varying LQR to account for the dynamic con-
straints violations. They developed a look-ahead control policy by
constructing the ground contact force predictions. Both methods are
capable of responding to small perturbations in a passive manner.
However, the control forces are driven by the deviation between
the current state and the reference trajectory, rather than the antic-
ipation of the changes in the environment. To actively replan for
a new task, the underlying reference motion must be modified ac-
cordingly. Unfortunately, these methods require an offline process
(Ricatti equations) to compute control parameters for each new ref-
erence motion. In contrast, our method allows online editing of
the reference motion and employs a completely online process to
replan a look-ahead control policy at each time step. As a result,
we are able to create motion drastically different from the reference
motion.

Modal analysis has been previously applied to deformable mod-
els [Faloutsos et al. 1997; Hauser et al. 2003; James and Pai 2002;
Barbi¢ et al. 2009], and character animation [Kry et al. 2009].
We draw inspiration from Kry et al. [2009] and develop a control
algorithm that fully takes advantage of the reduced and decoupled
dynamic system in modal coordinates. Kry et al. [2009] select a few
modes based on heuristics and manually create motions for each se-
lected mode. They are able to create dynamic motions for simple
characters but can only synthesize kinematic motions for complex
characters like dog and human since they do not use any con-
trol algorithm that can handle balance issues. We demonstrate that



time-varying linearized dynamic system can be a good approxi-
mation to the dynamics of a full-body, articulated character. In our
method, we control the low-frequency modes by formulating a long-
term control problem at every time step, resulting in a robust control
algorithm. The reference trajectory for each mode is derived from
the given reference motion sequence rather than being manually
defined.

Much previous work has explored a variety of dimension re-
duction techniques for character motion synthesis. Some tech-
niques parametrize a subspace for control based on the motion data
[Safonova et al. 2004; Chai and Hodgins 2007; Ye and Liu 2008],
while others define an abstract model based on domain knowledge
or heuristics about the motion and the character model [ Ye and Liu
2010; Mordatch et al. 2010]. Safonova et al. [2004] employed PCA
to a small set of similar example motions and selected a reduced
bases to synthesize physically plausible motion in a spacetime set-
ting. However, their algorithm still needs to solve a coupled dynamic
system which requires offline computation unsuitable for interactive
applications. In addition, the synthesized motion is restricted to a
linear subspace of example motions. Our algorithm employs modal
analysis to decouple the equations of motion. Decoupling gives a
significant speedup allowing us to interactively replan for a win-
dow of time at every time step. In addition, we control a subset of
modes that depend on the physical properties of the character rather
than example motions, allowing us to synthesize interactions and
variations in the motion that are not present in the given reference
motion. Ye and Liu [2010] solved an optimal control problem based
on a simplified model that abstracts the DOFs of the character into a
small number of parameters. This simplification greatly reduces the
complexity of the control problem rendering it suitable to be solved
for the entire motion trajectory. The computation for the optimal
feedback parameters is done offline, hence the reference trajec-
tory cannot be altered online. In other concurrent work, Mordatch
etal. [2010] used a spring loaded inverted pendulum model to solve
for optimal control in an online fashion. The control algorithm is
designed for walking or running and does not use any motion tra-
jectory. In our method, modal analysis allows for fast computation
suitable for online replanning. In addition, tracking a reference tra-
jectory gives us benefits of constructing a generic control strategy
that is independent of the performed task and synthesizing more
natural motion.

3. MODAL ANALYSIS: A REVIEW

Modal analysis is used to transform a multi-degree of freedom
(DOF) system into decoupled single-DOF systems. We review
modal analysis for linear systems [Shabana 1997] and discuss ap-
proximations to apply modal analysis for nonlinear systems.

3.1 Linear Multi-DOF Systems

For a system with N DOFs q = (g1, ¢», ..., qy)" and linear dy-
namics, the general equations of motion are given by

Mq+ Dq+ Kq =b+f(1), (1)

where M, D, and K are constants that denote the mass, damping,
and stiffness matrices, respectively. b is some constant vector and
f(z) denotes a time-dependent generalized force being applied to the
system. It is convenient to choose a proportional damping model
for D, thatis, D = aM + BK for some damping parameters « and

Now, we define a modal transformation matrix ® whose columns,
¢;’s, are the eigenvectors of the generalized eigenvalue problem
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K¢ = o*M¢, that is, M 'K = dQd!, where Q is a
diagonal matrix of eigenvalues or squared natural frequencies
Q = diag(e?, @3, ..., ®3). The columns of matrix @ are both
M and K-orthogonal, that is, we can write ®TM® = M; =
diag(ml, my, ..., mN) and CbTKqD = Kd = diag(kl, kz, ey kN)
Note that ? = r%

Using the modal transformation matrix @, we transform the gen-
eralized coordinates q to a set of modal coordinates p as: q = Pp.
Premultiplying Eq. (1) by ®7, we arrive at a new set of equations
of motion that govern the modal coordinates.

Mgp + (@My + BK)p + Kap = @'b + &"f(1) (@3]

Because M, and K, are diagonal matrices, Eq. (2) can be decou-
pled into N independent one-dimensional equations, each of which
is written as

m;p; +dip; +kip; = b; + fi(1), 3)

where d; = am; + Bk; and b; and f; are the i"" elements of vectors
®Tb and ®Tf(¢) respectively. For those modes with k; # 0, called
deformation modes, the unforced solution (f; = 0) for an under-
damped system (§7 < 1, where damping ratio & = 2\/%) can be
written as o

b;
pi(t) = T + Sie 5 sin(wa it + Y. 4)

where w;; = wi{/1 — &7, and S; and ; are amplitude and phase,
respectively, determined from the initial conditions p; and pg; by
solving po; = S;sin(y;) and po; = S;(wg,icos(¥i) — & w;sin(P;)).
The initial conditions for all the modes, (po, Po), can be transformed
from the generalized space as py = ®~'qq and po = ®~'qo.

If I is an impulse applied at time ¢, (i.e., I; = ft'f’ T f(1)dr), the
impulse response of the system in Eq. (3) is given by

e Siwilt=ty)

pi() =1 ( sin(wq,i(t — tf))) , (6))

m;q;

where [; = ftl{+€ fi()dt is the i"" element of vector ®TI;. Adding

the unforced solution (Eq. (4)) to the impulse response (Eq. (5))
gives the closed-form solution for the modal state p;(t) = p;(¢) +
Di(t) when the impulse I is applied at time ¢;.

Modes with k; = 0 are called rigid body modes. In this case,
Eq. (3) reduces to m; p; + d;ip; = b; + f;(t). Assuming there is
no damping in rigid body modes (d; = 0), the unforced solution is
given by

bi po (6)
2m i

Di(t) = po.i + poit +

and the impulse response by

pi) =1, (t - ’f) . )
m

i

Consolidating different modes in a common equation, we collect
the coefficients of the impulse from Eq. (5) and Eq. (7) into a time-
dependent diagonal matrix A(t — ¢;). The modal state at any time
t > ty, with response to impulse Iy can be expressed as

p(t) = p@)+ At —tp)ly, (8)
p(t) = pl6)+ At —tp)L,. ©)

Finally, the solution in the original space can be recovered by q() =
®p(r) and q(r) = Op(2).
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3.2 Articulated Characters

The motion of an articulated character is governed by nonlinear
dynamic equations, to which modal analysis does not directly apply.
These nonlinear equations of motion for articulated characters can
be written as

M(@)q+ (C(q. q) + D(@)q + G(q) + Kq + ko =), (10)

where M is the mass matrix, C is the matrix for Coriolis and
centrifugal forces, G represents gravity forces, and f(¢) are the
generalized forces. To model passive forces, each joint is equipped
with a spring and a damper. Matrices K and D then represent the
stiffness and damping coefficients of the coupled system and Kk is
a constant vector. ( represents the character’s root position, root
orientation, and joint DOFs in generalized coordinates.

Time-varying linear dynamics. At any time fy, we linearize
these equations around the pose qq of the character at time #, and
zero velocity. For any deviations in the position and velocity around
the state (qo, 0), AQ = q — qo and Aq = q — 0, we approximate
the equations of motion as

M(qo)Aq + (C(qo, 0) + D(qo))Aq + G(qo)
+K(qo + Aq) + ko = £(2).

Note that C vanishes at zero velocity. Denoting — (G (qo)+ K qo+ko)
by a constant b, we rewrite the equation as

MAG+ DAG+ KAq=Db + (). (11)

This equation represents an approximate linear dynamics model in
Aq and is similar to Eq. (1). Therefore, modal analysis discussed in
Section 3.1 can be applied to this equation as well. The continuous
force function f(z) is broken down into a series of impulses. If we
assume that the force f(7) remains constant over a small time step Af,
we can approximate the impulse at current time 7y as Iy = f(#)) Az.
Based on Eq. (8), the position in modal space after time step At is
then given by

Plo + A1) = Pty + A1)+ A(ADI,,

Using the modal transformation, we recover the pose at the next
time step: q(fo + At) = ®p(ty + Ar). Advancing the time by At,
we linearize the dynamic system around the new pose and repeat
the same process to compute the next modal state.

4. CONTROL METHODOLOGY

Given a reference motion, we seek to design control strategies that
track the reference motion while responding realistically to both un-
expected perturbations and anticipated changes in the environment.
Our approach to controlling an articulated character leverages the
advantages offered by the modal coordinates. We apply modal anal-
ysis to the linearized N-DOF dynamic system (Eq. (11)), resulting
in N decoupled one-dimensional equations. This transformation al-
lows us to compute the control forces for each decoupled mode
independently. We now classify these modes into three categories
and develop separate control strategies for each type (Section 5).

(1) Rigid body modes: Because the global DOFs are not equipped
with springs, the stiffness matrix K in Eq. (11) is always sin-
gular. These underactuated DOFs result in six eigenvectors in
@ that correspond to zero eigenvalues. These six eigenvec-
tors, called the rigid body modes, are only affected by external
forces.
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Fig. 1. 'We apply principal component analysis on the poses of a captured
walking sequence. Left: The first three principal components have dominant
low frequencies. Right: The last three principal components have dispersed
frequency content biased towards high-frequency range. Note that the scales
of the vertical axes in the plots are different for better illustration.

(2) Low-frequency modes: Except for the rigid body modes, all
the remaining modes of the articulated system are actuated.
For those modes with corresponding eigenvalue less than a
chosen threshold, we classify them as low-frequency modes.
The choice of this threshold depends on the application and
is discussed in Section 7. The motivation to focus on low-
frequency modes is due to the observation that visually more
significant movements in human motion typically correspond
to low-frequency motion. In our experiments, we applied fre-
quency analysis on recorded human motion projected on its
principal components. The results show that the first few prin-
cipal components, that capture most of the variations in the mo-
tion [Safonova et al. 2004], have dominant lower frequencies
(Figure 1(a)) while the last few have dispersed frequency com-
ponents biased toward the high-frequency range (Figure 1(b)).
This implies that controlling low-frequency modes can effec-
tively change visually significant movements of the character.

(3) High-frequency modes: All the remaining modes above the
threshold belong to the high-frequency modes. Comparing to
the low-frequency modes, the motion in the high-frequency
modes has a little visual effect to the appearance of the motion
(Figure 1(b)). Because of the high stiffness, controlling the
motion in these modes usually requires large forces.

Once we classify the modes for the linearized dynamic system
around the current state of the character, we apply long-horizon
planning to the rigid body and the low-frequency modes and short-
horizon planning to the high-frequency modes. The choice of hori-
zon for different modes is due to the following two reasons. First,
because the long-term planning is more computationally costly, we
only apply it on the modes that can make significant visual differ-
ences, namely, rigid body and low-frequency modes. Second, be-
cause the long-term planning allows for temporary deviation from
the reference trajectory, applying it to high-frequency modes can
cause large corrective forces, leading to instability and unnatural
oscillations.

5. CONTROL FORMULATION

‘We now discuss our formulation of control strategies for each class
of modes. Our goal is to compute the required contact forces and
joint actuation within a window of time, such that the character can
reach the corresponding reference state at the end of the window.
We choose a window size of n = 1 for the short-horizon planning
and a larger number for the long-horizon planning (Section 7).



Notation. Our simulation discretizes the time domain with a
fixed time step At. , indicates the current time while 7, = #, + kAt
is the time at k time steps in the future, where k € Z*. The horizon
for each planning problem is determined by the window size of n
frames or nAt seconds. We represent the state of the character at
time #; as (qx, ). Similarly, the corresponding state of the reference
motion is represented as (qy, ﬁk).

Applying the modal transformation to Eq. (11), we express the
equation in the modal coordinates p, with the linear invertible re-
lation Aq = ®p. The modal transformation matrix & is updated
at each time step based on the current state of the character, qo:
M~ (qo)K = ®Q®~!. The desired state at the end of the current
window, (qy, @), can be transformed into modal coordinates as
(pna l_)n) = (Cb_l(‘_b - QO), qD_]Qn)-

5.1 Estimate Contact Forces: Rigid Body Modes

Because the rigid body modes are not equipped with actuators,
they are directly controlled by the contact forces. Our goal is to
compute the contact forces such that, at the end of the planning
horizon t,, the states of rigid body modes are as close as possible
to the desired states. To express the contact forces in the modal
coordinates, first we must determine the number of contact points
at each time step within the planning window [7y, #, ]. The contacts at
the current frame 7, are determined by a collision detection routine.
For any other time step in the window, #, k = 1, ..., n, the contact
information is directly taken from the reference motion.

We denote the contact forces f; ;,i = 1...n; at a given time #,
where n; denotes the number of contact points at time #,. The sum
of these contact forces in the modal coordinates can be expressed
as ®7 >, JTfi;, where J; = g;‘g J; is the Jacobian evaluated at
the point of application x;. If we assume that the contact forces
hold fixed over a small interval of time A, we can approximate
the effect of the contact forces by an impulse Ij = Zf;, where
Zy =A@ ) = [JT,...,JnTk]T and f;, = (f,zl,...,f,f_nk T

Based on Eq. (8) and Eq. (9) , the states of rigid body modes at
time 7, under the influence of contact forces can be expressed as

n—1

P, = b+ Y AT — I, (12)
k=0
n—1

P, = P+ Y AT — . (13)
k=0

These modal state equations are linear in f;’s. Now, we formulate
an optimization problem to solve for the optimal contact forces f*
and minimize the state deviation and the contact force magnitude.
We have

f* = argmin [|p], — p, I3, + 19, — B, 15, + IFI5,. (14
f

where f represents all the contact forces (f] , . .., f7_)T and Wy, W,
and W; are positive diagonal weighting matrices (see details in
Section 7). ||v||w denotes the norm (v’ WV)% for any vector v.
Eq. (14) is an unconstrained convex Quadratic Programming (QP)
problem and can be solved efficiently. This formulation is valid for
bilateral contacts such as a hand grasp.

Coulomb friction. We apply unilateral forces for the ground
contacts. The contact forces are constrained within a cone defined by
friction coefficient u. Assuming static contact, we define a contact
force f by its component f along the contact normal fi and tangential
component f7 such that |[f7]| < wuf. We approximate fr by a set
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of unit vectors d ;s.These unit vectors span the tangential plane as
described in Stewart and Trinkle [1996] and Anitescu and Potra
[1997]. We arrange these vectors as columns of matrix D. The
coefficients corresponding to the unit vectors d’s are represented by
B (with B > 0). The legal contact force can be approximated by a
polyhedral friction cone.

f=fA+DB with) B <uf and f,>0 (15
J

Now, substituting Eq. (15) in Eq. (14), and adding the boundary
conditions, we get a constrained convex QP problem in f, 8

min r_—r2+'r_;r2+f2
i ps, = Palliy, + 1105 — Pollw, + [1Fll5, 16
subjectto uf —e’B >0 with f, >0,

wheree =[1,...,1]".

5.2 Estimate Joint Actuation: Low-Frequency Modes

The low-frequency modes can be controlled by the contact forces,
as well as their own actuators. Given the contact forces f* optimized
for the rigid body modes, the control strategy for the low-frequency
modes is to optimize the actuation such that, at the end of the
planning horizon ¢,, the states of the low-frequency modes match
the desired reference states.

The state of these modes at time #,, under the influence of actuation
impulses I* and optimized contact forces f* is given by

n—1 n—1
P, = B, + Y At —tZff + Y At — I, (7)
k=0

k=0
n—1 n—1

B, = b+ Y Al —)Zif; + Y A, — Il (18)
k=0 k=0

Again, these equations are linear in I. In addition, because matrix
A(1) is diagonal, these equations can also be decoupled. We rewrite
the equations for m'" low-frequency mode as

n—1

pfl,m = Crly.m + Za;ln(tn - tk)I/va (]9)
k=0
n—1

Phw = Y ab(tn— I, (20)
k=0

where a!, and &/, are the diagonal elements of A’ and A respectively,
corresponding to mode m. ¢, and ¢/ indicate the first two terms of
Eq. (17) and Eq. (18) respectively.

Now, we formulate an optimization to solve for actuation I, =
[0/ 1¢_, T for each mode m independently. Our goal is use
the least amount of actuation to track a future state of the reference
motion. We have

a : - 2 : - a
I" = argminwy(p,, ,, =P, ) +ws(p, =Pl )+ 1, 21

L,
where w4 and ws are scalar weights for position and velocity match-
ing, respectively, and W is a positive diagonal matrix. This is again
an unconstrained convex QP problem. Since these problems are

uncoupled for all the modes, we can solve them independently and
efficiently.
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5.3 Track High-Frequency Modes

We use a short-horizon to plan the control forces for the high-

frequency modes, namely, n = 1. Similar to Eq. (19), the state

of each high-frequency mode at the next state can be expressed

as pi,, = ct, +ak(t —t)I{,. Since there is only one control

variable, I{,,, we can solve it analytically.

Pl =l
al (At)

m

I = (22)

5.4 Enforce Physical Contact Model

If we directly apply the optimal contact forces f; and actuation
impulses I§* at the current time step, we can analytically compute
the modal state at the next time step #; by virtue of Eq. (8).

pi = P1 + AAD(Zofy +157) (23)

However, the estimated state p} might cause artifacts at con-
tact points, such as slipping, penetration, and breakage of con-
tacts. We formulate a Linear Complementarity Problem (LCP)
to solve this issue. Specifically, we adjust the contact forces by
Af = (Af], ..., AfI )" and the joint actuation by AI“, such that
the movement of each contact point, Ax; ~ J;Aq = J;Pp;, and the
corrective forces, Af and AI“, satisfy the Coulomb friction model.
The modal state at the next time step, p;, is then computed as

P =P} + A(AD(ZoAf + AIY). (24)

Control preference. Because there can be many solutions for
the corrective contact forces Af and the corrective joint actuation
AI“ that satisty the Coulomb friction model, we can formulate
an optimization with an objective function, E(Af, AI4), that mini-
mizes a certain desired criterion.

However, we cannot directly include this objective function in
the LCP formulation (LCP is not an optimization problem). If we
choose a quadratic form for E, the LCP solution can be biased
towards the minimum of E, by deriving a linear relation between
AI* and Af using the optimality condition. We can then express
AI“ in terms of Af in the LCP formulation. In our implementation,
we choose to minimize the impact of corrective forces in the state
of rigid body modes and the low-frequency modes.

E(Af, AIY) = || A"(ADZoAF, + | A (AD(ZoAF + AIY3, (25)

Based on the optimality condition, the gradients of E vanish at
the minimum. We obtain a linear relation between AI* and Af.

PAI* + QAf =0

The coefficient matrix of AI* may not be full rank and invertible,
but we can solve this issue by reformulating the objective function

min || PAI" + QAF| + | AL, (26)

where W, is a positive definite weighting matrix. We now solve for
the corrective actuation AI that minimizes the error in optimality
condition of E and the magnitude of AI“. The optimality condition
of the new objective function is given by a linear relation.

A" = X,Af 27

—(PTP+W,)"'PTQ

where X/

Note that X ; is well-defined since PT P + W, is always positive
definite. This is a similar treatment as in Muico et al. [2009], in
that the relation was derived based on matching the acceleration of
certain chosen features.
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For the high-frequency modes, we would like to maintain the
planned actuation computed in Section 5.3. We define the com-
ponents corresponding to the high-frequency modes in X, such
that for m™ high-frequency mode, AI¢ = —(Z,Af),, resulting in
Pim = Pl

We can now rewrite the modal state p, in Eq. (24) as

p1 =P} + A(AN)(Zy + X p)AS. (28)

Note the only explicit variables are the corrective contact forces, Af.
We now can formulate a LCP based on the following constraints
derived from Coulomb friction model.

Unilateral contact force. Breaking down each force in normal
and tangential components (as in Eq. (15)), we have

fo; + Afi = fif + DiB;, with fi, B; > 0. 29)

Normal constraints. In the normal direction, the movement of
the contact point x; is given by A7 Ax;. The following complemen-
tarity conditions must be satisfied for each contact.

BIAx)fi =0 with f; >0, A7 Ax; >0 (30)

Tangential constraints. In the tangential direction, we need to
ensure that if the point moves, the contact force lies on the boundary
of the cone and in the direction opposite to the movement. Using
the formulation similar to Stewart and Trinkle [1996] and Anitescu
and Potra [1997], we introduce a parameter A; that represents the
relative tangential movement of the contact point. Therefore, the
constraints are written as

(hie+ DI Ax;) B =0 with ie+ DI Ax; >0,8 >0, (31)
(ufi —e"Bri =0 with puf; —e'f; >0,4,>0.  (32)

Colloquially, Eq. (31) enforces that the direction of movement is
opposite to the friction force and Eq. (32) enforces that the friction
force is on the boundary if the point of contact moves.

Linear complementarity problem (LCP). We define z =
(zi,....2})" where z; = (fi, B/, %))" and rewrite Eq. (29) as

Af; = Njz; — £ ;, where N; = [1;, D;, 0]. Stacking all the points
together, we write

Af = Nz —f], 33)

where N is a block diagonal consisting of N;’s. Recalling Ax; &~
JiAq = J;Pp;, we substitute Eq. (28) and Eq. (33) in Eq. (30),
Eq. (31), and Eq. (32). As a result, a standard LCP of the form can
be derived

w=Cz+handw/'z=0withw, z>0, (34)

where C and h are derived in Appendix A.

Once the solution z is obtained, we compute the required forces
using Eq. (33) and Eq. (27). Finally, we compute the modal position
at the next time step p; using Eq. (24) and the next pose q; as ®p;.

5.5 Summary

We summarize the control procedure that advances the character
from the current time step to the next. Starting out with a new
current state fy, we solve the control forces for a time window
[#o, t,] by following steps:

—-Solve for the ideal contact forces f* such that the components of
the state of the rigid body modes at #, match the corresponding
reference state.



—Given f*, solve for the ideal actuation for the low-frequency
modes I** such that the state of the low-frequency components
at t, matches the corresponding reference state.

—Compute actuation for the high-frequency modes such that the
state of the high-frequency modes at #; exactly matches the next
reference state.

—Compute the corrective forces Af and AI” to satisfy the Coulomb
friction model.

Once the corrective forces are added to the ideal forces, we get the
state at the next time step q;. We then advance the time step and
repeat the same procedure. The ideal forces computed for the rest
of the window have to be recomputed again at the next time step for
two reasons. First, the environment state can change at any moment
and the character must adapt her plan accordingly. Second, the ideal
forces are computed based on a locally linearized dynamic system.
Replanning ensures that more accurate control forces are applied to
the character.

The control and simulation are performed with respect to lin-
earized dynamics and no numerical integration is needed since the
next state can be computed analytically using Eq. (24).

6. INTERACTION AND MOTION EDITING

To create variations from the original reference motion, our system
allows the user to apply external forces to the character, as well as
directly modify the reference trajectory on-the-fly.

Perturbations. We assume that the character reacts to unex-
pected perturbations with 200 ms latency to simulate the mus-
cle activation delay in the sensory feedback [Miall et al. 1985;
Georgopoulos et al. 1981]. We denote the response time as ¢, and
perturbation time as #,. For a simulation time #; in the time interval
[to, to + 1], we replace the current state of the character, (qy, qx), by
the corresponding state in reference motion, (q, ﬁk) for the purpose
of computing control forces in the rigid body and the low-frequency
modes. During this response interval, the control system makes a
long-term plan as if the character has not sensed the external force.
Once the control forces for the rigid body and the low-frequency
modes are computed, we restore the current state (qy, ¢x) and com-
pute the forces for the high-frequency modes and the corrective
forces for the contacts. After the response interval, we compute the
control forces in the usual manner to recover back to the reference
motion.

Motion editing. When the character responds to larger per-
turbations or changes behaviors volitionally, tracking the original
reference trajectory becomes a poor control strategy. Since our con-
trol algorithm does not require any offline computation based on
the reference trajectory, we are free to edit the reference motion
on-the-fly. In theory, any online trajectory editing technique can be
applied, we implemented following three generic methods.

—Forward and inverse kinematics (FK/IK): The user can directly
change the joint angles of the reference motion via FK or modify
the position of a body point via IK.

—Time warping: The user can select parts of the motion and change
their speed.

—Motion transition: The user can select a new motion sequence
and blend the current state of the character into the new motion
over a time interval.
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7. RESULTS

We now present our results and report all the parameters for con-
trolling a 3D human articulated character under perturbations and
changes of the environment. Full animations can be seen in the
supplemental video available online in the ACM Digital Library.

Character description. The skeleton for our articulated char-
acter consists of 18 rigid links and 42 DOFs. We define the stiffness
for each DOF as the total mass of the subtree rooted at the joint
where the DOF resides. We use zero damping in all our examples.
The threshold for classifying the modes (Section 4) is chosen as
100 (rad/s)?. For our articulated character, this choice of threshold
results in 14 low-frequency modes and 22 high-frequency modes
apart from 6 rigid body modes, that is, we use around half of the
total number of modes to formulate the long-term planning problem
and track the motion for the rest of the modes using a short-term
plan.

Global constants. We use time step At = 1.0/120 s for all
our examples. The friction cone in Eq. (15) is approximated using
six basis vectors defining a hexagonal boundary for the cone. The
friction coefficient w is chosen to be 1.0 for all the simulations.

Control parameters. We use the same set of weights in the
control algorithm for synthesizing all the motions sequences. For
Eq. (16), we define W, as a diagonal matrix with first three com-
ponents corresponding to global positions as 0.1 and the remaining
three corresponding to global rotations as 0.5. The matrix W, is
an identity matrix, /, and W3 = 0.11. For Eq. (21), we choose
wy = 0.5, ws = 2.0, and Wy = 5 x 10731. In our experience,
penalizing velocity terms more than the positions gives a more ro-
bust solution for control. Finally, we choose the weighting matrix
in Eq. (26) as W, = 107%1.

We use MOSEK (mosek. com) to solve the convex QPs formu-
lated in Eq. (16) and Eq. (21). We solve the LCP in Eq. (34) through
a C++ interface to Matlab’s “Icprog” solver. All the results are
synthesized on a single core of Intel Core 2 Duo 2.8 GHz processor.

7.1 Tracking a Reference Motion

With all the global constants and control parameters defined, the
only parameter specific to each sequence is the window size for
long-term planning.

We choose a window size of 12 frames to synthesize a biped
character walking on a flat surface while tracking a mocap reference
motion. In our experience, window sizes ranging from 10-15 work
well with walking motion. We synthesize walking motion at 4-10
frames per second (fps) or 3—10% real-time speed. The bottle neck in
control computation is solving the QP for the rigid modes (Eq. (16))
due to a large number of contact force parameters, and takes more
than 80% of the computation time at every time step. The rest of the
computation involves eigenvalue decomposition for modal analysis,
QP solution for low-frequency modes actuation (Eq. (21)), and LCP
for contact correction.

We use a window size of 16 frames for tracking a squatting
motion and 24 frames for a swinging motion. For these motions, we
simplified the QP problem for the rigid modes by choosing a single
force for a contact point that lasts for a few frames in the window,
thereby largely reducing the number of unknowns. As a result, the
control algorithm can reach 30—40 fps or 25-30% real-time speed.
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Fig. 2. Perturbation response while performing different tasks.

14

(a) original

(b) shorter window (c) longer window

Fig. 3. Weight-lifting simulation with different window sizes.

7.2 Responding to External Perturbations

To demonstrate that the character is able to passively respond to
arbitrary external perturbations, we synthesize responses of the
character to user-applied forces while performing different tasks,
such as walking, squatting, and swinging. When pushed at different
body parts with different direction and magnitude of forces, the
character reacts passively and eventually recovers (Figure 2). We
apply forces varying between 100-175 N on walking motions for
a period of 10 frames, 75-250 N on squatting for 20 frames, and
75-175 N on swinging for 20 frames.

7.3 Editing the Reference Motion

Our control algorithm also allows the reference motion to be mod-
ified online. We edit the reference motion using following three
editing techniques.

FKJ/IK. We use a very simple online editing technique to modify
the original walking motion to walking on a ramp. The editing only
involves changing the vertical root translation to align with the
slope and using IK to match the feet to the surface of the ramp.
We synthesize motions walking up the slope of up to 3 degrees
and walking down the slope up to 5 degrees. Similarly, we can
modify the length of the strides in walking motion by changing the
horizontal root translation and using IK to maintain the original
duration of contacts. With these simple edits, we can increase the
stride lengths by 10 cm and reduce it by 15 cm for every step of the
reference motion.

To demonstrate more drastic changes on the reference motion, we
modify the squatting motion to a weight-lifting motion by applying
IK to the hands so they come into contact with a 30 kg barbell. The
edited motion looks very unrealistic because the modification does
not consider the changes in dynamics. However, the motion simu-
lated by our system appears more natural as the character struggles
to balance when she lifts the bell. In addition, we compare the re-
sults with two long-term window sizes of 12 and 36 frames (0.1 s
and 0.3 s respectively, Figure 3). Simulating with 12 frame window,
the character picks up the barbell but topples forward eventually.
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(a) Key frames

(b) simulation

Fig. 4. Simulation of a chin-up exercise from two key frames.

Increasing the window size to 36 frames allows the character to
plan control forces further ahead of time. As a result, the character
chooses to lean backward to balance the weight and remains steady
after picking up the weight.

In addition to editing existing mocap sequences, we synthesize
a completely new motion by interpolating a few edited keyframes.
Starting out from a single pose of character hanging from the bar, we
create a very rough chin-up motion by changing the vertical root po-
sition and applying IK to maintain the hand positions (Figure 4(a)).
The character in this hand-crafted reference motion appears stiff and
unnaturally strong. In contrast, the output motion exhibits realistic
dynamics and responses to the external perturbations (Figure 4(b)).

Time warping. In addition to spatially editing the motion tra-
jectories, we also edit the timing to speed up or slow down parts
of a motion as desired. To demonstrate this, we speed up the walk-
ing motion by 10% and simultaneously increase the stride length
by 15 cm per step. The character is able to walk steadily while
tracking this edited motion. Time warping can also be used to aid
in better recovery from unexpected perturbations. We give a strong
backward push to a walking character. Losing forward momentum,
the character fails to walk soon after the push because she is not
able to keep up with the timing of the original motion. We repeat
the experiment with time warping immediately after the push to
let the character recover back to original motion. We slow down
the reference motion by 25% for an interval of 1 second after the
push. Now, the character is able to recover and walk steadily with a
different phase as a result of warping.

Motion transition. Finally, we demonstrate tracking two dif-
ferent reference motions in sequence. We edit a jumping motion of
the character by raising her arms. When the character is airborne,
we add constraints on the hands to simulate bilateral contacts with
a high-bar. The character passively swings on the bar while still
tracking the jumping motion. We then transition into a swinging
motion by blending into a swing reference motion over a time in-
terval of 0.5 s. Just before the transition, the pose of the character
differs from the reference motion including the contact points on
the hand. We seamlessly synthesize the transition and the character
starts tracking the swinging motion.

8. ANALYSIS

To demonstrate the effectiveness of our modal analysis approach, we
conducted a few quantitative experiments and produced qualitative
results to support the following two claims. First, we argue that
dimension reduction is critical for online (re)planning and the modal
analysis approach is very efficient due to modal decoupling. Second,
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Fig. 5. Error comparison for control of different set of modes.

we argue that using a natural frequency to select controlled modes
is appropriate for human motion.

Optimal control for a long horizon is computationally expensive
and typically prohibitive for online applications. A standard method
for long-term optimal control in computer animation is to formu-
late a spacetime optimization problem. For our problem, a 12 frame
window of spacetime results in more than 700 unknowns and 70
constraints. This highly nonconvex optimization requires computa-
tion of several Jacobians and Hessians for every frame, leading to
an excruciatingly slow motion synthesis method at a rate of several
minutes per frame. On the other hand, modal analysis reduces com-
putational time by transforming the optimal control problem into
a low-dimensional space. Furthermore, modal analysis exploits the
fact that the equations of motion can be decoupled, which signifi-
cantly improves the performance in addition to the speed gain from
dimension reduction. The details of performance can be found in
Section 7.1.

For online long-term optimal control, the necessity of dimen-
sion reduction is evident, but the selection of the low-dimensional
space is also critical. Similar to PCA and other spectral embedding
methods, modal analysis reduces the domain to a subspace spanned
by a subset of modes, which can be organized in a specific order.
For modal analysis, the modes are ordered based on the natural
frequencies of the physical model. We conduct two experiments to
show that mode selection based on natural frequency can effectively
control human motion.

Our algorithm applies long-term control only in low-frequency
modes. To justify the choice of this control scheme, we compare the
motions generated by selecting different frequency ranges. In the
first experiment, our algorithm selects the lowest-frequency modes
(mode 6 to 18) to simulate a walking sequence. This baseline is
compared against motion sequences generated with control modes
numbered from 6 + k to 18 + k, where k € Z*. The error metric
used for comparison is defined as the norm of the difference in the
global orientation in the simulated and the input motion. Figure 5
shows sequences controlled by the modes in different frequency
ranges. We notice that the error increases and the system becomes
more unstable as the value of k is increased. We also simulate a few
motion sequences with randomly selected modes. The simulation
becomes unstable quickly after a few frames. These results suggest
that controlling the low-frequency modes leads to the most stable
control algorithm.

As we demonstrated, dimension reduction based on natural fre-
quency is a viable approach for long-term, online optimal motion
control, but what is the cutoff threshold that defines “low” fre-
quency? In the second experiment, we analyze our choice of the
threshold for classifying the modes as low frequency. Our cho-
sen threshold works for all of the demonstrated examples. In our
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experience, the control algorithm works successfully within a vari-
ance of 3-4 modes from the chosen threshold. If the chosen
threshold is too small, most of the modes are categorized as the
high-frequency modes, resulting in very kinematic, less responsive
motion. On the other hand, if the threshold is too large the result-
ing motion becomes very jerky and unstable. This is because the
objective function in our control policy in Eq. (21) penalizes the
actuation in the modes below the threshold. However, modes with
high frequency require large forces to execute the desired motion;
hence our control policy for low-frequency modes is clearly not
suited for these modes.

The recent work of Ye and Liu [2010] shares some common goals
of our method of simulating a given reference motion and its online
variations using a generic control method. They perform an offline
control computation based on a given reference motion that restricts
their method to handle small changes during online simulation. In
contrast, our completely online control computation handles larger
changes in the reference motion. To compare the performance of
these two methods, we analyze two examples: first, walking motion
with perturbations and second, squatting motion while lifting heavy
weights. In the first example, it is not necessary to change the
reference motion online since the perturbations are relatively small.
Therefore, the computation time for the method in Ye and Liu [2010]
consists of one time offline computation of 1-2 minutes and online
feedback computation that runs at an average of 20 fps. Our online
control computation runs at 4-10 fps. For the second example of
squatting while lifting weights, it is required for the method in Ye
and Liu [2010] to change the reference trajectory to successfully
perform the motion. The control has to be reevaluated frequently
that would make their computation prohibitively expensive during
online simulation. In our method, the control computation runs at
3040 fps thereby outperforming the other method.

9. DISCUSSION

We present an algorithm to interactively simulate and control an
underactuated articulated character using a time-varying linear
dynamic system. We apply modal analysis to transform the space
of DOFs to the modal space based on the natural frequencies. The
design of the control scheme exploits modal analysis to reduce the
control space and decouple the equations of motion. This approach
offers two key advantages.

(1) Robust control. Long-horizon optimization produces look-
ahead control that allows the underactuated system to operate
robustly when tracking the reference motion and recovering
from small perturbations.

(2) Online editing of reference trajectory. Because the look-ahead
control is computed online at every time step, our algorithm
does not rely on any offline computation for the control policy.
This allows us to edit the reference trajectory online in response
to large changes in the environment.

We demonstrate the ability to synthesize anticipatory motion and
passive responses to external perturbations. The control policy is
generic as it does not depend on the performed task. In addition,
chosen weights and parameters work with a wide variety of motions
and scenarios.

However, our approach suffers a few limitations. Our control al-
gorithm works better for physically correct reference motions. More
challenging activities, such as walking, require a higher-quality ref-
erence motion than other activities, such as squatting. To use motion
capture data as reference, we must ensure two conditions. First, we

ACM Transactions on Graphics, Vol. 30, No. 5, Article 118, Publication date: October 2011.



118:10 3 S. Jain and C. K. Liu

compute the contact forces required to achieve the global trajec-
tories (six underactuated degrees of freedom) from the reference
motion. The computed contact forces need not satisfy the dynamic
and friction constraints for the entire reference motion, but the
longest interval that violates these constraints must be less than 10—
15 frames (at 120 fps). Second, the contact points should remain in
contact with the environment for their expected duration. For the
first condition, we simply use a motion capture data that looks phys-
ically plausible without glaring artifacts. For the second condition,
we preprocess the motion by applying inverse kinematics. To utilize
keyframe animation or physically inconsistent mocap data (violat-
ing the afore-said two conditions), we could employ the spacetime
optimization process as used in Muico et al. [2009] as a preprocess
to produce higher-quality reference motion. Online editing of the
reference motion should also satisfy these two conditions. Our cur-
rent editing method modifies the root position in accordance with
the changes in the contact positions. This simple kinematic editing
might result in motions that occasionally violate the equations of
motion, but as long as the physically inconsistent frames do not
stretch longer than 10-15 frames, our controller can successfully
handle the edited motion.

Although our system can synthesize large variations from the
reference motion by editing the reference motion online, the modi-
fication is artificially done by user intervention, rather than caused
by a physical response. Since the modification of the reference
motion does not incorporate high-level strategies based on human
postural responses to physical perturbations, the character can only
handle relatively small pushes. To recover from large perturbations
using drastically different control strategies, it is inevitable to mod-
ify the reference trajectory or use an entirely different trajectory.
Our method suffers the inherent drawback of the tracking controller
in that deviations have to be confined in a small neighborhood of
the reference trajectory. However, since our controller does not rely
on any offline computation based on the reference trajectory, we
can directly modify the trajectory online, resulting motion largely
different from the original reference trajectory (e.g., from squatting
to weight lifting).

The contact information and the timing is obtained from the
reference motion. In the event of perturbation, we continue to use the
same contact information for planning, but the actual contacts might
be different from those in the reference motion, for example, earlier
or later heel strike for double support. To increase the robustness
in recovering from larger perturbations and environment changes,
we would like to design dynamic policies to estimate the contact
position and the timing.

We use a simple rigid body to model the foot with its four corners
as the contact points. We suspect that the forces generated in our
system have significant discrepancy from those measured by the
force sensing platforms due to this simplification in modeling of
foot geometry and contacts. However, though the individual forces
computed at the contact points may not be realistic, for example, the
forces at the corners face opposite directions, the aggregated force
strictly satisfies the following two physical constraints. First, the
center of pressure lies within the convex hull formed by the contact
points on the foot. Second, the net ground reaction force produced
by the foot obeys the Coulomb friction law. These constraints are
enforced by solving a LCP (Eq. (34)), which corrects the difference
in expected contact forces by the character and the actual physical
forces.

Our control algorithm does not run in real time. The bottleneck
is the estimation of contact forces for controlling the rigid body
modes, especially when the number of contacts is large. One possi-
ble solution is to replan less frequently for control forces.
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Size of the planning window plays an important role in the con-
trol policy. Despite the apparent advantages of having larger window
sizes for farther look ahead, approximation of dynamics for the en-
tire window introduces errors that limits us from choosing arbitrarily
large windows. For example, choosing window size of 1 frame is
similar to having a per-frame PD control. In this case, the character
is extremely stiff and fails to track underactuated tasks. Increasing
the window size significantly improves the stability and ability to
handle perturbations. However, the quality of control starts to de-
grade if the window size is too large as large errors accumulate due
to the approximation of the dynamic equations (i.e., linearization
of dynamics around the current frame). In the current implemen-
tation, the window size is chosen manually for every motion. We
would like to explore ways of choosing the optimal window size
automatically and adaptively based on the reference motion and the
simulated state.

Approximation of the dynamics equation in Eq. (11) works well
for demonstrated motions such as walking. This linearization around
zero velocity may introduce larger errors in dynamics for motions
involving high joint velocities. We would like to explore higher-
order approximations to the dynamic equations that are more suited
to high-velocity motions.

We demonstrated our examples based on an underdamped sys-
tem, specifically with zero damping. However, our control design is
generic to include overdamped systems as well. We choose an un-
derdamped system because it better captures the natural dynamics
that exploits the passive elements of a character.

Currently, we manually choose the constant stiffness parameters
for the articulated character irrespective of the reference motion.
Inspired by biomechanics studies on how stiffness of the passive el-
ements varies by different activities [Farley and Morgenroth 1999],
we would like to automatically design the stiffness parameters of
the character based on the reference motion. Our design goal is to
solve an inverse problem of modal analysis such that the desired
motion resembles the motion of the biomechanical system vibrating
at its natural frequencies.

APPENDIX

A. LINEAR COMPLEMENTARITY PROBLEM
Using Eq. (28) and Eq. (33), we can write p; as a function of z.

pi = (P} — A(AD(Zy + X )fy) + (A(AD(Zo + Xp)N)z (35)

Using Eq. (30), Eq. (31) and Eq. (32), we write the complementarity
conditions for each contact point x; as w; = F;p; + G;z; and
w!'z; = 0 with w;, z; > 0, where

n; J; ® 0O 0 O
F,=| DIJ® and G, =] 0 0 e
0 uw —el 0

Stacking the equations for all the contact points together, we get
w = Fp; + Gz and w'z = 0 with w,z > 0, where matrices
F=(F,...,F[)" and G = blockdiag(G,, ..., G,,). Substitut-
ing Eq. (35) in the preceding we get the following LCP problem.

w=Cz+h and w/z=0withw,z>0

where

FA(At)(Zo+ XN + G
h = F(p} — A(AD)(Zo + X))
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