
10

Optimization-Based Interactive Motion Synthesis

SUMIT JAIN, YUTING YE, and C. KAREN LIU

Georgia Institute of Technology

We present a physics-based approach to synthesizing motion of a virtual character in a dynamically varying environment. Our approach views the motion of

a responsive virtual character as a sequence of solutions to the constrained optimization problem formulated at every time step. This framework allows the

programmer to specify active control strategies using intuitive kinematic goals, significantly reducing the engineering effort entailed in active body control. Our

optimization framework can incorporate changes in the character’s surroundings through a synthetic visual sensory system and create significantly different

motions in response to varying environmental stimuli. Our results show that our approach is general enough to encompass a wide variety of highly interactive

motions.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Animation

General Terms: Algorithms, Design, Experimentation

Additional Key Words and Phrases: Character animation, physics-based animation, nonlinear optimization

ACM Reference Format:

Jain, S., Ye, Y., and Liu, C. K. 2009. Optimization-based interactive motion synthesis. ACM Trans. Graph. 28, 1, Article 10 (January 2009), 12 pages. DOI =
10.1145/1477926.1477936 http://doi.acm.org/10.1145/1477926.1477936

1. INTRODUCTION

To date, animating the behavior of human characters in a dynamic
environment remains primarily an animator-driven activity. Unlike
simulation of passive phenomenon such as smoke, water, and cloth-
ing where automated algorithms have seen wide commercial adop-
tion, the reaction of a virtual human character depends largely on
the interaction between her own goals and environmental factors,
in addition to the laws of physics. For example, when losing bal-
ance a real person will reposition her body to slow the fall while
grabbing onto any nearby object that appears stable. Even for such
a simple task, the sheer scale of possible objects and environments
a character can interact with makes designing a generic simulation
algorithm challenging. Consequently, to date, character animation
is still primarily done through key-framing or blending prerecorded
motion sequences.

Physical simulation via robotic controllers has the potential to
be a general framework for simulating believable character inter-
actions without need of extensive data or user effort. In the past,
specialized control algorithms have proven capable of generating di-
verse motions such as balancing, running, and diving. Despite these
successes, robotics controllers exhibit two main drawbacks. First,
designing robotics controllers is a difficult and time-consuming pro-
cess. Good controller design requires modeling of the musculoskele-
tal system and tuning of model parameters that have nonlinear rela-
tionships with the output motion. Second, once designed, controllers
are often brittle, only working under a narrow range of conditions.

This work was supported by NSF grant CCF-CISE 0742303.

Authors’ address: S. Jain, Y. Ye, and C. K. Liu, Georgia Institute of Technology, Atlanta, GA 30332; email: {sumit, yuting, karenliu}@cc.gatech.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or

distributed for profit or direct commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation.

Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to

post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be

requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.

c© 2009 ACM 0730-0301/2009/01-ART10 $5.00 DOI 10.1145/1477926.1477936 http://doi.acm.org/10.1145/1477926.1477936

Changes in the environment often necessitate significant tuning of
control parameters or a redesign of the controller itself.

We explore an alternative framework for active character simula-
tion, physics-based optimization, which formulates motion synthe-
sis as an optimization problem. Up to now, physics-based optimiza-
tion has been applied to generating motions in preplanned situations
where all the constraints and objectives are known a priori. Within
this domain, the framework has proven capable of synthesizing a
wide class of realistic human motions, from walking to complex
gymnastics. In addition, user control of the animation is straightfor-
ward. To specify a motion, the programmer only needs to describe
the goals of the motion (e.g., jump to this position). The optimization
framework handles how the motion is achieved. These traits make
physics-based optimization an appealing framework to synthesize
character animations.

This article describes a physics-based optimization framework
for interactive character animation. In our system, the motion of re-
sponsive virtual character is a sequence of solutions to a constrained
optimization problem formulated at every time step. In this frame-
work, the controller is a process that directs the motion by providing
kinematic goals, such as desired body position or velocity, into the
optimization problem at each time step. Instead of explicitly solv-
ing for internal joint torques and numerically integrating them to
solve for motion, our approach directly optimizes the joint config-
urations subject to the laws of physics, environment constraints,
bio-mechanical limitations, and task-level control strategies. When
the character is in contact with the environment, we also explicitly

ACM Transactions on Graphics, Vol. 28, No. 1, Article 10, Publication date: January 2009.

10:2 • S. Jain et al.

optimize the contact forces to achieve desired tasks while main-
taining physical realism. For a passive dynamic system, there is
no benefit in using the optimization to solve for the motion, since
the problem is well constrained and can be solved efficiently by a
standard forward simulator. The real advantages of our method are
exposed when simulating an active dynamic system in sustained
contact with the environment, such as most everyday human activ-
ities. The unknown actuation and contact forces in such a dynamic
system pose an underdetermined problem. By solving the actuation
(implicitly), contact forces, and the final motion all in one procedure,
our method allows the control policies to be intuitively formulated
into functions of joint configurations without referring to forces and
torques.

In this article, we demonstrate several benefits that arise from cast-
ing interactive motion synthesis as an optimization problem. First,
the programmer can specify active control strategies through a con-
troller using kinematic goals, thus retaining the intuitive user-level
control that optimization offers in offline motion synthesis. Second,
the programmer can compose complex control strategies by combin-
ing simple control strategies in a finite-state machine-like structure.
We demonstrate a versatile virtual character coping with a series of
unexpected disturbances, using a combination of control strategies
in an autonomous fashion (Figure 10). Third, the character can per-
ceive changes in the environment through a synthetic visual sensory
system. Our optimization incorporates this information along with
other high-level decisions as additional objectives and constraints.
Consequently, the same controller creates significantly different mo-
tions in response to different environmental stimuli. As examples,
we demonstrate a character that can use environment features to
retain her balance while dodging flying objects. Finally, as our re-
sults show, this framework is general enough to encompass a wide
variety of highly interactive motions. We demonstrate this scope,
from a simple balance controller, to wall climbing and gymnastics.

2. RELATED WORK

Designing a virtual human character that actively responds to the
physical environment is a long-standing challenge in computer ani-
mation. The variational optimization-based approach directly solves
for the entire motion trajectory according to energy considerations
and user specifications. Solving for nonlinear dynamic constraints
and energy-based objective functions produces good results on sim-
ple skeletons [Witkin and Kass 1988; Cohen 1992; Liu et al. 1994],
as well as on abstract human models [Popović and Witkin 1999]
with simplified dynamics [Liu and Popović 2002; Fang and Pollard
2003]. With the aid of motion data, researchers have formulated
the optimization problem in a reduced space biased towards natural
human motion [Safonova et al. 2004; Sulejmanpašić and Popović
2004], or extracted parameters from the data that capture muscle
preferences and joint stiffness [Liu et al. 2005]. The optimization
approach allows the programmer to describe the motion task by
providing key-frame-like constraints in the joint space. However,
standard optimization-based approaches are not suited for interac-
tive applications because all the constraints and objectives need to
be specified a priori. Our method treats every simulation time step as
an independent optimization problem with a new set of constraints
and objectives. Any unscripted events in the current time step, such
as user input or collisions, will be responded to appropriately in the
next time step.

Active body control with physical simulation presents many ob-
vious advantages over the optimal trajectory approach in the domain
of creating responsive virtual characters. Researchers have designed
basic balance controllers for bipedal systems [Raibert 1986; Laszlo

et al. 1996; van de Panne and Lamouret 1995; Sharon and van de
Panne 2005; Abe et al. 2007; Kudoh et al. 2006], as well as more
versatile motions such as running, vaulting, and cycling [Hodgins
et al. 1995]. Yin et al. reduce control design to a few kinematics
poses with the help of a robust balance strategy for walking and
running [Yin et al. 2007]. Wooten [1998] and Hodgins et al. [1995]
concatenated a sequence of transition controllers that generate suc-
cessive motion sequences. Faloutsos et al. [2001] demonstrated that
a virtual character can be simulated by composing multiple prim-
itive robotic controllers. Several companies have successfully ap-
plied similar technologies to commercial products by providing a
repertoire of motor skills [NaturalMotion 2006]. The specific de-
tails regarding their implementation are unknown, but it is likely
that each individual controller requires fine-tuning of the physical
parameters. To synthesize animations involving interactions with
the environment, they rely on users to establish contact constraints
at the right timing. Robotic controller simulation yields physically
plausible motion, often in real time, but requires an expert to tune
the parameters properly. Our work provides a generic framework
for rapidly designing active control procedures that require mini-
mal physical parameter tuning, yielding an adaptable controller for
characters of arbitrary design.

To circumvent the issues of overspecialization, many researchers
suggested exploiting online, local optimization techniques that ad-
just the current dynamic parameters to new situations [Abe et al.
2007; Yamane and Nakamura 2000; Stewart and Cremer 1992a,
1992b]. Our method is inspired by the same idea, but instead of ad-
justing the parameters in the force domain and obtaining the motion
by means of numerical integration methods, we directly optimize
the joint configurations according to the control policies. By directly
controlling the joint configuration instead of joint acceleration, we
can formulate constraints that are satisfied exactly in the joint space,
without numerical errors due to the integration. Furthermore, we do
not require the constraints and their first derivative to be satisfied
initially. This flexibility allows us to arbitrarily add or change con-
straints in the position space.

Much previous work in robotics has addressed the problem of con-
trolling multiple tasks for robots or manipulators [Liegeois 1977;
Maciejewski and Klein 1985; Sentis and Khatib 2006, 2005]. In
computer graphics, Abe and Popović [2006] demonstrated a priori-
tized control approach that allows a virtual character to execute tasks
at different priority levels without interfering with a posture tracking
controller. They later proposed an optimization-based control that
formulates the multiple objectives into a quadratic programming
problem. This formulation allows for a compromise between sev-
eral conflicting objectives, such as balancing and pose tracking [Abe
et al. 2007]. Our framework also addresses the problem of multiple
objectives by formulating an optimization. Instead of solving for the
control, however, we directly solve for motion that achieves the co-
ordination among multiple objectives. The weights of the objectives
directly influence the task priority in the motion without interfer-
ence from other physical parameters. Furthermore, because we use
a constrained optimization to solve for motion, we can formulate a
primary task that can never be violated as a constraint instead of an
objective.

Using key-frame-like control to create physically responsive ani-
mation provides a practical tool for many computer animation appli-
cations [Isaacs and Cohen 1987; Stewart and Cremer 1992b]. Our
simple framework for specifying control strategies is inspired by
earlier systems designed by Stewart and Cremer [1992a]. Their pro-
posed control schemes allow the programmer to control any linear
combination of the state variables in the second derivative domain,
such as the acceleration of the center of mass. Our optimization

ACM Transactions on Graphics, Vol. 28, No. 1, Article 10, Publication date: January 2009.

Optimization-Based Interactive Motion Synthesis • 10:3

formulation further allows programmers to control variables them-
selves, rather than using a more complicated second derivative do-
main. Liu [2008] described a similar optimization framework for
synthesis of hand animation based on specifications of the manipu-
lated objects. She demonstrated that simple grasping-like tasks can
be produced with a few key-frames on the object. Our approach
addresses more complicated issues such as postural balance and
coordination in full body motion. In addition, our approach aims
for designing an autonomous dynamic system by incorporating the
sensory information to the control system.

3. OVERVIEW

We view responsive character motion as a sequence of solutions to
a constrained optimization formulated at every time step. Each op-
timization yields an optimal joint configuration based on the user-
specified goals and energy considerations, subject to the laws of
physics. We break down our motion synthesis framework into fol-
lowing main components.

(1) Motion Synthesizer. The motion synthesizer forms the core of
the framework. Given the current dynamic state of the char-
acter, the motion synthesizer formulates an optimization that
solves for the joint configuration of the next time step. To en-
sure physical realism in the synthesized motion, we enforce
Lagrange’s equations of motion and Coulomb’s friction model
as constraints and minimize the change of muscle force usage
as the objective in the optimization.

(2) User-Specified Controller. To synthesize an active character
behavior, the controller adds kinematic goals to the objective
function of the optimization at the current time step. The pro-
grammer creates this controller by specifying goals conform-
ing to the character’s internal dynamic state and/or the external
environmental state.

(3) Environment Knowledge from Visual Senses. Complex control
strategies often depend on sensory inputs that the character
gathers from the environment. We endow our virtual characters
with a synthetic visual sensor and allow the programmer to
formulate control strategies that depend on the sensor input.

(4) User Interaction. The user can interact with the ongoing char-
acter motion by applying external forces or adding kinematic
constraints or objectives in an interactive fashion.

Figure 1 illustrates the relationship between the components de-
scribed before. At each time step, the user-specified controller for-
mulates appropriate objectives and constraints based on the current
dynamic state of the character and the environment information
from the visual sensory system. The motion synthesizer formulates
an optimization problem comprising the controller-generated objec-
tive and constraints, external disturbances, and objectives and con-
straints enforcing physical realism. The solution to the optimization
problem yields the character’s joint configuration for the next time
step.

4. OPTIMIZATION SETUP FOR MOTION
SYNTHESIS

The heart of our framework is the formulation of an optimization
problem to synthesize the character’s motion at each time step. Given
physical constraints and objectives specified by the programmer, we
solve for the character’s joint configuration for the next time step
and for external contact forces simultaneously in the optimization.
Solving for external contact forces is equivalent to determining how

Visual
Sensor

Virtual
Chartacter

User
Interaction

Motion
Synthesizer

User
Controller

qN

qN+1

Fig. 1. The controller provides control strategies to the motion synthesizer,

which takes in the current dynamic state of the character, qN , and outputs new

joint configuration, qN+1, for the next time step. Additional inputs can be

provided to the synthesizer in the form of user interactions and environment

knowledge through a visual sensory system.

much force the character applies at the point of contact. We do not
solve for internal joint muscles explicitly in the optimization.

We represent the character’s skeleton as a transformation hier-
archy of 18 body nodes with 31 Degrees Of Freedom (DOFs) in
reduced coordinates representing joints and 6 DOFs representing
the global translation and rotation.

To enforce physical realism in the synthesized motion, we for-
mulate Lagrange’s equations of motion as constraints in our op-
timization. Lagrange’s equations are a reformulation of Newton’s
equations of motion in generalized coordinates (DOFs in our case).
We enforce Lagrange’s constraint Lj on each DOF q j of the root of
the skeleton’s hierarchy

Lj (q, λλ) =
∑

i∈N (j)

(
d

dt

∂Ti

∂q̇ j
− ∂Ti

∂q j

)
− Qg

j − Qc
j (λλ) − Qext

j = 0,

(1)

where q ≡ (q0, q1, . . .)
T is a vector of all DOFs and λλ are the

parameters of contact forces. Further, Qg
j , Qc

j , and Qext
j represent

the gravitational force, contact force, and an additional external
force, respectively, in generalized coordinates. The formulation of
these generalized forces is described in Appendix A.

The first two terms in Eq. (1) measure the inertia force due to the
acceleration of DOF q j in generalized coordinates. Ti denotes the
kinetic energy of body node i and N (j) is the set of body nodes in
the subtree of DOF q j . In the transformation hierarchy, the inertia
force of node i due to the DOF q j can be computed as

d

dt

∂Ti

∂q̇ j
− ∂Ti

∂q j
= tr

(
∂Wi

∂q j
Mi Ẅi

T
)

, (2)

where tr () gives the trace of a matrix and Wi is the chain of homo-
geneous transformations from the root node to body node i . More-
over, Mi denotes the mass tensor of the body node i , defined in
Appendix A.

Because we represent time as discrete samples, all the functions of
time-varying variables need to be represented in a discrete domain.
We discretize the time into samples with small intervals �t . We
define the velocity and the acceleration of a DOF q j , at current time
sample N , by central finite differences.

q̇ N
j ≡ q N+1

j − q N−1
j

2�t
(3)

q̈ N
j ≡ q N+1

j − 2q N
j + q N−1

j

�t2
(4)

ACM Transactions on Graphics, Vol. 28, No. 1, Article 10, Publication date: January 2009.

10:4 • S. Jain et al.

For a body node i , Ẇi and Ẅi at time sample N can be written as

Ẇi = ∂Wi

∂q
q̇ =

∑
j

∂Wi

∂q j
q̇ j (5)

Ẅi =
∑

j

(∑
k

(
∂2Wi

∂qk∂q j
q̇k

)
q̇ j + ∂Wi

∂q j
q̈ j

)
. (6)

For clarity, we drop the superscript henceforth for quantities at time

sample N . The derivative terms ∂Wi
∂q j

and ∂2Wi
∂qk∂q j

can be computed

analytically, since Wi is a differentiable function of q.
In this discrete formulation, the optimization at each time step N

solves for the DOFs at the next time step, qN+1, given the current and
previous DOFs, qN , and qN−1. Using Eqs. (6) and (3), Lagrange’s
constraint (Eq. (1)) is reformulated as

Lj (qN+1, λλN) =
∑

i∈N (j)

tr

(
∂Wi

∂q j
Mi Ẅi

T
(qN+1)

)

− Qg
j − Qc

j (λλ
N) − Qext

j = 0. (7)

The only terms depending on unknowns in Eq. (7) are Ẅi and Qc
j .

All other terms can be readily evaluated using qN−1 and qN , which
serve as constants in the optimization. Once this optimization is
solved, we advance our time by �t , making N + 1 as the current
time sample.

Our formulation has the same order of accuracy as the second-
order Runge-Kutta method in solving ordinary differential equations
numerically. To improve the time performance in practice, we define
the velocity of a DOF q j using backward finite differences.

q̇ N
j ≡ q N

j − q N−1
j

�t
(8)

This definition of joint velocity sacrifices the second-order accu-
racy; however, Lagrange’s equation becomes a linear function of un-
knowns qN+1 and λλN , allowing for a much more efficient quadratic
programming formulation. We provide details on linearization of
constraints in Appendix B.

4.1 Muscle Control

With only 6 equations (Eq. (7)) on the root DOFs, this system is
largely underdetermined and has infinitely many solutions. We do
not enforce Eq. (7) on joint DOFs, as they are implicitly equipped
with muscles or actuators that can generate arbitrary forces to satisfy
Eq. (7). This formulation is equivalent to computing the aggregate
force and torque [Fang and Pollard 2003] and the low-order dynamic
constraints [Sulejmanpašić and Popović 2004].

To bias the solution towards a more plausible configuration, we
incorporate the minimal torque change model in the optimization
[Kawato 1999; Uno et al. 1989]. Natural human motion tends to
remain smooth in the acceleration domain with limited ability to
change the muscle activation rapidly over time.

Therefore, minimizing the change of joint torques in time discour-
ages the muscle forces from changing abruptly and excessively.

We define the generalized muscle force usage at each actuated
joint DOF q j as Qm

j , which represents the sum of torques generated
internally by musculoskeletal components. Lagrange’s constraint
for each actuated DOF can then be expressed as

Lj
′(qN+1, λλN) = Lj (qN+1, λλN) − Qm

j = 0. (9)

V1

V2V3

V4

Fc (λ)

θ

(a) static

Fc (λ) λ ˆ F n

v−μλv̂

(b) dynamic

Fig. 2. Contact forces associated with different types of contacts.

Using this equation, change of muscle force is defined as

Q̇m
j = L̇ j (qN+1, λλN) ≡ Lj (qN+1, λλN) − Lj (qN , λλN−1), (10)

where Lj (qN , λλN−1) is the muscle force at the previous time step
and serves as a constant in the equation.

We propose a simple method to regulate the muscle forces to
achieve natural human motion. We add objectives, L̇ j (qN+1, λλN), for
each actuated DOF q j , to minimize the change in muscle forces over
time. When the character reacts to unexpected events, such as being
pushed by the user, we simulate the activation delay in adjusting the
muscles by minimizing the objective Lj (qN+1, λλN)−Lj (qN0 , λλN0−1)

for a small time interval (≈ 200ms), where Lj (qN0 , λλN0−1) is the
muscle force usage at the moment of the push. This delay in muscle
response is due to the delay in the internal spinal feedback loop and
external visual feedback loop [Kawato 1999; Lockhart and Ting
2007] Such a simple feature results in a natural passive reaction to
the push.

4.2 Contact Model

Our method explicitly optimizes the contact forces subject to
Lagrange’s equations of motion and Coulomb’s friction model. This
implies that the character can use any contact forces within correct
range of the friction model to satisfy Eq. (1) and help achieve other
objectives.

The standard optimization formulation usually handles a sus-
tained contact by adding a positional constraint and Lagrangian
multipliers parameterizing the contact force in the dynamic equa-
tions. The drawback of this setup is that, instead of breaking off the
contact, the optimization will become infeasible when the equations
of motion cannot be satisfied simultaneously with the constraints
imposed by the friction model. We instead enforce a more relaxed
nonpenetrating constraint that prevents interpenetration of the points
in contact but allows for contact slippage and breakage. The formu-
lation of the contact forces depends on whether the contact is static
or dynamic.

—Static. A static contact has zero tangential velocity along the sur-
face. According to Coulomb’s friction model, repulsive contact
forces should lie within the cone defined by the static friction
coefficient μ, whose generatrix forms an angle θ = cot−1μ with
the surface of contact. We approximate this friction cone by four
basis vectors with non-negative basis coefficients (Figure 2(a)).
The contact force is computed as a linear combination of these
bases V as:

Fc(λλ) = Vλλ, λλ ≥ 0, (11)

where λλ represents the coefficient vector (λ1, λ2, λ3, λ4)T .

—Dynamic. A dynamic contact slips along the surface with the
friction force directed opposite to the velocity, v, of the contact
point (Figure 2(b)). The contact force is computed as

Fc(λλ) = (F̂n − μv̂)λλ, λλ ≥ 0, (12)

ACM Transactions on Graphics, Vol. 28, No. 1, Article 10, Publication date: January 2009.

Optimization-Based Interactive Motion Synthesis • 10:5

where λλ is a vector of one coefficient representing the magnitude
of the normal contact force Fn .

The generalized contact force, Qc
j , for q j , is given by

Qc
j (λλ) =

(
∂Wb

∂q j
pb

)
.Fc(λλ), (13)

where pb is the contact point in the local coordinates of body node
b. Depending on the type of contact, Fc is parameterized by λλ con-
sisting of either one or four coefficients.

When a contact k is established, we add a nonpenetrating in-
equality constraint, Ck

np(qN+1) > 0, to the optimization, and solve
for the contact forces that help satisfy the constraint. In addition,
these contact forces are constrained either by static or dynamic fric-
tion forces, based on the tangential velocity at the contact point. If
the normal velocity is nonzero, the contact breakage occurs and we
simply remove the contact from optimization for the next time step.

Apart from these contacts based on the unilateral friction con-
straint, the character can be in contact with an object by grabbing
onto it. In such a case, the contact forces are unconstrained due to
the bilateral grip and we simply add three unconstrained coefficients
for the forces in the optimization.

Because we only enforce a nonpenetrating constraint on the con-
tact, the character might choose to use her own muscles to unnec-
essarily slide along the surface or even to break off the contact.
Therefore we need an incentive for the character to move the con-
tact point only when it is physically impossible to maintain the
contact, or when an overpowering conflicting objective occurs. To
this end, we add an objective Gk

c(qN+1) to minimize the movement
of the contact point. By using these objectives to reduce voluntary
slippage and breakage, we can make the character behave in a more
human-like manner without sacrificing physical correctness.

One drawback of this contact model is that it does not enforce
the principle of zero virtual work for contact forces. In other words,
the contact force is not guaranteed to be zero at the moment of the
breakage, resulting in a nonzero amount of work done. When this
situation is detected, we roll back our motion to the previous frame
and enforce the contact force as zero.

4.3 Optimization Summary

Eq. (14) summarizes the formulation of the optimization problem
at each time step using the constraint and objective notations intro-
duced in this section.

argmin
qN+1,λλN

E =
36∑
j=6

‖L̇ j (qN+1, λλN)‖ +
∑

k

∥∥Gk
c(qN+1)

∥∥

subject to

{
L j (qN+1, λλN) = 0, j = 0, · · · 5

Ck
np(qN+1) > 0, ∀k

(14)

5. FRAMEWORK FOR ACTIVE CONTROL

The motion synthesizer described in Section 4 produces physically
plausible motion with regards to frictional contacts and smooth
changes in muscle activations. Without any active control, however,
the character will quickly fall on the ground under the influence of
gravity. The goal of the controller is to direct the virtual character’s
active motion in reaction to the environment to achieve a specified
task.

In our framework, the controller comprises a user-specified con-
trol strategy that maps the character’s dynamic state and the envi-
ronment state to an appropriate set of objectives and constraints.

These objectives and constraints describe the desired goal of an
active motion as a function of the character’s joint position and
derivatives. At each time step, the controller determines appropriate
control strategies and adds the desired objectives and constraints to
the current optimization problem. Consequently, the optimizer must
generate a motion that follows the dictates of the controller while
also satisfying the physical constraints in the environment.

Our framework allows for a more intuitive specification of con-
troller behavior than prior optimal control algorithms for dynamic
systems. In prior optimal control algorithms, a controller is a model
of the physical actuators responsible for generating the internal force
that creates a desired motion. In our framework, a controller is es-
sentially a statement of the kinematic goal of the motion, specified
as functions of joint DOFs qN+1 and the external contact forces λλN .

To design a controller for complex interaction with the environ-
ment, our approach allows the programmer to intuitively describe
control strategies as a sequence of kinematic actions, such as de-
sired poses and potential contacts with the environment. The en-
tire process of controller design does not require the programmer
to fine-tune the physical parameters representing the joint actua-
tors. However, to create a specific output motion, the programmer
has to find a balanced set of weights for the objectives. In our ex-
perience, tuning objective weights is relatively easier because the
weights only determine the high-level relative importance among
competing objectives, rather than the physical properties of joints
and muscles. Consequently, one set of weights is consistently ap-
plied across all joints and can be used for different characters in
different environments. Furthermore, a wide range of weights can
produce different but equally plausible motion sequences. We pro-
vide the exact weight settings used in our examples in Section 6,
but the programmer can vary these values to create a variety of
motions.

5.1 Controller Specification

Formally we define a controller as a finite-state machine (FSM)
M = (S, T) with states S and allowed transitions T. Each state
is a basic control strategy comprising a set of control objectives
(G1, G2, . . .) representing the kinematic goals of the desired mo-
tion, and a Boolean condition D representing when the strategy is
applicable (a condition returns false when it fails or is not appli-
cable). Control objectives, Gi ’s, can be represented as functions
of the character’s joint positions: Gi = ‖ f (qN+1)‖. Each objec-
tive function has an associated weight which indicates its relative
importance in the optimization. We assign these weights based on
our understanding of human locomotion and on experimentation. In
our experiments, we never needed to scale the weights for different
joints. Once these values are tuned, we do not need to change them
for different characters or environments.

Transitions determine allowable changes in control strategy
within a single simulation time step. If the current control strategy
is not applicable, then the state machine searches for an adjacent
control strategy that is reachable through a transition. Our formula-
tion is inspired by an approach described by Faloutsos et al. [2001].
The main difference is that in Faloutsos’s work, a state has both a
precondition for entering and a postcondition for leaving. In all our
examples, a single condition suffices for the behaviors we wish to
implement. At each simulation time step, the FSM searches for a
control state in S that is applicable to the current dynamic state of
the character and the environment state described by the condition
D associated with each control state. The motion synthesizer then
adds the state objectives to the current optimization.

ACM Transactions on Graphics, Vol. 28, No. 1, Article 10, Publication date: January 2009.

10:6 • S. Jain et al.

To demonstrate the ease of controller design using our API, we
show the implementation of a balance controller, a climb controller,
and a swing controller in the next section.

5.2 Environment Knowledge

Realistic virtual characters incorporate sensory information about
their surrounding environment to determine the appropriate action
according to the desired task. We demonstrate the capability of our
framework to model this behavior for a simplified synthetic sensory
system. We endow our character with a sensor that can evaluate the
reachability of environment objects and surfaces with respect to the
character. For example, the character can regain balance using any-
thing she can reach and grab onto in her immediate surroundings,
such as handles, poles, or walls. In terms of the control algorithm,
this entails augmenting the environment state with a list of objects
that are reachable by the virtual character’s end effectors. We can
then specify control strategies where the condition incorporates in-
formation about the reachability of particular objects, and the objec-
tives can describe desired spatial or derivative relationships between
the character and object.

6. IMPLEMENTATION AND RESULTS

We now discuss the design of several controllers that enable the
character to perform various actions in a varying environment.

The motion for all the examples discussed in this section is sim-
ulated at 2 to 10 frames/s on a single core of 2.93 GHz Intel Core
2 Duo processor. The variance in simulation time is primarily due
to the complexity of the controllers. Full animations can be seen
in the supplemental video available online in the ACM Digital Li-
brary. We used SNOPT [Gill et al. 1996] to solve the optimiza-
tion problem at each time step. The time step used for simula-
tion is 0.01s. Our framework does not require any motion capture
sequences.

6.1 Balance Controller

Balancing is the basis for all locomotion tasks for bipedal characters.
In this section, we describe the implementation of a balance con-
troller using the controller specification described in Section 5.1.
We start by describing a basic balancing strategy that allows the
character to stand on the ground and maintain balance. We then en-
hance this basic control strategy with complex ones that allow the
character to take protective steps when required, or to utilize nearby
surfaces to recover balance. The same balance controller can be
applied to different behaviors (dodging incoming objects, standing
one foot), different physical models (child character), and differ-
ent environments (balancing on the ice) by adding a few high-level
objectives.

6.1.1 Basic Balance Strategy. We implemented a basic balance
strategy with the following high-level objectives.

(1) Support the COM, Gcp = ‖proj(COM(qN+1)) − Csp(qN+1)‖,
where COM is the center of mass, proj() projects a point to the
ground, and Csp is the center of support polygon evaluated at
time sample N + 1.

(2) Keep upper body upright, Gspine = ‖dspine(qN+1) × ĵ‖, where

dspine is spine orientation at time sample N + 1 and ĵ is the
direction of gravity.

(3) Avoid sudden movements, Gqv = ‖q̇N+1‖.

We create a state representing the balance strategy, balance, with
the weighted sum of objectives mentioned previously.

balance Objective: 5.0Gcp + 70.0Gspine + 0.5Gqv
balance Condition: if COM is outside the support polygon, return
false; else return true

This state machine comprising only one state with three simple
strategies is capable of maintaining a balanced pose for the character,
even under small perturbations (see supplemental video).

The exact same balance strategies also allow the character to
balance on one foot. By reducing the supporting polygon to an
arbitrarily chosen supporting foot, the character automatically shifts
her weight toward the supporting foot. Once the character balances
herself with one foot, we add kinematic objectives to make the
character mimic one given pose (Figure 6(a)).

6.1.2 Enhanced Balance Strategies. The balance state fails
when the COM of the character falls outside the support polygon.
To handle this failure, we add two states, relaxFoot and takeStep, to
the basic balance controller that enable the character to take protec-
tive steps, by automatically deciding when and where to place the
foot for recovering balance. The more robust balance controller is
represented next.

BALANCE Machine:
States:

balance, relaxFoot, takeStep
Transitions:

balance → relaxFoot
relaxFoot → takeStep
takeStep → balance

—RelaxFoot. The relaxFoot state is responsible for reducing the
ground contact forces on the foot about to be lifted before taking
a step. The decision of which foot is to be lifted depends on a
simple heuristic that assumes the foot farther from the ground
projection of the COM is easier to lift. To relax the forces on the
foot, we add the following objectives.

(1) Move COM to the supporting foot, Gcf .

(2) Relax contact forces on the foot to be lifted, Gc = ‖λλN ‖,
where λλN are the contact force parameters for the contact
points on the foot.

This helps the character to shift her weight away from the foot
to be lifted and eventually reduce the contact forces. The rationale
behind moving the COM towards the supporting foot comes from
our observations of recorded human motion in which the COM
accelerates towards the supporting foot before the subject breaks
the contact from the other foot.

relaxfoot Objective: 0.2Gqv + 50.0Gcf + 1.0Gc.
relaxfoot Condition: if contact forces on foot are relaxed,

return false; else return true
—TakeStep. In the takeStep state, we have an objective to move

the lifted foot to the desired position. The desired foot position
is updated at each time step when the character is in this state.
It is based on the simple heuristic that the COM should lie in
the center of support polygon. Thus, the new foot position, p f ,
is chosen such that ground projection of COM lies midway
between the feet. The objective G p for moving a body point,
pi , defined in local coordinates of body node i , to any desired
position p0 is written as G p = ‖WN+1

i pi − p0‖. Thus, we
substitute the desired position p0 in this equation by p f .

takeStep Objective: 3.0Gqv + 20.0Gspine + 0.8G p

takeStep Condition: if distance between the moving foot and the
desired position is increasing, return false; else return true

ACM Transactions on Graphics, Vol. 28, No. 1, Article 10, Publication date: January 2009.

Optimization-Based Interactive Motion Synthesis • 10:7

(a) pushed backwards (b) trying to balance (c) taking step (d) still not balanced (e) taking additional
step

(f) finally balanced

Fig. 3. Character going through a series of states of the balance controller after she is pushed and finally balancing after taking a couple of steps (red arrow

depicts the applied force).

(a) pushed backwards (b) slipping while try-
ing to balance

(c) taking small steps

Fig. 4. Character trying to balance on icy surface when pushed by taking

small steps and slipping occasionally.

At each time step, progress of the moving foot is monitored and
when the preceding condition fails that is, when the situation is
getting worse as the character is not able to move her foot as fast as
it should, the state machine decides to place the foot on the ground
and transition to the balance state once again.

This completes one protective step to recover balance and if the
balance fails again, this cycle is repeated; for example, in case of a
strong push, the character has to take multiple steps to recover (see
Figure 3).

To demonstrate the robustness of the balance controller, we just
change the friction coefficient of the floor from 1.0 to 0.2 to model
an icy surface. When the character tries to recover from a push on a
slippery surface, she often slips and cautiously takes smaller steps
to reduce this slipping (see Figure 4).

6.1.3 Support Using Environment Features. By incorporating
the balance controller with information from a synthetic visual sen-
sory system, we develop a balance controller that synthesizes sig-
nificantly different motions in response to different environmental
stimuli.

The visual sensory component takes as input the character’s cur-
rent configuration and the current state of all objects in the environ-
ment, and outputs a list of objects reachable by any end effector on
the character’s body. We define an end effector ei as a point on the
body that can be used for support (e.g., a hand or a foot) against
a reachable object, o j . For each (ei , o j) pair, the character evalu-
ates whether o j is reachable by ei . If so, we add an objective in the
motion synthesizer that moves ei towards o j .

We demonstrate that the character autonomously determines to
use the nearby wall for support when pushed by a large force. The
character automatically decides when to move her hand for support
and tries to reach for the nearest point on the wall (projection of her
hand on the wall). By increasing the distance between the wall and

(a) nearer wall (b) further wall (c) two nearby walls

Fig. 5. Character’s reaction to same push in different environment settings.

the character, she takes extra steps before reaching the wall. The
reaction changes significantly when there are two walls available
for support (Figure 5). When there are multiple available contact
points, the character simply reaches for the closest one. Nonetheless,
more sophisticated strategies can be encoded in the controller. We
refer the reader to the supplemental video for full animations. This
capability of using environment features for support is added on top
of the same balance controller as described earlier.

6.1.4 Balance and Dodge. To create more interesting behavior
in a dynamically varying environment, the programmer can add
simple high-level objectives to the balance controller. For example,
we create a behavior where a character dodges objects thrown at her
while maintaining balance. We add a dodging objective that keeps
the character’s body parts away from the object. For an object
at position p and traveling with velocity v, we add objectives to
maximize (by putting negative weight for objective) distance of
some points pi (defined in the local frame of body node i) on the
body which lie near to the line l passing through p with direction
v (parametric representation l(t) = p + vt). Thus, the objective
can be written as Gdodge = dist(WN+1

i pi , l), where dist() evaluates
the distance of a point pi , when expressed in world coordinates, to
the line l. We weight the dodge objectives as inversely proportional
to the distance to the line (−0.05 to −0.15) and these are active
when the object is within a certain distance (e.g., 1 meter) from the
character.

In addition, by adjusting the relative importance of each objec-
tive, the same controller can produce a variety of behaviors. In the
synthesized example, the character easily dodges a tennis ball by
bending her spine (Figure 6(b)) but gets hit on the arm by the ob-
ject coming from behind. The programmer can adjust the impor-
tance of the dodging objective based on the incoming object. If
the character sees a flying object that appears harmful, she quickly
moves out of way (Figure 6(c)). To realize this, we changed the

ACM Transactions on Graphics, Vol. 28, No. 1, Article 10, Publication date: January 2009.

10:8 • S. Jain et al.

(a) balancing on one
foot

(b) dodging a less
harmful object

(c) dodging a more
harmful object

Fig. 6. Character performing variety of tasks while balancing.

Fig. 7. Adult character preventing the child character from falling by hold-

ing hands when the child character is pushed.

weights of objective function in the balance state (Section 6.1.1) to
2.0Gcp + 30.0Gspine + 0.5Gqv for a harmful object.

Better dodging strategies or hazard assessments rely on domain
knowledge in the controller design. Zordan et al. [2007] learn differ-
ent anticipation strategies from motion capture data and automati-
cally choose which to employ at runtime according to a damage and
energy assessment calculated from simulation results. Their results
exhibit a wide variety of dodging strategies with compelling real-
ism. Metoyer et al. [2008] use psychological insights and motion
capture data to formulate protective anticipatory movement parame-
terized by a model of an approaching object. This is combined with
a physically-based dynamic response to produce animations with
anticipation and reaction to impacts. We do not aim at thoroughly
solving a particular problem of anticipation, but rather emphasize
the ease of designing control strategies with limited domain knowl-
edge.

6.1.5 Multiple Character Interaction. The same balance con-
troller can operate across characters with different mass distribution
and skeletal structures. In addition, the programmer can simulate
interactions between multiple characters by adding objectives or
constraints that model the physical contacts. We synthesize a child
reaching out for an adult’s hand for support in the event of balance
loss (see Figure 7). The natural reaction for both the characters is
synthesized automatically, since the objective of holding hands and
force exchange affects both characters’ joint configuration.

All the examples described in this section took 2 to 4 frames/s to
simulate. The slow simulation speed is due to the complexity of the
balance problem as objectives conflict and compete with each other
in the optimization.

6.2 Climb Controller

We next move to a control task that requires a much more sophisti-
cated interplay between character and environment. We implement
a climbing controller that facilitates wall climbing using attached

holds. The holds are placed at random positions and the charac-
ter automatically decides which ones to grab in order to progress
upwards. A complex wall climbing motion can be generated by
specifying kinematic constraints at the hand holds and foot holds.

We create five states, allSupport, relaxHand, moveHand,
relaxFoot, and moveFoot (discussed in the following), and define
the state machine for the climb controller as follows.

CLIMB Machine:
States:

allSupport, relaxHand, moveHand, relaxFoot, moveFoot
Transitions:

allSupport → relaxHand
relaxHand → moveHand
moveHand → allSupport
allSupport → relaxFoot
relaxFoot → moveFoot
moveFoot → allSupport

—AllSupport. In this state, the character grabs both the hand holds
and places her feet on the foot holds. This state consists of fol-
lowing objectives:
(1) to raise her COM to the highest possible position, so that

she is comfortable to stretch out her hand and grab the next
hand hold (the objective for the COM can be written as
Gcom = ‖COM(qN+1) − C0‖, where C0 is the center of
hand holds that is high enough for the COM to reach); and

(2) to reduce the joint velocities for smooth movements, Gqv.

allSupport Objective: 0.2Gqv + 20.0Gcom
allSupport Condition: if the character is stable, return false; else

return true

—RelaxHand. The goal of the character is to relax the contact
forces on the hand so that it can release the hold and move to
the desired position. We achieve this by setting objectives for
reducing the contact forces from the corresponding hand hold
(moveFoot has similar objectives for relaxing the contact forces
on the foot).

relaxHand Objective: 0.2Gqv + 1.0Gc

relaxHand Condition: if the contact forces fall below a small
threshold, return false; else return true

—MoveHand. In this state, the controller adds the position of next
nearest hand hold, along with minimization of joint velocities as
control objectives (see Figure 8(b)).

moveHand Objective: 0.2Gqv + (0.1 to 0.25)Gp + 10.0Gcom
moveHand Condition: if hand reaches the hand hold, return

false; else return true

We vary the weights for G p according to the distance of the hand
to the desired position (higher weight when nearer). When the con-
dition fails, that is, when the hand reaches the hand hold, grasping
contact is established and the state transitions to allSupport. Next,
to raise her body up and move her foot, the character relaxes the
forces on her foot by making a transition to relaxFoot state. Once
relaxed, she moves to moveFoot state.

—MoveFoot. In this state, the position of the next foot hold is set
as an objective for the moving foot and the character begins
to move her foot to the desired position (see Figure 8(c)).
When the foot reaches close to the hold, we add an objective,

ACM Transactions on Graphics, Vol. 28, No. 1, Article 10, Publication date: January 2009.

Optimization-Based Interactive Motion Synthesis • 10:9

(a) allSupport (b) moveHand (c) moveFoot

Fig. 8. Character in different states of the climb controller.

Gpose = ‖qN+1 − q0‖, to guide the joint angles close to the
starting pose, q0, to make the character assume a realistic-looking
pose. This starting pose (see Figure 8(a)) is created using simple
inverse kinematics.

moveFoot Objective: 0.2Gqv + (0.01 to 0.30)Gp + 10.0Gcom+
2.0Gpose

moveFoot Condition: if foot reaches the foot hold, return false;
else return true

This completes one cycle of the state machine which moves the
character up by one hold and makes her reach a stance similar to the
starting pose. By looping over this cycle, the character can climb an
arbitrary number of holds.

In the synthesized example for climbing a wall (see supplemen-
tal video), the programmer only needed to specify the starting pose
for the character, designed using simple inverse kinematics, and the
placement of holds on the wall. With the help of simple strategies
and kinematic constraints as described before, the character auto-
matically climbs up the wall using the required amount of external
contact forces from these randomly placed hand and foot holds. The
simulation rate for this example varied from 5 to 10 frames/s.

6.3 Swing Controller

Our framework facilitates synthesis of natural motion by defining a
few high-level objectives. Thus, it can serve as a testbed for design-
ing new motor skills. In this section, we describe a simple swing
controller based on only one objective function: Maximize the cen-
ter of mass velocity in the direction tangential to her movement. The
character starts from a rest pose holding a high bar with both hands.
We create a simple state machine SWING consisting of two states,
trySwing and passiveSwing.

In the trySwing state, the character tries hard to increase her
COM velocity in the direction perpendicular to the plane joining
her COM and grasps onto the bar. The objective for increasing the
COM velocity is defined as Gcv = ‖ ˙COM(qN+1) − vd‖, where vd

is the desired velocity (a value more than the current COM velocity).

trySwing Objective: 0.1Gqv + 4.0Gcv

trySwing Condition: if the angle of swing increases a threshold,
return false; else return true

When the angle of swing increases above a threshold, a transition
to passiveSwing occurs. This state’s objective is to maintain constant
velocity in the perpendicular direction to create a smooth passive
swing.

Based on only one objective function and no knowledge in gym-
nastics, the character tries hard to increase her velocity and is able
to start swinging. However, she is not able to increase her angle of

(a) start from rest position (b) start from high angle

Fig. 9. Character swinging with different initial swing angle.

swing beyond a certain limit because of the lack of coordination of
her joints and skills possessed by gymnasts (see Figure 9(a)). When
started from a higher angle, the character still fails to maintain the
momentum and the velocity diminishes rapidly.

Adding some more objectives to improve the coordination of
joints helps the character maintain her velocity. To achieve this,
we added joint position objectives to make her body more stiff
and legs straightened, then let her start from a higher swing angle.
These objectives are meant to keep her legs close to a specific pose
(straight legs) and the stiffness is achieved by setting a relatively
higher weight for these objectives.

The objective function now becomes 0.1Gqv + 15.0Gcv +
5.0Gpose. Specifically, Gpose is responsible for stiffening the body
and straightening the legs. We do not add pose objectives for DOFs
of the abdomen to allow easier bending of the abdomen.

The character is now able to swing more smoothly and maintain
her velocity (see Figure 9(b)). The examples were synthesized at 5
to 10 frames/s.

6.4 Composition of Multiple Controllers

Primitive controllers can be easily composed to create an au-
tonomous and versatile virtual character. The cable car example
(Figure 10) highlights realistic behaviors and responsive reactions
of the character to unexpected events in a dynamically varying en-
vironment. Initially, the character comfortably counteracts small
disturbances of the cable car with her balance strategies. When the
car shakes violently, she decides to take protective steps and grab
onto nearby walls and bars to prevent herself from falling. When the
ground breaks, she resorts to holding the bar and applying her swing
motor skills to hang on (see supplemental video). The programmer
just key-framed the events, like rocking the cable car and breakage
of walls and the floor, and the character autonomously decides what
and when to grab, depending on her immediate surroundings and
her dynamic configuration.

7. DISCUSSION

We have described a new approach to synthesize reactive virtual
characters in a physical environment based on constrained opti-
mization. Our approach provides a generic framework for rapidly
designing a variety of controllers by formulating high-level objec-
tives and tasks. This approach gives us the following advantages.

(1) Our goal-driven formulation of control strategies expedites the
design of physics-based motion controllers, enabling the pro-
grammer to rapidly create a wide range of motion repertoires
for virtual characters.

(2) The controllers designed in this framework can be robustly
adapted to different virtual characters (e.g., adult or child

ACM Transactions on Graphics, Vol. 28, No. 1, Article 10, Publication date: January 2009.

10:10 • S. Jain et al.

Fig. 10. An autonomous character reacting to unexpected events inside a cable car and trying hard to prevent herself from falling.

characters) and environments (e.g., slippery surface, cable car
settings, etc.).

The design of our approach raises some important issues and
questions in practice. First, what degree of physical realism can
the system provide when the user-specified objectives are conflict-
ing or unrealistic? Second, is the weight adjustment in the objective
function any easier than parameter tuning for designing robotic con-
trollers? Third, what types of motions/tasks are most appropriate to
our framework?

7.1 Physical Realism

We enforce exact equations of motion on the global dynamics of the
character, that is, at the root of the character’s hierarchy where no ac-
tuators exist. These equations (Eq. (7)) alongside the contact model
(Section 4.2) are physically correct up to discretization error, similar
to numerical integration methods used for forward simulation.

For all the other joints, we do not enforce these equations, im-
plying that the actuators at these joints can assume arbitrary values.
However, we add an additional objective for minimizing the change
in joint torques (see Section 4.1). This restricts arbitrary changes
in joint torques, leading to smooth and plausible muscle forces.
We chose not to enforce explicit joint torque limits (constraints) in
the optimization because, in practice, the values of these torques
remain within reasonable limits. Therefore, removing these con-
straints helps reduce the computation time without affecting the
output motion.

The ratio of the weight of muscle minimization to the weight
of kinematic objectives specified by the programmer indicates the
responsiveness of the character to the control goals. The user can
adjust the ratio to explore the trade-off between the naturalness of
the movement and the satisfaction of control goals. However, global
physical realism is ensured regardless of the value of this ratio.

7.2 Weight Adjustment

Our framework facilitates easy design of control strategies for ar-
ticulated characters (see Section 5). The parameters requiring to be
tuned in our framework are the weights associated with each ob-
jective function used in the optimization. These objectives indicate
high-level behaviors that can be described by the joint angles, such
as basic balance strategies or reaching for objects. Consequently, the
user can express controllers at kinematic level without knowing the
mechanical details of each joint. For example, the user only needs
to tune two weights to maintain a supported center of mass and to
achieve a specific location for an end effector. In other methods such
as robotic controller framework, the physical parameters for each
joint need to be individually tuned and tested. Often, the values of
those parameters cannot be easily translated to a high-level task de-
scription. Moreover, when the physical properties of the articulated

body system change, readjusting physical parameters is likely re-
quired. In our framework, however, the same weights can be reused
as long as the relative importance of the objectives remains the same.

7.3 Suitable Range of Tasks

In principle, with careful design and sufficient engineering effort,
most tasks demonstrated by our framework can also be achieved by
robotics controllers. However, we believe our method significantly
reduces the engineering effort for the following types of tasks.

(1) Tasks that Require Precise Positional Control. For example, a
hand reaching out for a moving point in space requires such
control. Our method directly imposes positional control as ob-
jectives or hard constraints, rather than employing additional
inverse kinematics and inverse dynamics computation to obtain
the required joint torques. This type of control was frequently
applied in our examples, such as step taking in the balance
controller (Section 6.1.2).

(2) Tasks that are Highly Constrained by the Environment through
Resting Contacts. In general, having more resting contacts
complicates the computation in a dynamic system. Our ap-
proach, on the contrary, works particularly well with multiple
resting contacts. This is because contacts introduce additional
degrees of freedom, contact forces, in the optimization that
“help” the character meet the various objectives with ease.
Furthermore, contacts provide additional kinematic hints for
solving an underdetermined joint configuration.

(3) Multi-Objective Tasks with Conflicting Objectives. Our opti-
mization method resolves the trade-offs between conflicting
objectives simultaneously with other dynamic and kinematic
constraints imposed on the character. This flexible framework
allows the programmer to compose simple tasks in the posi-
tion domain to create complex behaviors. For example, dodge
and balance tasks (Section 6.1.4) have conflicting preferred
joint configurations. The programmer only needs to tune the
weights of these two objectives to arrive at a solution satisfying
both. In our experience, there is a wide range of weights that
achieve the goal.

There are certain situations where our framework does not offer
many advantages and where use of other approaches might be more
appropriate.

(1) Existing forward simulation methods score over our approach
in two situations. First, when the character does not exhibit
active control in the motion (e.g., ragdoll), our optimization
formulation adds unnecessary computation to a relatively triv-
ial simulation problem. Second, when the motion involves fre-
quent passive colliding contacts (e.g., falling off the stairs),
our approach becomes very inefficient because each contact

ACM Transactions on Graphics, Vol. 28, No. 1, Article 10, Publication date: January 2009.

Optimization-Based Interactive Motion Synthesis • 10:11

increases the number of constraints and expands the dimen-
sion of degrees of the freedom in the optimization.

(2) We sacrifice the anticipatory property of space-time optimiza-
tion for interactivity. Our system can only generate anticipatory
motion enforced by kinematic constraints, such as changing the
kinematic goals gradually, but is not able to create natural an-
ticipation and follow-through involving a change of dynamics,
such as a broad jump.

8. FUTURE WORK

We plan to incorporate motion planning into our framework by
optimizing over a short window of time in the future, which would
also help in controlling the timing of the motion. One potential
approach is to combine our framework with motion capture data in
a similar manner as the tracking techniques introduced by Zordan
and Hodgins [1999]. We are particularly interested in a recent work
of da Silva and his colleagues [da Silva et al. 2008], in which the
joint torques that achieve the captured motion are solved by a short-
horizon optimization.

The objectives in the optimization are required to be weighted rel-
ative to each other in order to correctly emphasize and de-emphasize
various objectives coexisting in the motion synthesizer. The pro-
grammer has the freedom to choose a set of weights for the objec-
tives that help meet his goals better. Although choosing weights in
our framework is relatively easier than in other approaches, the right
and robust choice for such weights requires domain knowledge to
fulfill the task. One promising extension to our work would be to
automatically learn the most robust set of objective functions and
their weights from the motion capture data.

We demonstrated some preliminary results on synthesizing two-
character interaction through contact forces in a collaborative man-
ner. We are also interested in exploring the coupling between our
framework and a physics-based simulation of passive systems, such
as a spring-mass or fluid system. For example, our framework could
be used to rapidly design and test swimming control strategies in
various fluid conditions.

APPENDIX

A. LAGRANGIAN FORMULATION

The generalized forces Qg
j and Qext

j incorporating gravity force∑
mi g and user input force Fext, acting on body node k at point pk

in its local coordinate frame, respectively, are given by

Qg
j =

∑
i∈N (j)

(
∂Wi

∂q j
ci

)
.(mi g), (15)

Qext
j =

(
∂Wk

∂q j
pk

)
.Fext, (16)

where ci is the center of mass (COM) of body node i in its local
coordinate frame.
The mass tensor Mi for a body node i is defined as

Mi ≡
∫ ∫ ∫

ρxxT dx dy dz, (17)

where an infinitesimal point x ≡ (x, y, z, 1)T in the local coordi-
nates of body node i has mass density ρ.

B. LINEARIZATION OF CONSTRAINTS

Our optimization framework deals with constraints that, in general,
are nonlinear in qN+1 and λλN .

However, solving a constrained nonlinear optimization problem
is slow, in general, as compared to solving a quadratic programming
(QP) problem which consists of linear constraints and quadratic ob-
jectives. Thus, it is desirable to have as many linear constraints as
possible for the solver. Any constraint C = 0 can be used as an
objective function, for example, as CT C or (‖C‖2) to be minimized
in the optimization along with other objectives. Thus, a linear con-
straint can be used as a quadratic objective in a QP problem.

(1) Lagrange’s Constraint. Eq. (7) gives the discretized La-
grange’s constraint as a function of qN+1 (by using Eq. (6)
and Eq. (4)) and λλN . From Eq. (13), we see that the general-
ized contact force Qc

j is linear in λλN . The constraint is also
linear in Ẅi ’s, which are functions of qN+1. Now if we use the
definition of joint velocity as in Eq. (3), Lagrange’s constraint
becomes quadratic in qN+1. However, if we use the definition
in Eq. (8), the constraint becomes linear in qN+1. This moti-
vates us to sacrifice the second-order accuracy for a practical
speedup in solving an optimization. Note that this makes the
corresponding objective (as used in Section 4.1) quadratic.

(2) Position Constraint. A position constraint CP which fixes the
position of some point pl on body node i to a world position
p0 (i.e., CP = WN+1

i pl − p0 = 0) is nonlinear in qN+1. We
linearize it by approximating the position of this point by us-
ing its position at current time sample N and velocity at time
sample N + 1.

CP (qN+1) = WN+1
i pl − p0

≈ WN
i pl + Ẇi

N+1
pl�t − p0

= WN
i pl + ∂WN+1

i

∂qN+1
q̇N+1pl�t − p0

≈ WN
i pl + ∂WN

i

∂qN
q̇N+1pl�t − p0 (18)

Similarly, other functions of positions (e.g., COM position
constraint) which can be computed as a linear combination
of COMs of individual body nodes can be approximated in
this fashion.

ACKNOWLEDGMENTS

We would like to thank H. Chong, S. Hardegree and M. Kuo for
proofreading the manuscript.

REFERENCES

ABE, Y., DA SILVA, M., AND POPOVIĆ, J. 2007. Multiobjective control

with frictional contacts. In Proceedings of the Eurographics/SIGGRAPH
Symposium on Computer Animation, 249–258.

ABE, Y. AND POPOVIĆ, J. 2006. Interactive animation of dynamic manip-

ulation. In Proceedings of the Eurographics/SIGGRAPH Symposium on
Computer Animation.

COHEN, M. F. 1992. Interactive spacetime control for animation. In

SIGGRAPH. Vol. 26, 293–302.

DA SILVA, M., ABE, Y., AND POPOVIC, J. 2008. Simulation of human mo-

tion data using short-horizon model-predictive control. Comput. Graphics
Forum (EUROGRAPHICS) 27, 2, 371–380.

ACM Transactions on Graphics, Vol. 28, No. 1, Article 10, Publication date: January 2009.

10:12 • S. Jain et al.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D. 2001. Com-

posable controllers for physics-based character animation. SIGGRAPH,

251–260.

FANG, A. C. AND POLLARD, N. S. 2003. Efficient synthesis of physically

valid human motion. ACM Trans. Graphics, 417–426.

GILL, P., SAUNDERS, M., AND MURRAY, W. 1996. Snopt: An SQP al-

gorithm for large-scale constrained optimization. Tech. rep. NA 96-2,

University of California, San Diego.

HODGINS, J. K., WOOTEN, W. L., BROGAN, D. C., AND O’BRIEN, J. F. 1995.

Animating human athletics. SIGGRAPH, 71–78.

ISAACS, P. M. AND COHEN, M. F. 1987. Controlling dynamic simulation

with kinematic constraints. SIGGRAPH, 215–224.

KAWATO, M. 1999. Internal models for motor control and trajectory

planning. In Current Opinions in Neurobiology, Vol. 9.

KUDOH, S., KOMURA, T., AND IKEUCHI, K. 2006. Stepping motion for

a human-like character to maintain balance against large perturbations.

In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2661– 2666.

LASZLO, J., VAN DE PANNE, M., AND FIUME, E. 1996. Limit cycle control

and its application to the animation of balancing and walking. SIGGRAPH,

155–162.

LIEGEOIS, A. 1977. Automatic supervisory control of the configuration

and behavior of multibody mechanisms. IEEE Trans. Syst. Man Cyber-
netics 7, 12, 868–871.

LIU, C. K. 2008. Synthesis of interactive hand manipulation. In Proceed-
ings of the Eurographics/SIGGRAPH Symposium on Computer Anima-
tion.

LIU, C. K., HERTZMANN, A., AND POPOVIĆ, Z. 2005. Learning physics-

based motion style with nonlinear inverse optimization. ACM Trans.
Graphics 24, 3, 1071–1081.

LIU, C. K. AND POPOVIĆ, Z. 2002. Synthesis of complex dynamic char-

acter motion from simple animations. ACM Trans. Graphics 21, 3, 408–

416.

LIU, Z., GORTLER, S. J., AND COHEN, M. F. 1994. Hierarchical spacetime

control. SIGGRAPH, 35–42.

LOCKHART, D. B. AND TING, L. H. 2007. Optimal sensorimotor trans-

formations for balance. Nat Neurosci 10, 1329–1336.

MACIEJEWSKI, A. A. AND KLEIN, C. A. 1985. Obstacle avoidance for

kinematically redundant manipulators in dynamically varying environ-

ments. Int. J. Robotics Res. 4, 3, 109–117.

METOYER, R., ZORDAN, V., HERMENS, B., WU, C.-C., AND SORIANO, M.

2008. Psychologically inspired anticipation and dynamic response for

impacts to the head and upper body. IEEE Trans. Visualization Comput.
Graphics 14, 1, 173–185.

NATURALMOTION. 2006. Endorphin. www.naturalmotion.com.

POPOVIĆ, Z. AND WITKIN, A. 1999. Physically based motion transfor-

mation. SIGGRAPH, 11–20.

RAIBERT, M. H. 1986. Legged Robots That Balance. Massachusetts

Institute of Technology, Cambridge, Massachusetts.

SAFONOVA, A., HODGINS, J. K., AND POLLARD, N. S. 2004. Synthesizing

physically realistic human motion in low-dimensinal, behavior-specific

spaces. ACM Trans. Graphics 23, 3, 514–521.

SENTIS, L. AND KHATIB, O. 2005. Synthesis of whole-body behaviors

through hierarchical control of behavioral primitives. Int. J. Humanoid
Robotics 2, 4, 505–518.

SENTIS, L. AND KHATIB, O. 2006. A whole-body control framework for

humanoids operating in human environments. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA). 2641–

2648.

SHARON, D. AND VAN DE PANNE, M. 2005. Synthesis of controllers for

stylized planar bipedal walking. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA).

STEWART, A. J. AND CREMER, J. F. 1992a. Animation of 3d human lo-

comotion: Climbing stairs and descending stairs. In Proceedings of the
Eurographics Workshop on Animation and Simulation, 152–168.

STEWART, A. J. AND CREMER, J. F. 1992b. Beyond keyframing: An al-

gorithmic approach to animation. In Graphics Interface, 273–281.

SULEJMANPAŠIĆ, A. AND POPOVIĆ, J. 2004. Adaptation of performed

ballistic motion. ACM Trans. Graphics 24, 1.

UNO, Y., KAWATO, M., AND SUZUKI, R. 1989. Minimum muscle-tension-

change model which reproduces human arm movement. In Proceedings
of the Symposium on Biological and Physiological Engineering, 299–302.

VAN DE PANNE, M. AND LAMOURET, A. 1995. Guided optimization for

balanced locomotion. In Computer Animation and Simulation, 165–177.

WITKIN, A. AND KASS, M. 1988. Spacetime constraints. SIGGRAPH.

22, 159–168.

WOOTEN, W. L. 1998. Simulation of leaping, tumbling, landing, and bal-

ancing humans. Ph.D. thesis, Georgia Institute of Technology.

YAMANE, K. AND NAKAMURA, Y. 2000. Dynamics filter—Concept and

implementation of on-line motion generator for human figures. In Pro-
ceedings of the IEEE International Conference on Robotics and Automa-
tion (ICRA), 688–695.

YIN, K., LOKEN, K., AND VAN DE PANNE, M. 2007. Simbicon: simple

biped locomotion control. ACM Trans. Graphics 26, 3, 105.

ZORDAN, V., MACCHIETTO, A., MEDIN, J., SORIANO, M., WU, C.-C.,

METOYER, R., AND ROSE, R. 2007. Anticipation from example. In

Proceedings of the ACM Symposium on Virtual Reality Software and Tech-
nology (VRST’07). 81–84.

ZORDAN, V. B. AND HODGINS, J. K. 1999. Tracking and modifying upper-

body human motion data with dynamic simulation. In Conference on
Computer Animation and Simulation.

Received April 2008; revised October 2008; accepted December 2008

ACM Transactions on Graphics, Vol. 28, No. 1, Article 10, Publication date: January 2009.

