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Abstract

In this paper, we investigate the impact of the deformable bodies on
the control algorithms for physically simulated characters. We hy-
pothesize that ignoring the effect of deformable bodies at the site of
contact negatively affects the control algorithms, leading to less ro-
bust and unnatural character motions. To verify the hypothesis, we
introduce a compact representation for an articulated character with
deformable soft tissue and develop a practical system to simulate
two-way coupling between rigid and deformable bodies in a robust
and efficient manner. We then apply a few simple and widely used
control algorithms, such as pose-space tracking control, Cartesian-
space tracking control, and a biped controller (SIMBICON), to sim-
ulate a variety of behaviors for both full-body locomotion and hand
manipulation. We conduct a series of experiments to compare our
results with the motion generated by these algorithms on a char-
acter comprising only rigid bodies. The evaluation shows that the
character with soft contact can withstand larger perturbations in a
more noisy environment, as well as produce more realistic motion.
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1 Introduction

One of the fundamental simplifications that researchers in physics-
based human motion synthesis make, is that motion is the product
of an articulated rigid body system with actuated joints representing
bones and active skeletal muscles. On the surface this abstraction
does capture the most fundamental aspects of the human muscu-
loskeletal system. Utilizing this assumption, researchers have de-
veloped several control algorithms that can synthesize movement
for various tasks like balance and walking. Although these con-
trollers work well in their specific problem domain, they still cannot
achieve the same level of agility the human body displays.

In this paper we revisit the fundamental assumption that an articu-
lated rigid body system, by itself, captures the fundamental prop-
erties that enable human-like motion. We focus on one aspect of
the motion that is not captured by this simplified model: the contact
with the environment primarily occurs through the soft tissue. This
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Figure 1: Various controllers for character animation can be im-
proved by simulating soft tissue deformation at the site of contact.

factor comes into play in any situation where there is a collision be-
tween the character and the environment. Collisions between rigid
bodies usually result in sporadic contact points and highly discon-
tinuous pressure distribution. Although a character consist of only
rigid bodies is ideal for efficiently simulating human movement,
we postulate that the simplified rigid contact model inadvertently
increases the difficulty in controller design and results in unrealis-
tic motion.

The primary contribution of this paper is to demonstrate that simple
control strategies coupled with the simulation of soft tissue defor-
mation at the site of contact can achieve very robust and realistic
motion. We develop a practical system that allows us to simulate
two-way coupling between rigid and deformable bodies in a robust
and efficient manner. We then apply a few simple and widely used
control algorithms, such as pose-space tracking control, Cartesian-
space tracking control, and SIMBICON, to simulate a variety of
both full-body locomotion and hand manipulation. The resulting
motions are compared with the motion generated by these algo-
rithms on a character comprising only of rigid bodies. These sim-
ple controllers demonstrate that the character with soft contacts can
withstand larger perturbations in a more noisy environment, with-
out the need of designing more sophisticated control algorithms.

Simulating deformable bodies can be achieved in a few different
ways and the design choice often has to balance the required accu-
racy and performance. We hypothesize that the accuracy offered
by sophisticated but expensive methods, such as Finite Element
Method (FEM) is unnecessary for our application for two reasons.
First, unlike most previous work that simulates deformation of com-
plex volumetric meshes for aesthetic purpose, the primary goal of
our work is to produce deformation for more physically correct con-
tacts. Second, average human body deforms marginally due to the
support of bones. In particular, the deformation due to contacts is
typically small and localized. We take advantage of these proper-
ties to design a simple and accurate model that only computes the
surface of deformable bodies, rather than the entire volume.

To this end, we introduce a new representation for human skele-
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ton consist of an articulated rigid body system, in which each rigid
body is surrounded by a set of point masses representing the sur-
face of flesh. Each point mass is attached to the rigid body as a
child link with three translational degrees of freedom (DOFs). The
dynamics of bones and flesh can be expressed in a unified man-
ner by Lagrangian equations of motion in the generalized coordi-
nates. This compact representation allows us to soften or harden
any part of flesh at any time, by simply adding or removing the
translational DOFs of involved point masses, without switching dy-
namic regimes or introducing any instability. Based on this flexible
representation, we develop an efficient system where only the site
of collision needs to be simulated as deformable body while the rest
of the character remains rigid.

2 Related Work

Recent work in physics-based character animation explored a va-
riety of approaches to develop more robust virtual characters in a
dynamically changing environment. Despite the differences in con-
trol algorithms, one common focal point of these methods is the
improvement of contact control mechanisms. For example, Yin et
al.[2007] used the position and the velocity of the center of mass
to continuously modulate the contact point of the next step. Abe
et al. [2007] formulated a quadratic program to solve for opti-
mal joint torques subject to frictional contact constraints. Muico
et al. [2009] developed an online method to adapt the idealized
control policy based on the current contact situation. Mordatch et
al. [2010] planed ground contact positions and the foot trajectory
of the center of pressure. Lee et al. [2010] showed that robust feed-
back controller can be achieved by carefully synchronizing the ref-
erence trajectory at contact changes. Similarly, in hand animation,
Kry and Pai [2006] accounted for joint compliances due to contact.
Liu [2009] optimized the contact positions and forces to synthesize
detailed manipulation. Our motivation is similar in that we seek
to create more realistic human motion through a better understand-
ing of the contact phenomenon, but we take a drastically different
approach. Instead of improving the control algorithm, our method
aims to improve the physical realism of contact by simulating the
contact points as deformable bodies rather than rigid bodies.

Creating body deformation for an articulated figure is an
important and practical problem in computer animation. Com-
mon skeleton-driven techniques, such as skeleton-subspace-
deformation [Magnenat-Thalmann et al. 1988; Maya ], have
been widely adopted by graphics practitioners. These ba-
sic methods can be enhanced by adding pose examples
[Lewis et al. 2000; Kry et al. 2002] or additional degrees of
freedom [Wang and Phillips 2002; Mohr and Gleicher 2003].
Data-driven methods based on scanned data [Allen et al. 2002]
or dense motion capture data [Park and Hodgins 2006] can also
create detailed body deformation driven by skeletal motion. These
interpolation-based methods are able to produce visually appealing
secondary motion. In contrast, our goal is to investigate the impact
of deformations caused by collisions on control strategies for
physically simulated characters.

One promising way to achieve realistic deformation at the
site of contact is to apply physics-based modeling and sim-
ulation of skin layer around the skeleton. Earlier work has
used mass-spring systems to synthesize deformable skin wrapped
around the kinematic articulated figure [Gourret et al. 1989;
Turner and Thalmann 1993]. Gourret et al. [1989] showed that re-
alistic hand deformation in contact with an elastic object can be
computed by a numerical method based on FEM. More recently,
Pauly et al. [2004] used a quasi-rigid model to simulate small de-
formations at the site of contact to improve the robustness of con-
tact resolution for point cloud surface representations. Capell et

al. [2002] introduced a framework for simulating skeleton-driven,
elastically deformed characters. Their method used a coarse vol-
umetric finite element mesh to represent the deformation of skin,
driven by the underlying skeleton motion. Their results highlighted
large secondary motion due to inertia rather than the impact of col-
lision. In addition, the skeletal motion was completely pre-scripted
and the effect of skin movement did not affect the skeletal motion.

Our work is most relevant to two methods that consider two-way
coupling between the skin and skeleton. Kim and Pollard [2011a;
2011b] described an efficient coupled system using meshing em-
bedding with FEM. Their method leverages reduced deformable
models and linear-time algorithms for rigid body dynamics to
achieve real-time performance. The primary focus of their work
is to develop an interactive user interface to control skeleton-driven
deformable characters. In contrast, our work aims to investigate
the effect of deformable contact on robustness of the control algo-
rithms. Therefore, we choose to implement a more accurate LCP
contact model instead of the penalty-based contact model used in
their work. The computational cost of LCP motivated us to design
a more compact representation than FEM for deformable bodies.
Galoppo et al. [2007] introduced a fast formulation to compute skin
displacement due to dynamic interplay with bones. They proposed
a very efficient but specialized contact model by decoupling skele-
ton and skin computations using an approximated mass matrix. We
believe with an additional implementation of a more accurate con-
tact model, either of the above methods for simulating deformable
bodies will be suitable for our applications.

Modeling soft bodies has also generated significant interest in
robotics due to its wide range of potential applications. When a
full-body humanoid robot moves in an unknown environment or in-
teracts with humans in an unstructured setting, the motion of the
robot must be stable and compliant to protect the robot’s structure
and ensure humans’ safety. Researchers have demonstrated that
integrating a compliant sole or shock absorbing materials under
a humanoid robot’s foot improves the stability of dynamic biped
walking [Chardonnet et al. 2008; Yamaguchi et al. 1995]. Much
research effort has also focused on emulating the compliance of
anthropomorphic hands. Unlike rigid linked robots, soft robotic
hands can conform better to the manipulated objects , enabling
more sophisticated tasks and improving dexterity and robustness
[Cutkosky and Kao 1989; Xydas and Kao 1998]. Our work is in-
spired by this line of robotic research, but we aim to create a uni-
fied simulation framework for controlling a variety of human move-
ments.

3 Coupled dynamics

Our representation for human skeleton comprises of articulated
rigid bodies, each of which is surrounded by a set of point masses
representing the surface of the deformable flesh. In this section,
we describe the equations of motion coupling the articulated rigid
bodies and the deformable surface.

3.1 Articulated rigid body dynamics

The equations of motion of an articulated rigid body system
parametrized by generalized coordinates r , are given by:

M(r)r̈+C(r, ṙ)ṙ+g(r) = τττ + Jc(r)
T

fc (1)

where M is the mass matrix, C is the Coriolis matrix, g are the
gravitational forces and τττ are the applied generalized forces. The
first six values in τττ , which correspond to the global rotation and
translation of the system, are zero, resulting in an under-actuated
system. fc and Jc are the contact force and the Jacobian respectively
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Figure 2: Left: An articulated rigid body system coupled with de-
formable surface at the site of contact. Solid dots indicate the active
DOFs. Right: A contact force fc represented by a normal force and
a tangent force in coordinates defined by a matrix D

for a single contact point. M, C, g and Jc are non-linear functions
of r while C is linear in ṙ. It is straightforward to add more contacts
to the equation; for clarity, we describe our equations with only one
contact.

3.2 Deformable body dynamics

We define the surface of a deformable body as a 3D manifold tri-
angle mesh formed by a set of point masses at the vertices. The
elastic forces applied on each point mass are modeled as linear
spring forces. We measure two kinds of deformations and their
corresponding restoring forces at each vertex vi:

• Vertex deformation. For a vertex vi, we measure the defor-
mation from its rest position x̄i as xi − x̄i. The corresponding
restoring spring force with a spring stiffness kv is written as:

f1,i =−kv(xi − x̄i) (2)

• Edge deformation. The deformation of the edge ei j connect-
ing two vertices vi and v j is given by (xi − x j)− (x̄i − x̄ j).
The corresponding restoring force applied on vi with a spring
stiffness ke is written as:

f2,i = ∑
j∈N(i)

−ke

(

(xi −x j)− (x̄i − x̄ j)
)

(3)

where N(i) denotes the subset of vertices of the mesh con-
nected to the vertex vi via an edge.

The force in Equation (2) attempts to keep each vertex at its rest
position while the force in Equation (3) tries to maintain the relative
position of the vertex with respect to its neighbors. These forces
attempt to keep the mesh in its undeformed state and also penalize
translation and rotation of the entire mesh in the defined frame of
reference.

We collect the positions of all the vertices in a vector x ≡

(x1
T , . . . ,xN

T )T , where N is the number of vertices in the mesh.
The restoring forces defined in Equation (2) and Equation (3) for
all the vertices can be represented as the product of a sparse stiff-
ness matrix Kx and the deformation x− x̄ i.e. f = Kx(x− x̄). We add
a velocity damping force using a damping matrix Kẋ. The equations
of motion for this linear system are written as:

Mẍ =−Kx(x− x̄)−Kẋẋ−g (4)

where M is the diagonal mass matrix with diagonal entries corre-
sponding to each vertex vi as mi and g are the gravitational forces.

3.3 Coupled equations of motion

The deformable body dynamics described above are defined for a
fixed frame of reference. To drive the deformable body using a

rigid body (node) of the articulated skeleton, we need to attach the
frame of reference of the deformable body to the rigid node. In
addition, we must ensure two-way dynamic coupling between the
deformable body and the articulated rigid body system.

We augment the articulated body system with point masses corre-
sponding to the vertices of the deformable body (Figure 2, Left).
Each point mass is attached to the rigid node through a 3-degree-
of-freedom (DOF) translation joint. The DOFs of this joint are the
vertex coordinates xi. By expressing the DOFs of each point mass
as a child link of the rigid body, we automatically set the frame of
reference of the deformable body to the rigid body. This results
in an augmented articulated body system that has a tree structure
comprising of rigid nodes and point masses. The new set of DOFs
or generalized coordinates is represented as q ≡ (rT ,xT )T . The dy-
namics for this articulated system is similar to Equation (1) and can
be represented as:

Mq̈+Cq̇+g = τττ + JT
c fc (5)

These new matrices M and C and the vector g can be expressed as:

M =

[

Mr + M̄x Mrx

MT
rx Mx

]

,C =

[

Cr +C̄x Crx

CT
rx 0

]

,g =

(

gr + ḡx

gx

)

(6)

where Mr and Cr are the mass and Coriolis matrices and gr are the
gravitation forces defined in Equation (1), Mx is the mass matrix and
gx are the gravitation forces defined in Equation (4). Equation (6)
also introduces a few new coefficients. Mrx and Crx are dense ma-
trices coupling the rigid and deformable DOFs and M̄x, C̄x and ḡx

are the contributions of the point masses to the dynamic equations
of rigid nodes. These matrices can be derived from standard multi-
body system dynamics. The generalized forces τττ are given by:

τττ =

(

τττr

τττx

)

=

(

τττr

−Kx(x− x̄)−Kẋẋ

)

(7)

where τττr are the generalized forces in Equation (1). For an actively
controlled articulated system, τττr is usually computed by an external
controller.

Adaptive deformable simulation. A mesh with large number
of vertices makes the dynamic system very expensive to compute.
Since we are interested in simulating the deformable body at the
site of contact, we only simulate a subset of the vertices at the site
of contact and treat the rest of the surface rigid. Intuitively, this
implies that we change the stiffness of the rest of the point masses
such that they provide the constraint forces required to keep the
surface rigid. Now, given the contact points on the surface, we
traverse a p-ring neighborhood of the vertices and mark these vis-
ited vertices. We simulate those marked vertices until they are no
longer in contact and reach the equilibrium at their rest positions.
This adaptive scheme for the deformable body simulation is a prac-
tical solution for situations involving small and stiff deformations.
However, we also need to consider the dynamic contribution of the
point masses not simulated, because their effect on the mass ma-
trix in Equation (6) changes over time due to their dependency on
the rigid pose r. To efficiently compute the mass matrix, we pre-
compute the contribution of the point masses in their rest positions
relative to the local frame of the parent rigid body. This contri-
bution effectively changes the mass and inertia of the parent rigid
body. At each time step during the simulation, since we visit all
the simulated point masses that are potentially not at their rest po-
sitions, we simply subtract their rest pose contribution to the mass
matrix from the computed value.



Discrete equations. In our implementation, we discretize the
equations of motion in time. Quantities at any time tk are sub-
scripted by k. For clarity, we time-subscript the quantities only to
disambiguate; otherwise they are assumed to be evaluated at time
tk. We use backward and central differences to discretize velocity
and acceleration respectively using the time step h as:

q̇k ≡
qk −qk−1

h

q̈k ≡
qk+1 −2qk +qk−1

h2
=

q̇k+1 − q̇k

h
(8)

Substituting the above in Equation (5) and rearranging terms, we
arrive at:

M(q̇k+1 − q̇k)−hJc
T fc = h(τττ −Cq̇k −g) (9)

Large spring stiffness or damping in Equation (7) may cause insta-
bilities for large time steps. Therefore, we apply the spring forces in
an implicit manner i.e. the spring forces are evaluated at time tk+1

by using Equation (8) as:

τ̂ττx = −Kx(xk+1 − x̄)−Kẋẋk+1

= −Kx(xk +hẋk+1 − x̄)−Kẋẋk+1

= −Kx(xk − x̄)− (hKx +Kẋ)ẋk − (hKx +Kẋ)(ẋk+1 − ẋk)(10)

Replacing τττx with τ̂ττx in Equation (9) and rearranging terms, we get:

M̂(q̇k+1 − q̇k)−hJc
T fc = h(τ̂ττ −Cq̇k −g) (11)

where M̂ =

[

Mr + M̄x Mrx

MT
rx Mx +h2Kx +hKẋ

]

τ̂ττ =

(

τττr

−Kx(xk − x̄)− (hKx +Kẋ)ẋk

)

This semi-implicit system of equations is stable with respect to the
deformable forces. Some of other instabilities due to large veloci-
ties can be tackled by making the Coriolis term implicit in q̇. Uti-
lizing the linear dependence of C on q̇, we evaluate C(q, q̇)q̇ using
the velocities at the next time step q̇k+1:

C(qk, q̇k+1)q̇k+1 = C(qk, q̇k +∆q̇)(q̇k +∆q̇)

= (C(qk, q̇k)+C(qk,∆q̇))(q̇k +∆q̇)

≈ C(qk, q̇k)q̇k +C(qk, q̇k)∆q̇+C(qk,∆q̇)q̇k

= C(qk, q̇k)q̇k +2C(qk, q̇k)(q̇k+1 − q̇k) (12)

We substitute this result in Equation (11). The only change in the
equation is the mass matrix:

M̂ =

[

Mr + M̄x Mrx

MT
rx Mx +h2Kx +hKẋ

]

+2hC

Given the current state (qk, q̇k), the only unknowns in Equation (11)
are q̇k+1 in the absence of contact. We can then directly integrate
to the next state after we solve for q̇k+1. To incorporate the ef-
fect of contact, however, we need to consider additional constraints
described in the next section.

4 Contact model

Similar to the numerous options for modeling deformable bod-
ies, there are many existing methods for modeling collisions as
well. We choose a model that accurately simulates unilateral con-
tact forces at the points of contact. In addition, we consider the

Coulomb friction model that allows for slipping. These condi-
tions for the contact force and the contact point can be formu-
lated into a linear complementarity problem (LCP), as described
in [Anitescu and Potra 1997].

The contact force is represented by its normal and tangential com-
ponents, fc = fnn̂+Dβββ , where n̂ is the normal vector at contact and
D is a matrix with its columns as the vectors that span the tangent
plane at contact. The contact force is parametrized by a scalar fn
and a vector βββ in the normal and the tangential space (Figure 2,
Right).

Let p(q) be the coordinates of the contact point. The point velocity
is linearly related to the generalized velocity as ṗ = Jcq̇. In the
normal direction, the projection of the point velocity and the normal
force have to satisfy the following condition to prevent penetration
of the surface and enforce work-less and unilateral properties of the
contact force:

(ṗk+1 · n̂)⊥ fn

or (n̂T Jcq̇k+1)⊥ fn (13)

where the notation a ⊥ b implies the complementarity condi-
tion aT b = 0 with a,b ≥ 0. Note that non-negativity ensures
component-wise complementarity ai ⊥ bi. In the tangential direc-
tion, we introduce a parameter λ that represents the relative tangen-
tial movement for the point at contact. If there is slipping (λ > 0),
the tangential force should lie on the boundary of the polyhedra in
the direction opposite to the movement. If the contact is static, the
magnitude of the tangential force should be bound by the normal
force modulated by friction coefficient. These two conditions can
be enforced by:

(λe+DT Jcq̇k+1)⊥ βββ

and (µ fn − eT βββ )⊥ λ (14)

where µ is the friction coefficient and e is a vector of ones. We refer
the reader to [Stewart and Trinkle 1996; Anitescu and Potra 1997]
for a more detailed explanation of the complementarity conditions.

Let z = ( fn,βββ
T ,λ )T . Rewriting Equation (11) with the

parametrized contact force, we get:

[

M̂ −(n̂T Jc)
T −(DT Jc)

T 0
]

(

q̇k+1

z

)

+b = 0 (15)

where b = −M̂q̇k − h(τ̂ττ −Cq̇k − g). Combining the above con-
straint with the complementarity conditions in Equation (13) and
Equation (14), we get:









M̂ −(n̂T Jc)
T −(DT Jc)

T 0

n̂T Jc 0 0 0

DT Jc 0 0 e

0 µ −eT 0









(

q̇k+1

z

)

+

(

b
0

)

=

(

0
w

)

with w ⊥ z (16)

Equation (16) represents a mixed LCP problem with w,z and q̇k+1

as unknowns. Given the current state of the character (qk, q̇k) and
the contact points, we solve this problem to get the generalized ve-
locities q̇k+1 for the next time step tk+1 and compute the new state
as (qk +hq̇k+1, q̇k+1).



5 Implementation of controllers

Without active control forces τττr applied at the actuated joints of the
skeleton, the system described in previous sections is completely
passive. To demonstrate the utility of our coupled dynamic sys-
tem, we implement the following control algorithms based on exist-
ing controllers widely adopted in computer animation and robotics.
Their applications in locomotion and manipulation are demon-
strated in Section 6.

5.1 Pose-space tracking control

We formulate an implicit PD control for tracking a given pose or a
sequence of poses for the articulated skeleton. Let (rk, ṙk) denote
the current state for the rigid skeleton and r̄ be the desired pose.
Further, let Kr and Kṙ be diagonal stiffness and damping matrices
respectively. To provide more stability in the system, we calculate
the feedback force based on the deviation of the next state from the
desired pose, similar to Equation (10):

τττr =−Kr(rk+1 − r̄)−Kṙ ṙk+1

=−Kr(rk − r̄)− (hKr +Kṙ)ṙk − (hKr +Kṙ)(ṙk+1 − ṙk) (17)

Plugging τττr into Equation (11) and rearranging the equation, we
modify M̂ and τ̂ττ in Equation (11) as:

M̂ =

[

Mr + M̄x +h2Kr +hKṙ Mrx

MT
rx Mx +h2Kx +hKẋ

]

+2hC

τ̂ττ =

(

−Kr(rk − r̄)− (hKr +Kṙ)ṙk

−Kx(xk − x̄)− (hKx +Kẋ)ẋk

)

(18)

5.2 Cartesian-space tracking control

Sometimes it is more effective to track a position in Cartesian-space
rather than in the pose space. Let pi(r) represent the world co-
ordinates of a point on a rigid body. Let the desired position of
this point be p̄i. For small deviations, we can approximate it as
∆pi ≡ pi − p̄i ≈ Ji∆r, where Ji is the Jacobian evaluated at pi. With
this approximation, we can simply use the pose-space PD control as
described in Equation (18) to track the new desired pose as r̄+∆r.
The same approximation can be applied to tracking multiple Carte-
sian points:

[

JT
1 , . . . ,JT

m

]T
∆r =

(

∆pT
1 , . . . ,∆pT

m

)T
(19)

Similarly, body orientation in Cartesian-space can be controlled us-
ing the same mechanism: ∆ωb = Jωb

∆r, where ∆ωb is the change in
orientation of the body and Jωb

is the Jacobian defined as ωb = Jωb
ṙ.

5.3 Locomotion control

In addition to basic tracking controllers, we also apply our
coupled dynamic system to a biped controller, SIMBICON
[Yin et al. 2007], which has been adopted widely by other re-
searchers in computer graphics community [Coros et al. 2008;
Coros et al. 2010; Wang et al. 2009; Wang et al. 2010;
Lee et al. 2010].

SIMBICON uses maximal coordinates to compute joint torques and
employs Open Dynamics Engine (ODE) to solve for the simulation
time step. The algorithm for advancing one time step in original
SIMBICON can be summarized as:

STEP 1: Compute joint torques τττs

STEP 2: Detect collisions
STEP 3: Create contacts to be solved for in ODE

STEP 4: Apply τττs to character in ODE
STEP 5: Advance one time step in ODE to get next state

Our method follows the SIMBICON algorithm except for the con-
tact force handling. To compute the contact forces for our coupled
dynamic system, we first need to convert the torques and the state
from maximal coordinates used in SIMBICON to our generalized
coordinates. We then solve for contact forces via Equation (16) and
use them to override the contact forces solved by ODE. Our contact
handling, summarized as follows, replaces the STEP 3 of SIMBI-
CON algorithm.

STEP 3.1 Convert τττs to generalized torques τττr

STEP 3.2 Convert state to generalized coordinates (rk, ṙk)
STEP 3.3 Solve (qk+1, q̇k+1) and fc using Equation (16)
STEP 3.4 Apply fc to character in ODE

Performance improvement. Although our contact handling for
the coupled dynamic system inevitably increases the computation
time, our semi-implicit scheme in τ̂ττ potentially allows for a larger
time step than the one used by SIMBICON (0.5ms), resulting in less
frequent computation of Equation (16). However, using a smaller
frequency for the contact handling poses problems to the rest of the
simulation algorithm; infrequent updates of the deformable state
and the contact forces can lead to inaccurate collision detection and
dynamic inconsistency. To address this problem of asynchronous
time updates, we introduce a mixed-frequency simulation algo-
rithm.

Let hs be the SIMBICON time step used in STEP 5 and hd = nhs be
the time step for solving Equation (16) in STEP 3.3 for some integer
n. At time t0, we execute STEP 3.1 to STEP 3.4; i.e. we solve Equa-
tion (16) and record the contact forces fc and the new deformable
state (xk+1, ẋk+1). The new deformable state and contact forces are
applied at time t0 +hd . For any time t ∈ (t0, t0 +hd), we interpolate
the deformable state as (xt , ẋt) = (1 − u)(xk, ẋk) + u(xk+1, ẋk+1)
where u = (t − t0)/hd . For the contact force during t ∈ (t0, t0 +hd),
we could simply treat the deformable as a rigid body and use STEP

3 to compute the contact forces. However, this treatment largely
reduces the overall effect of the coupled dynamic system. Instead,
we take into account the impact of deformable body on the rigid
DOFs as an additional generalized force, τ̄ττx, applied to the charac-
ter before solving the ODE time update:

τ̄ττx =−(M̄xr̈+Mrxẍ+C̄xṙ+Crxẋ+ ḡx) (20)

Equation (20) can be derived from Equation (5) and Equation (6):

(Mr + M̄x)r̈+Mrxẍ+(Cr +C̄x)ṙ+Crxẋ+(gr + ḡx) = τττr + JT
c fc

⇒ Mr r̈+Cr ṙ+gr = τττr + JT
c fc − (M̄xr̈+Mrxẍ+C̄xṙ+Crxẋ+ ḡx)

Leaving out the last term in the RHS (i.e. τ̄ττx), the above equation
represents the equations of motion of an articulated rigid body sys-
tem with DOFs r (Equation (1)). The accelerations r̈ and ẍ for
the duration (t0, t0 + hd) can be computed using their discretiza-
tions (Equation (8)) since we have both the velocities, q̇k and q̇k+1

at times t0 and t0 + hd respectively. When the LCP is solved at
time t0, the new solved state is valid for time t0 + td . For all the
intermediate simulation time steps of SIMBICON, the state for the
deformable body is linearly interpolated based on the states at time
t0 and t0 + td . The LCP computation is much more expensive as
compared to the SIMBICON simulation; hence solving LCP every
n frames helps speed up the computation substantially.

Stability improvement. Because the applied torques τττs com-
puted by SIMBICON are based on a very small time step, directly
applying them to our formulation with a much larger time step can



Figure 4: Soft fingers enable a more robust pinch-grasp.

sometimes lead to instability. To counter this, we add one term to
the converted generalized torques τττr to approximate the effect of
an implicit integration scheme. This modified τττr are only used to
compute more stable contact forces in STEP 3.3, and we still use the
original τττs in ODE forward simulation (STEP 4). We define a vec-
tor kτ such that τττr = Kτ (rk +hd ṙk)+kτ for some chosen positive
definite matrix Kτ . We now make an approximation by replacing ṙk

with ṙk+1 thus making the forces implicit since ṙk+1 is unknown:
τττr ≈ Kτ (rk + hd ṙk+1) + kτ . The resulting deviation added to τττr

equals hdKτ (ṙk+1 − ṙk) or h2
dKτ r̈. Introducing this additional term

produces more stable contact forces without altering the original
torques generated by the SIMBICON controller.

6 Results

We tested results on controllers for biped locomotion and hand ma-
nipulation. All the results were produced on a single core of 2.7
GHz Intel i7. For each behavior, we applied the identical control
algorithm to a character with soft tissue at the site of contact (soft
character) and a character comprising only rigid bodies (rigid char-
acter). The motions of these two characters were compared. The
results can be viewed in the accompanying video.

Biped locomotion controller Using the SIMBICON-based con-
troller described in the previous section, we designed three experi-
ments to evaluate the impact of soft contacts. We directly used the
source code of SIMBICON [2007] and ODE for the control force
computation and the forward simulation. The only modification by
our method was the contact force handling.

In the first experiment, we applied large push forces to the character
and compared the motion with and without soft contact simulation.
SIMBICON is known for its robustness to external perturbations.
However, when a strong push that induces a large torque, the rigid
character tends to lose contact easily and fails to recover. In con-
trast, the deformable bodies allow our character to maintain more
contact points on the ground with more evenly distributed pressure
(Figure 3). Losing a few contact points due to the perturbation does
not critically affect the balance state.

The second and third experiments focus on evaluating the controller
under different sources of uncertainty. We first considered the noise
in the motor control system of the character. We implemented the
same simplified, biologically-inspired model as Wang et al. [2010].
This model adds noise to the joint torques produced by the con-
troller at every time step. The noise is drawn from a Gaussian
density with zero mean and a standard deviation depending on the
magnitude of the joint torque and the strength of the joint. We used
middle noise level (i.e. β = 75 defined in their paper) to test our
controllers. As a result, the rigid character quickly becomes unsta-
ble when small pushes are applied. The soft character, on the other
hand, is still able to maintain balance and withstand large pushes.

The last experiment evaluates the biped controller operating on a
noisy surface. We first segmented the floor into small tiles of 5×5

cm2. For each vertex, we added a random offset, uniformly sampled
from a range of [0,2] cm, to its vertical and horizontal positions.
We then reconstructed a bumpy surface based on the modified ver-
tices. The controllers were tested on several randomly generated
different floors from which we demonstrate three in the video. The
uncertainty on the surface greatly affects the rigid character’s abil-
ity to walk. In some cases it wanders to various locations and other
cases it simply falls. The soft character is able to stay in the original
course for all cases with small variations. A close-up observation
shows that the deformable foot mesh of the soft character conforms
better to the noisy surface and maintains more contact points when
the character is pushed.

Although we have not implemented our contact model on biped
controllers other than SIMBICON, we expect that our formulation
can work with other biped control algorithms that employ LCP-
like contact models. Based on our experiments with SIMBICON,
our method can be applied in such way that the underlying con-
trol strategies, model coefficients, and numerical parameters all re-
main intact, while the controller enjoying more contact points and
smoother transition of contact area. These benefits are particularly
important for controlling under-actuated DOFs for biped charac-
ters. However, our method might not have significant improvement
on biped controllers that already exploited contact force and timing
[Muico et al. 2009; Lee et al. 2010].

Cartesian-space tracking controller We designed a manipula-
tion controller based on tracking the center of pressure on the finger.
The intended function of the controller is to flick a marble ball in
the desired direction using the distal phalanx of the index finger and
the thumb. The controller attempts to match the relative center of
pressure between the thumb and the index finger to a desired vector,
in addition to tracking an equilibrium pose.

As shown in the video, the rigid hand clearly has no control over
the direction of the ball. In some cases, it fails to launch the ball
because the loss of contact points occurs too early. The soft hand
shows much more accurate control in different directions and the
ball never slips off the fingers before the launch. We also tested the
robustness of the controller by adding noise to the surface of the
ball. By applying the same control forces several times, the fingers
with soft contact manage to flick the ball in the similar directions,
but the rigid fingers produce motions with huge variance. The key
difference that leads to better dexterity is that the soft hand main-
tains more contact points and smoother movement of the center of
pressure at all times.

Pose-space tracking controller We tested pose-space tracking
control strategy on a human upper body and a human hand. For the
human upper body, our goal is to track an arm-folding pose (Figure
1 lower right). Although it is not a difficult control problem, this
particular pose is very difficult to simulate due to a large area of
contact against multiple body parts. In our results, the rigid char-
acter immediately gets stuck when the hand collides into the op-
posite upper arm. In contrast, the soft character is able to fold her
arms with the hands and upper arms brushing against each other
and smoothly moving into their own desired positions.

We also developed a controller capable of pinch-grasping a thin ob-
ject. We employed PD controllers to track an equilibrium pose such
that a pen can be held horizontally in between the index finger and
the thumb (Figure 4). Without any perturbation, both the rigid hand
and the soft hand can successfully hold the pen. However, when
external forces are applied to the pen, the rigid hand quickly loses
contacts and drops the pen while the soft hand can withstand pertur-
bation in any direction. The total contact forces applied on the pen
are comparable between two hands, but the pressure distribution is



Figure 3: Simulating deformable body at the site of contact results in more contact points and smoother center of pressure.
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Figure 5: Comparison of the center of pressure on the left foot in
the direction of heel to toe for one step (frames 400-1500)

much smoother on the soft hand.

We summarize the performance and the parameters used in our
simulations in Table 1. The stiffness parameter km is the rep-
resentative stiffness for kv and ke in Equation (2) and Equa-
tion (3). We define the values kv = 0.4km and ke = 0.6km for
all our examples. In addition, we define the damping matrix
Kẋ = 0.1kmI, where I is the identity matrix. For the locomotion
examples, we define Kτ = 103 (Section 5.3). The bottleneck in
the computation is the number of contacts solved by LCP for ev-
ery time step. We use the publicly available PATH LCP solver
(http://www.cs.wisc.edu/cpnet/cpnetsoftware/) to solve for Equa-
tion (16) for both the cases of rigid and soft contacts.

7 Evaluation and Limitations

In addition to the comparisons described in Section 6, we performed
quantitative analyses to show the impact of soft contact, the effect
of a few key parameters, and comparisons with alternative design
decisions. We also address a few limitations of the current system
in this section.

Center of pressure. We plotted the center of pressure of the
character’s foot from one of the biped examples (Figure 5). The
comparison shows that a soft contact has a much smoother center
of pressure than the rigid contact. Because the center of pressure
is crucial to maintaining the angular momentum, this result is con-
sistent with our observation that the rigid character loses balance
more easily when large external torque is applied. Similarly, we
compared the magnitude of the total contact force from the same
example (Figure 6). The average contact force is usually similar
between a rigid and a soft contact, but the rigid contact has a larger
variance in the magnitude of contact force. Note that more sophisti-
cated biped controllers might achieve similar results, but we delib-
erately choose very simple control algorithms to highlight the effect
of soft body contact.

Contribution to robustness. The main reason that soft bodies
can generate contact forces resulting in a more robust motion is due
to the increase in the number of contact points. In all our exam-
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Figure 6: Comparison of the magnitude of the total contact force
on the left foot for one step (frames 400-1500).

Figure 7: Comparison of the number of contacts from the pinch-
grasp example.

ples, the number of contacts of soft bodies is significantly greater
than that of rigid bodies. For example, we compared the number of
contact points of rigid and soft fingers in a pinch-grasp motion (Fig-
ure 4). Figure 7 suggests that soft fingers maintain a large number
of contacts at all times and do not abruptly change the number of
contacts under external forces. In contrast, the number of contacts
on rigid fingers is much smaller and fluctuates drastically when an
external force is applied, leading to unpredictable and less stable
results. We also verified that the robustness of the motion was not
due to the implicit formulation. In this experiment, we replaced all
the implicit formulations with explicit ones and simulated the same
biped examples with a smaller time step. Both implicit and explicit
characters recover from the push in a similar manner.

System parameters. Our framework performs robustly for a
wide range of parameters such as the stiffness of the mesh and time
steps. We use a time step of 4ms for locomotion controllers (see
Table 1). We also performed experiments with an larger time step
of 8ms. The resulting controller was still robust to large forces as
compared to the original SIMBICON controller. In addition, we ex-
perimented with stiffness of the foot meshes increased by a factor
of 10-20 and the controller performed robustly.

Different LCP solutions. In theory, the mixed LCP problem in
Equation (16) can have multiple solutions depending on the initial
point given to the PATH solver. In practice, we empirically showed



Examples total DOFs simulated DOFs num contacts fps LCP time (%) Time step (ms) Stiffness km

finger flick 2573 576±88 39±6 3.9±3.2 86±6 1.7 1.5×104

arm fold 2802 322±89 33±10 3.5±1.7 68±10 8.3 104

pinch-grasp 1427 258±22 29±4 5.2±3.2 85±6 1.7 1.5×104

biped walk 334 197±43 16±3 18.5±4.5 63±5 4.0 103

Table 1: Performance and parameters of the examples. “total DOFs” is the number of DOFs that can be potentially simulated while
“simulated DOFs” is the number of DOFs in adaptive simulation. “fps” is the frame rate for our simulations and “LCP time” is the
percentage of the simulation time to solve Equation (16). For biped walk, the LCP is solved every 8 SIMBICON time steps (SIMBICON time
step is 0.5 ms).
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Figure 8: Comparison of the magnitude of contact forces for simu-
lations with different initial points for the LCP solver.

that our particular LCP, i.e. the contact force problem, is not sensi-
tive to the initial point. We repeatedly simulated the same motion
in Figure 3 by solving the LCP with different initial points: a vec-
tor with all zeros, a vector with all ones, and a vector of different
random values at every frame. Figure 8 shows little variation in the
force magnitudes and the simulated motions are close to identical.

Flexible rigid foot vs. deformable foot. One possible approach
to generate robust locomotion is to represent the foot with many
rigid links, allowing for more flexible foot motion. Coupling the
penalty methods for contact with multiple smaller links may add
more compliance at the sites of contact. We therefore increased the
complexity of the rigid foot to four links, each of which is con-
nected to its parent link by a hinge joint along the center line of the
foot. The simulation results shown in the accompanying video show
that a rigid foot represented by four links results in more stable mo-
tion when comparing with a rigid foot with fewer links. However,
our deformable feet still exhibit more stability than the four-linked
rigid feet due to more continuous changes of contacts. There are
a couple of disadvantages associated with breaking down a rigid
foot into smaller rigid links. As the number of links increase, the
mass and the size of each link decreases thereby potentially caus-
ing instability due to increased ratio of the maximum to minimum
mass in the skeleton. This results in more strict time step restric-
tions and more careful selection of stiffness parameters. In addi-
tion, modeling the feet with multiple links increases the complexity
of controller design, as more parameters need to be tuned for the
additional actuators on the foot.

Penalty methods. Penalty-based methods are commonly used to
approximate the compliance at the site of contact due to their simple
formulation and less intensive computation. However, our approach
is advantageous due to the following reasons. First, LCP formula-
tion models more accurate contact by enforcing work-less normal
force, no penetration, and realistic slipping. Second, our method ex-
plicitly deforms the geometry of the body parts, introducing more
contact points which, in turn, increase the robustness of the con-
trol algorithms. Third, using low stiffness for penalty methods may
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Figure 9: Comparison of the contact force magnitudes from penalty
method and soft contacts with LCP.

lead to frequent penetration artifacts. For a detailed, contact-rich
motion, such as hand manipulation, the artifacts can be very vis-
ible. We compared the penalty method with our soft contacts for
a simple case of a box falling on the ground (see video and Fig-
ure 9). We modeled the penalty forces in the normal direction as
described in [Yamane and Nakamura 2006] and vary the stiffness
and damping parameters to model different levels of softness and
the duration of contact. For the deformable box with soft contacts,
we chose the mesh stiffness such that the duration of contact is sim-
ilar to the corresponding penalty method case. When the stiffness
of the box is high, the large contact force computed by the penalty
method causes the hard box to bounce elastically because the veloc-
ity cannot be damped out quickly enough given a very short contact
duration. In contrast, our method correctly generates just enough
force to stop the hard box and produces no extra bounce. When the
stiffness of the box is low, the contact force profiles look similar
for both cases in Figure 9. However, the motion generated by the
penalty method shows large penetration between the box and the
ground while our approach does not. In addition, visible deforma-
tion that stores and releases potential energy can be observed using
our approach.

Limitations. There are a few limitations in the current implemen-
tation of the algorithm. Our implementation does not handle a de-
formable body across multiple rigid bones. For motions with large
areas of contact, such as rolling on the floor or sitting on a chair,
it is essential to allow the contact to move continuously across the
bones. With moderate effort to convert between frames of refer-
ence, we can modify our implementation such that two connected
point masses can be parented to different rigid bones.

Our algorithm is not optimized for the performance. The computa-
tion of a few components, such as collision detection and handling
can be largely reduced by decoupling the surface mesh resolution
and the number of contacts such as using volume contacts as de-
scribed in a recent work [Allard et al. 2010]. In addition we can
incorporate existing, efficient methods that simulate a fine surface
mesh embedded in a coarse control mesh to improve the perfor-



mance [Kim and Pollard 2011b].

The stiffness coefficients in our contact model are arbitrarily chosen
and do not resemble human skin and muscle materials in the real
world. To achieve more realistic deformation, we need to acquire
accurate material coefficients and design more anatomically correct
models. Better biomechanical modeling of the musculoskeletal sys-
tem is our ultimate aim for simulating human behaviors. However,
balancing between model complexity and computational tractabil-
ity remains a challenging problem that requires further exploration.

We have noticed some self-intersection between legs in the biped
examples. Our algorithm can handle collision between two body
parts at the deformable layer, but when the intersection is deep in
the bone level, our algorithm does not handle the collision. This
type of deep self-intersection is usually due to the control force gen-
erated by a controller that does not take into account self collision.
Having a better collision detection routine can improve the situa-
tion (we use ODE’s build-in collision detection routine), but a more
effective solution is probably to design a controller that considers
“proprioception” when computing the control forces.

8 Conclusion

In this paper, we investigate the impact of the deformable bodies
on existing control algorithms for physically simulated characters.
The primary contribution of this paper is to demonstrate that simple
control strategies coupled with the simulation of soft tissue defor-
mation at the site of contact can achieve very robust and realistic
motion. In constructing, we develop a practical system that simu-
lates two-way coupling of rigid and deformable bodies efficiently
and robustly. We then apply a few simple and widely used control
algorithms, such as pose-space tracking control, Cartesian-space
tracking control, and SIMBICON, to simulate a variety of behaviors
for both full-body locomotion and hand manipulation. The results
were compared with motions of a character comprising only of rigid
bodies.

A controller can always be improved by designing better control
strategies as evidenced by recent research in biped control. How-
ever, in this paper, we depart from the approach of developing a new
control algorithm and demonstrate that superior robustness can be
achieved for existing simple controllers without necessarily adding
more complexity. Our soft contacts formulation can be used in con-
junction with any existing controllers for a variety of tasks such
as biped locomotion or hand manipulation. We lay stress on the
simplicity of the generic soft contacts formulation that does not de-
mand for reimplementation of most of the existing controllers and
may facilitate development of advanced control methods that use
the deformation in the control design.

There are a few interesting avenues for future research. We
would also like to investigate other biped controllers that do not
use PD feedback control [da Silva et al. 2008; Muico et al. 2009;
Ye and Liu 2010]. These controllers are usually more “aware” of
contact situations when planning the control forces. The simula-
tion of deformable bodies at the site of contact could have greater
impact on those controllers.

Recent advent in biped controllers primarily focused on robust lo-
comotion. Motion with large impact due to collisions has not been
demonstrated on physically simulated character. One exciting fu-
ture direction is to design new controllers that exploit soft contact
to achieve motion with frequent high-speed collisions, such as fight-
ing, parkour, or American football.

A related topic that remains relatively un-explored is the control in
the presence of collisions between human characters. Successful

rigid body collision algorithms do not lend themselves well to col-
lisions for human motion because human is made of neither passive
nor rigid bodies. We believe that the problem of collision with hu-
man body is unique and needs to be considered together with the
problem of motion control. Our work takes a step toward designing
a better collision algorithm specifically for modeling human mo-
tion.
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