
MemBrain: Automated Application Guidance for
Hybrid Memory Systems

M. Ben Olson∗ Tong Zhou∗ Michael R. Jantz∗ Kshitij A. Doshi† M. Graham Lopez‡ Oscar Hernandez‡

∗Electrical Engineering and
Computer Science Department

University of Tennessee, Knoxville
{molson5,tzhou9,mrjantz}@utk.edu

†Intel R⃝ Corporation
Chandler, AZ

kshitij.a.doshi@intel.com

‡Computer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, TN
{lopezmg,oscar}@ornl.gov

Abstract—Computer systems with multiple tiers of memory
devices with different latency, bandwidth, and capacity char-
acteristics are quickly becoming mainstream. Due to cost and
physical limitations, device tiers that enable better performance
typically include less capacity. Such heterogeneous memory
systems require alternative data management strategies to utilize
the capacity-constrained resources efficiently. However, current
techniques are often limited because they rely on inflexible
hardware caching or manual modifications to source code.

This paper introduces MemBrain, a new memory management
framework that automates the production and use of data-tiering
guidance for applications on hybrid memory systems. MemBrain
employs program profiling and source code analysis to enable
transparent and efficient data placement across different types
of memory. It automatically clusters data with similar expected
usage patterns into page-aligned regions of virtual addresses
(arenas), and uses offline profile feedback to direct low-level
tier assignments for each region. We evaluate MemBrain on an
Intel Knights Landing server machine with an upper tier of
limited capacity (but higher bandwidth) MCDRAM and a lower
tier of conventional DDR4 using a selection of high-bandwidth
benchmarks from SPEC CPU 2017 as well as two proxy apps
(Lulesh and AMG), and one full scale scientific application
(QMCPACK). Our evaluation shows that MemBrain can achieve
significant performance and efficiency improvements compared
to current guided and unguided management strategies.

I. INTRODUCTION

Recent years have witnessed the emergence of several new
memory technologies with distinct advantages over conven-
tional double data rate (DDR) SDRAM. Storage-class memo-
ries (SCMs), –such as spin-torque transfer (STT) RAM, phase
change memory (PCM), and resistive RAM (ReRAM), enable
durable byte-addressable storage, with random access latencies
that are multiple orders of magnitude shorter than state-of-the-
art solid state and spinning disks. Several SCM technologies
also allow finer resolution semiconductor integration and,
since they do not require refresh power, are more energy ef-
ficient than DRAM. Another recent technology often referred
to as “on-package” (or “die-stacked”) memory places one or
more 3D stacks of memory inside the same package as the pro-
cessing unit to deliver orders of magnitude higher bandwidth,

and thus has a strong potential to address the memory wall.
Despite their promise, each of these new technologies also
comes with its own set of drawbacks. At introduction, SCMs
will lag behind modern volatile memory in access latencies
and bandwidths [1], and are expected to present non-uniform
performance under extreme load. Likewise, while on-package
memory delivers high access bandwidth, it is generally only
available in limited capacity: for example, in Intel R⃝’s Xeon
Phi processor, only eight MCDRAM modules (2GB each) are
currently available [2].

To keep pace with rapidly growing data demands, many
next-generation computing systems will provide multiple tiers
of memory storage, including: 1) an on-package tier with high-
performance but limited capacity, 2) a tier of conventional
DRAM (e.g. DDR), and 3) a (physically) non-volatile memory
tier with high capacity, but with less bandwidth and longer
latencies for reads and writes. Depending on the configuration,
the third tier may also provide durable in-memory storage or
simply extend the capacity of volatile RAM.

Propelled by this shifting landscape, the architecture and
systems communities are developing new data management
strategies to take advantage of the different strengths of
each tier. A popular software-based approach uses either the
operating system (OS) by itself, or the OS in conjunction
with the application to assign data into different memory tiers,
with facilities to allow migrations of data between tiers as
needed. Some hybrid memory systems already provide API’s
that allow applications to control the placement of their data
objects through the use of source code annotations [3], [4].
These finer-grained controls permit developers to coordinate
tier assignments with data allocation and usage patterns, and
can potentially expose powerful new efficiencies not found
by unguided strategies, such as hardware-managed caching or
first touch paging.

Recent research has also proposed data profiling and allo-
cation tools to generate and apply software-level guidance for
hybrid memory management [5], [6], [7], [8], [9], [10], [11].
While these studies evince some of the benefits of application-
guided data tiering, there are still significant limitations that
can hinder their effectiveness for real programs. For instance,978-1-5386-5541-2/18/$31.00 c⃝2018 IEEE

all of these prior works use simulation models or coarse-
grained sampling to estimate bandwidth and/or latency re-
quirements for application data, and therefore are vulnerable
to inefficiencies that arise from sparse or inaccurate profiles.
Furthermore, most current toolsets require users to manually
tag data structures and allocation sites in the application source
code, and limit guidance to only a portion of heap objects.

Our approach, called MemBrain, aims to address the limi-
tations of current software-based tiering strategies and enable
more efficient data placement on hybrid memory systems.
MemBrain facilitates the use of data-tier guidance by as-
sociating profiles of memory usage characteristics, such as
bandwidth and capacity, with program allocation sites. Our
framework includes a set of offline profiling tools that gen-
erate site-tier recommendations automatically, as well as a
static compilation pass that annotates allocation instructions
with unique identifiers, and optionally considers function call
context to distinguish sites reached by multiple paths. During
execution, applications interface with the MemBrain runtime,
which intercepts their allocation instructions, and uses the
static annotations to assign new data to the recommended tier.

This work describes the design and implementation of
MemBrain, which is the first hybrid memory management
framework to enable automated data-tier guidance with vir-
tually no execution overhead. To test our approach, we deploy
it on an Intel R⃝ Xeon Phi server machine with multiple
memory tiers, including: an upper tier of high-bandwidth, but
limited capacity, on-chip memory (MCDRAM), and a lower
tier of conventional (DDR4) memory with more capacity. Our
evaluation uses data-intensive workloads as well as a full-scale
scientific computing application to compare the effectiveness
of guided data tiering with standard unguided management
strategies. Additionally, we use MemBrain to investigate and
quantify the importance of various aspects of our approach,
including: profile accuracy, the use of function call context
to distinguish allocation sites, and alternative bin-packing
algorithms for assigning data to each memory tier.

The main contributions of this work are as follows:
1) We design, implement, and evaluate MemBrain: a

software-based data management framework that allows
applications to automatically generate and apply fine-
grained tiering guidance on real hybrid memory systems.

2) We develop novel tools to collect profiles of memory
bandwidth and capacity and use them to investigate and
quantify trade-offs between profile overhead, accuracy,
and performance.

3) We demonstrate that considering function call context
can enhance automated tiering guidance for some ap-
plications, and construct a static compilation pass to
distinguish data with different allocation contexts with
no execution time overhead, and

4) We propose a new approach for partitioning application
data into device tiers under different capacity constraints,
and present evaluation that shows that our strategy out-
performs current guided and unguided software-based
data management techniques.

II. RELATED WORK

Spurred by such computing trends as Big Data and Exascale
computing, research interest in emerging memory devices and
how to utilize them efficiently has grown significantly in the
last few years. Several recent projects have proposed software-
driven strategies for managing data on multi-tier memory
systems [5], [12], [6], [13], [14], [8], [7], [15], [9], [10], [16],
[11]. Similar to MemBrain, many of these approaches rely on
profiling or runtime feedback to steer data placement across
the memory hierarchy. This work complements these prior
efforts by introducing a novel tool that enables more accurate
profiles of memory usage behavior, and is the first study to
investigate trade-offs of profile accuracy and performance for
feedback-directed hybrid memory management. Some of these
prior works have also proposed automating the application of
data-tier guidance by associating it with program allocation
sites [9], [11]. However, prior works either relied on simula-
tion, and did not account for the overhead of context detection,
or used an expensive stack-walking strategy to detect function
call context at each allocation request. In contrast, MemBrain
uses a custom compilation pass to generate distinct code paths
for each allocation instruction and its context, thereby avoiding
the overhead of context detection during execution.

Some hybrid memory systems include architectural features
that allow data to move across the memory hierarchy without
direction from application software. For instance, the “cache-
mode” option on the Xeon Phi platform we use in this work
exercises the MCDRAM tier as a large last-level cache to
DDR4. Previous research has also explored the use of large
capacity DRAM caches, and new designs have recently been
proposed to improve their performance [17], [18], [19], [20],
[21], [22]. While in-memory caching provides some immedi-
ate advantages, such as software-transparency and backwards
compatibility, it is inflexible, often less efficient, and reduces
the system’s available capacity. It can also impose unpalatable
architectural costs as the high-bandwidth tier must either
be implemented as a tagless direct-mapped (non-associative)
cache, or it requires storage for associative tags. By automating
the application of software guidance, our approach aims to
enable transparent data management for hybrid memory plat-
forms, without the limitations of hardware-based approaches.

A number of other works have integrated application-
level guidance with physical data management in the OS
and hardware on conventional (i.e., homogeneous) memory
platforms. Earlier projects developed frameworks or APIs
to expose kernel resources to applications [23], [24] or to
facilitate communication between upper- and lower-level data
management routines [25], [26], [27], [28]. More recent efforts
have combined these cross-layer approaches with automated
collection of high-level guidance to address a variety of issues,
including: DRAM energy efficiency [29], [30], cache pollu-
tion [31], traffic congestion for non-uniform memories [32],
and data movement costs for non-uniform caches [33], [34].
These projects demonstrated that software profiling and analy-
sis are powerful and effective tools for guiding low-level data

Application

source code

Annotated

executable Memory usage

statistics

Program input

Program

execution

Compile with

site annotations MemBrain

runtime

Annotated

executable

Architectural

profiling

Site → tier

guidance

Bin-packing /

sorting

heuristics

Hybrid memory hardware

Program input

Program

execution
MemBrain

runtime

Annotated

executable

Guided data

placement

Hybrid memory hardware

Memory usage

statistics

Site → tier

guidance

(a) (b) (c) (d)

Fig. 1. Automated data-tiering guidance with MemBrain. (a) Compile executable with source code annotations at each allocation site, optionally with function
call context, (b) Profile memory usage behavior of each site in a separate program run using architectural counters or sampling, (c) Employ bin-packing /
sorting heuristics to assign data-tier recommendations to each site, (d) Apply data-tiering recommendations during subsequent program executions.

management, and have helped inspire our approach. While
their purposes and goals are very different from ours, we will
continue to draw upon their lessons as we adapt MemBrain
for new use cases and different types of memory hardware.

III. AUTOMATED APPLICATION GUIDANCE FOR HYBRID
MEMORY SYSTEMS

The Intel R⃝ Xeon Phi-based platform we use for this study
employs a two-layer memory system. The upper (MCDRAM)
tier exhibits similar RD/WR latencies as the lower (DDR4)
tier, but is able to sustain much higher bandwidths, and
contains only a fraction of the capacity. Thus, our goal is to
derive placement decisions that maximize the rate of access
to the upper tier within its capacity constraint. Our approach
collects profiles of memory usage behavior, and associates
them with the static instructions that allocate program data
(also called allocation sites). Each allocation site corresponds
to a source code file name and line number and may optionally
include part or all of the call path leading up to the site.
A separate analysis pass (described in Section III-A) also
converts the usage profiles into tier recommendations for each
site prior to guided execution.

Figure 1 illustrates the process of generating and applying
tiering guidance with MemBrain. There are two main motiva-
tions for this approach. First, associating data usage metrics
with allocation sites, rather than address ranges or individual
heap objects, makes it easier to compare memory behavior
and apply tier recommendations across different executions of
the same program. Second, intuitively, applications tend to use
all or most of the data allocated from a particular site for the
same purpose, and often allocate data for different purposes
from different sites. Thus, this approach is also an effective
means for grouping data into equivalence classes with similar
expected usage behavior.

The line plots in Figure 2 help demonstrate the potential of
this approach for multi-layer memory systems. To construct
these plots, we first used MBI-based profiling tools (described
in Section IV-C) to measure the bandwidth and capacity of
the data associated with each allocation site in our workloads.
We then computed a hotness score for each site as the average

bandwidth (GB/sec) divided by the maximum resident set size
(RSS) (GB) of its data. The markers in each graph show
the cumulative capacity (on the x-axis) and bandwidth (on
the y-axis) of a particular workload’s allocation sites, plotted
in the order of their hotness scores, and normalized by the
average bandwidth and peak RSS of the entire workload. We
provide two plots for each workload: the upper plot identifies
allocation sites by their source code location alone, while the
lower plot considers an additional four layers of function call
context to distinguish sites reached by different call paths.

The plots reveal that most of the bandwidth of most work-
loads is contained within a relatively small portion of their
capacity. For example, the upper (no context) plot for qmcpack
shows that objects that account for only 23% of the workload’s
capacity also generate more than 63% of its bandwidth. Some
workloads, such as imagick and amg, allocate almost all of
their data from a single source code location. In these cases,
there is not enough differentiation in the usage profiles for the
upper plots to exhibit any sort of bandwidth clustering effect.
However, the lower plots show that using call stack context
to distinguish additional sites often enables more effective
bandwidth clustering, especially when the number of sites
without context is relatively small.

A. Assigning Application Data to Hybrid Memory Tiers

Several recent projects have proposed data management
strategies that rely on program profiling to separate application
data into different capacity-constrained memory regions [35],
[36], [9], [11], [30]. For this work, we adopt two techniques
from these recent studies for use with MemBrain. Our first
adopted approach views the task of assigning application
data into different device tiers as an instance of the classical
0/1 knapsack optimization problem. In this formulation, each
allocation site is an item with a certain value (bandwidth)
and weight (capacity). The goal is to fill a knapsack such
that the total capacity of the items does not exceed some
threshold (chosen as the size of the upper tier), while also
maximizing the aggregate bandwidth of the selected items.
Our second approach, called hotset and adopted from [11],
aims to avoid a weakness of knapsack, namely, that it may

0 20 40 60 80 100
0

20

40

60

80

100

%
of

to
ta

l
ba

nd
w

id
th

N
o

co
nt

ex
t

imagick

0 20 40 60 80 100
0

20

40

60

80

100
fotonik3d

0 20 40 60 80 100
0

20

40

60

80

100
roms

0 20 40 60 80 100
0

20

40

60

80

100
lulesh

0 20 40 60 80 100
0

20

40

60

80

100
amg

0 20 40 60 80 100
0

20

40

60

80

100
qmcpack

0 20 40 60 80 100

% of total RSS

0

20

40

60

80

100

%
of

to
ta

l
ba

nd
w

id
th

W
ith

ca
ll

pa
th

co
nt

ex
t

0 20 40 60 80 100

% of total RSS

0

20

40

60

80

100

0 20 40 60 80 100

% of total RSS

0

20

40

60

80

100

0 20 40 60 80 100

% of total RSS

0

20

40

60

80

100

0 20 40 60 80 100

% of total RSS

0

20

40

60

80

100

0 20 40 60 80 100

% of total RSS

0

20

40

60

80

100

Fig. 2. Line plots of cumulative capacity and bandwidth associated with program allocation sites. The upper graphs do not use any function call context to
distinguish sites reached by different call paths. The lower graphs use four additional layers of function call context to identify each site.

exclude a site on the basis of its capacity alone, even if it
exhibits high bandwidth. Hotset simply sorts the sites by their
bandwidth per unit capacity (similar to the hotness scores
described above), and selects sites until their aggregate size
exceeds a soft capacity limit. For example, if the capacity of
the upper tier is C, then knapsack will select allocation sites
so that their aggregate size is just below C, while hotset stops
adding sites after the total size is just past C.

Since the hotset approach intentionally over-prescribes ca-
pacity in the upper tier, some cold or lukewarm data may end
up crowding out the hottest objects. To address this drawback,
we also propose an extension to hotset, called thermos, which
aims to keep as much bandwidth as possible in the upper tier.
Thermos is similar to hotset with one exception: it only assigns
a new site to the upper tier if the bandwidth it contributes
is greater than the aggregate bandwidth of the hottest data
it could potentially displace. In this way, thermos avoids
crowding out performance-critical data, while still allowing
large-capacity, high-bandwidth sites to place a portion of their
data in the upper-level memory.

B. Guided Runtime Data Management
During a guided run, MemBrain uses a custom runtime

to intercept and apply data-tiering recommendations at each
allocation instruction. The runtime divides new objects into
independent groups of page-aligned address ranges known as
arenas, and uses a system interface to inform the OS memory
manager of its preferred arena-tier assignments. Depending on
the hardware platform and application characteristics, there
are a number of design choices and trade-offs related to
arena management that can impact the performance of this
approach. Since this study primarily focuses on the feasibility
and effectiveness of static (offline) data-tiering guidance, we
employ a static arena allocation scheme with distinct arenas
for each memory hardware tier. This scheme assigns new
objects to an arena corresponding to their recommended tier,
and keeps object locations and arena-tier assignments fixed
throughout the entire program run.

IV. MEMBRAIN IMPLEMENTATION

MemBrain’s profiling and data management tools rely on
two common facilities to enable automated software guidance:
1) a static compilation pass that annotates each call site with
a unique identifier and optionally distinguishes sites with
different calling context, and 2) a custom memory allocator
that interfaces with the annotated executables, and assigns
application data into arenas according to a specified arena
allocation scheme.

A. Allocation Site Identification and Annotation

Implemented as part of the LLVM infrastructure [37], our
custom compilation pass traverses the application’s static call
graph, assigns unique integer identifiers to each allocation
instruction, and replaces each such instruction with a cor-
responding invocation of the MemBrain allocator with the
identifier passed as an argument. The current pass supports
source code written in C, C++ and Fortran 90, and identi-
fies the following allocation routines from their standard li-
braries: malloc, calloc, realloc, posix_memalign,
aligned_alloc, _Znam, _Znwm, and f90_alloc as
well as its variants.

Many applications use only one or a few allocation instruc-
tions throughout their entire source code, but invoke these
instructions from a large number of different code paths during
execution. To enhance guidance for these programs, our pass
provides an option to clone functions in the source code so that
the call path leading to each allocation instruction is unique up
to some length n. Figure 3 shows an example of applying the
function cloning pass with n = 2. The original call graph
on the left contains a single allocation instruction that is
reachable by three call paths of length 2: AD, BD, and CD.
Starting from the inner-most node, the pass walks each path
back (towards main) and creates a separate copy (including
the subtree) of the first node it finds with multiple parents,
resulting in the call graph shown on the right. Whenever the
graph is modified, the pass recomputes unique identifiers and

mb_alloc

(size, 1)

B

A

D

C B

A

D

C

D’’

mb_alloc

(size, 1)

mb_alloc

(size, 3)

D’

mb_alloc

(size, 2)

Apply function cloning

Fig. 3. Function cloning example. The original call graph contains one
allocation instruction reachable by three call paths. After cloning, there are
three distinct allocation instructions, each with their own unique call path.

call paths for each allocation instruction before continuing the
cloning operation. Termination occurs when there are no call
paths of length n (or less) that end at the same allocation site.

B. Arena Allocation and Management

The MemBrain runtime extends the popular jemalloc [38]
allocator (v. 5.1) to distribute application data into arenas.
Exactly how data maps to arenas depends on whether the
runtime is used to profile or guide data management. For
guided runs, MemBrain implements the static arena allo-
cation scheme described in Section III-B with exclusive
DDR4 and MCDRAM arenas for each program thread. At
each allocation request, the runtime determines the allocating
thread (using pthread_self [39]), queries the site-tier
recommendation from the pre-loaded guidance, and uses it
to assign the new data to the appropriate arena. MemBrain
attaches tier recommendations to each arena whenever one
is created or resized using the mbind system call with
the MPOL_PREFERRED mode [40]. In contrast MPOL_BIND
mode, MPOL_PREFERRED allows the application to over-
prescribe the MCDRAM tier without causing an error.

The MemBrain profiling tools rely on an alternative arena
management scheme that uses exactly one arena per allocation
site shared between all application threads. This configuration
maps allocation sites to new arenas as they are reached, but
requires synchronization if multiple threads attempt to access
the same arena. Assigning each site’s data into its own arena
allows our tools to profile application data usage over coarse-
grained groups of address ranges, as described next.

C. Profiling Memory Bandwidth and Capacity

Most modern processors, including the Intel R⃝ Xeon Phi we
use for this work, provide architectural support for monitoring
memory usage at different granularities, rates, and overheads.
To better understand the trade-offs between profile accuracy
and performance, we created two tools that use different
techniques for profiling the memory usage of application data.

The first tool employs Precise Event Based Sampling
(PEBS), which is an architectural sampling facility for x86

platforms that has previously been used to guide data place-
ment on conventional and hybrid memory systems [32], [7],
[16]. Our tool configures PEBS to sample and record the tar-
gets of memory read instructions that miss the last level cache
(LLC) (using MEM LOAD UOPS RETIRED.LLC MISS)
into a hardware buffer. When the buffer is full, the runtime
counts the number of addresses in the buffer that fall within
the bounds of an arena. In this way, the PEBS-based profiler
constructs a heatmap of the relative access rates of data
associated with each allocation site. Our tool also uses the
Linux pagemap facility [41] to periodically count the number
of pages in each arena that are resident in physical memory.
At the end of the profile run, the tool outputs the access counts
and peak resident set size associated with each allocation site.

Our second tool introduces a novel profiling technique,
which we call Memory Bandwidth Isolation (MBI). The MBI
technique uses precise architectural counters to provide more
accurate estimates of bandwidth utilization than sampling,
but requires multiple program runs to build a full profile
of the application. For each run, the MBI-based tool places
the data associated with a particular allocation site onto
its own memory tier and all other data on the opposite
tier. It then uses the UNC_IMC_DRAM_DATA_READS and
UNC_IMC_DRAM_DATA_WRITES counters to monitor traffic
on the the isolated tier. To build a complete MBI-based profile,
we first use a separate program run to determine the sites that
are reached during execution and their capacities, and then use
the MBI-based tool to profile the bandwidth of each site.

V. EXPERIMENTAL SETUP

A. Platform

All of our experiments were run on an Intel R⃝ Knight’s
Landing (KNL) machine with a Xeon Phi 7230 CPU
(1.30GHz). The processor includes 64 compute cores with
quadruple hyper-threading (256 hardware threads) and a uni-
fied 32MB L2 cache. The CPU interfaces with a two-level
hybrid memory system with 16GB (8x2) of Intel R⃝ MCDRAM
and 192GB (6x32) of Samsung DDR4-2400 ECC DRAM
(M393A4K40BB1-CRC). We installed CentOS 7.3.1611, and
use its default Linux kernel (v. 3.10.0-514).

B. Workload Description

Our evaluation uses a selection of applications from
the SPEC CPU R⃝ 2017 benchmark suite [42] as well as
three workloads from the CORAL set of throughput bench-
marks [43]. For CPU 2017, we consider only those workloads
that exhibit significant (> 10%) speedups when placed entirely
on the MCDRAM. Four workloads (imagick, fotonik3d, lbm,
and roms) met this criteria, but we exclude lbm because it
allocates the vast majority of its capacity within a single heap
object, and is not likely to experience any benefit (or draw-
back) from automated allocation guidance. From CORAL, we
select two proxy applications (lulesh and amg) and one full
scale scientific application (qmcpack) based on their potential
to stress the memory performance of our platform as well as
our own prior expertise with these applications.

TABLE I
WORKLOAD STATISTICS. COLUMNS SHOW: WORKLOAD NAME, INPUT PARAMETERS, PERFORMANCE METRIC, PERFORMANCE WITH ALL DATA ON DDR4

/ MCDRAM, PEAK RESIDENT SET SIZE (IN GB), AS WELL AS EXECUTABLE SIZE (IN MB) AND # OF ALLOCATION SITES (IN THE EXECUTABLE AND
REACHED DURING EXECUTION) WITH AND WITHOUT APPLYING FUNCTION CLONING TO DISTINGUISH ALLOCATION CALL PATH CONTEXT.

Workload Input Parameters Performance Metric DDR
Perf.

MCDRAM

Perf.
RSS
(GB)

XZ
(MB)

XZ (MB)

(w/ cxt.)

Static
Sites

Reached
Sites

Static
(w/ cxt.)

Reached
(w/ cxt.)

imagick Default SPECspeed ref input Seconds 609.2 531.0 11.3 6.6 21 6 4 7,491 168
fotonik3d Default SPECspeed ref input Seconds 430.9 332.6 9.6 1.4 1.5 279 129 355 141

roms ref w/ NTIMES=20, Lm=1440, Mm=768, N=30 Seconds 196.4 110.6 11 3.2 8.8 640 395 15,211 439
lulesh -s 220 -i 5 -r 11 -b 0 -c 64 -p zones

seconds 690.3 1,284.5 10.5 0.4 0.4 17 16 48 47
amg -problem 2 -n 120 120 120 nnz∗(iters+steps)

seconds
1.2e7 2.5e7 11.5 3.1 15 29 2 11,969 290

qmcpack NiO with the VMC method and 256 walkers blocks∗steps∗Nw
seconds 8.9 17.2 13.7 48 55 3,170 216 13,833 776

Table I lists usage information and statistics for our selected
workloads. Descriptions of each workload are as follows:

• Imagick (ImageMagick) does in-memory manipulations
of a 2068x1380 pixel image: resizing, sharpening, blur-
ring, despeckling, rotating, etc., written in ANSI C.

• Fotonik3D uses the finite-difference time-domain
(FDTD) method for the Maxwell equations to compute
the transmission coefficient of a photonic waveguide,
written in Fortran.

• ROMS, or Regional Ocean Modeling System, is a free-
surface hydrostatic, primitive equation model discretized
with a terrain-following vertical coordinate system, writ-
ten in Fortran.

• Lulesh (v. 2.0) performs a hydrodynamics stencil calcu-
lation with very little communication between computa-
tional units. Makes heavy use of vectorization instruc-
tions, written in C.

• AMG (v. 1.0) is a parallel algebraic multigrid solver
for linear systems arising from problems on unstructured
grids. Highly synchronous and places very large demands
on memory bandwidth, written in ISO-C.

• QMCPACK (v. 3.4) is a Quantum Monte Carlo simula-
tion code with near-perfect weak scaling and extremely
low communication. Mostly written in C++, it makes
extensive use of high-level language features such as
templating and std::allocator.

C. Common Experimental Configuration

All workloads were compiled using the LLVM compiler
toolchain (v. 4.0.1) with -O3 and -march=knl. C/C++
codes use the standard clang frontend, while Fortran codes
are converted to LLVM IR using Flang [44]. The comparison
configurations (‘DDR4-only’, ‘MCDRAM-only’, ‘first touch’,
and ‘cache-mode’) all use the unmodified jemalloc [38] al-
locator (v. 5.0.1) with default parameters. Configurations that
use MemBrain annotate the LLVM IR, and optionally apply
function cloning, after all other optimizations have already
been applied. For executables with call path cloning, we opted
to clone up to four layers of context (i.e., n = 4) because
we found that this configuration distinguishes a large enough
number of allocation paths to aid memory usage guidance, but
is still feasible for MBI-based profiling. A full evaluation of
this parameter is left as future work.

All workloads use OpenMP with 256 software threads
(one for each hardware thread) and (if applicable) one MPI
rank for each evaluation run. We report performance as the
mean average of five runs. To estimate the variability of our
results, we also compute 95% confidence intervals for the
difference between the means of the experimental and baseline
configurations, and plot these intervals as error bars on the
appropriate graphs [45]. Non-heap (i.e., global and stack)
data is a relatively small portion of the total for all of our
workloads.1 All guided configurations use numactl -p to
prefer assignment of non-heap data to the MCDRAM tier.

All of our profiling runs use the same program input
and number of threads as the evaluation run. The PEBS-
based profiling employs a fixed buffer size of 4KB per core.
It samples resident set size (with pagemap) in a separate
thread every 5 seconds and at the end of the run. MBI-based
profiling isolates the data of the target site on the DDR4
tier and places the remaining data on MCDRAM.2 It samples
DDR4 bandwidth every second using the Intel R⃝ Performance
Counter Monitor software [46], and uses the average over the
entire run as the bandwidth for the target site.

To bound the scope of our evaluation, the workloads execute
on an otherwise idle machine and assume an environment
with limited upper tier capacity. Input and problem sizes are
intentionally selected so that the entire application fits within
the MCDRAM tier.To limit the upper tier capacity available
to the application, our experiments use a separate process to
reserve a portion of the MCDRAM so that the remaining free
space is only a fraction of the total capacity that is needed.
This approach has two main advantages: 1) it allows for easier
comparison with an ideal ‘MCDRAM-only’ configuration, and
2) it avoids the potential issue with the MBI-based profiling
of running out of space on the lower capacity tier.

VI. EVALUATION

A. Overhead of Allocation Call Path Detection

We first consider the execution time overhead of distinguish-
ing data allocations from different call paths. Previous efforts
to automate memory usage guidance were either conducted in

1Non-heap data makes up about 12% of the memory footprint of imagick,
and < 2% of all other workloads.

2In contrast to the alternative, this approach ensures that the MBI profiling
will not slow down if the non-isolated data requires more bandwidth than is
available on the DDR4 tier.

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5

E
xe

cu
tio

n
tim

e
(r

el
at

iv
e

to
M

C
D

R
A

M
-o

nl
y)

N
o

co
nt

ex
t

N
o

co
nt

ex
t

N
o

co
nt

ex
t

N
o

co
nt

ex
t

12.5%

first-touch
knapsack

hotset
thermos

25% 50%

imagick

fotonik3d

roms
lulesh

amg
qmcpack

geomean

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

E
xe

cu
tio

n
tim

e
(r

el
at

iv
e

to
M

C
D

R
A

M
-o

nl
y)

W
ith

ca
ll

pa
th

co
nt

ex
t

W
ith

ca
ll

pa
th

co
nt

ex
t

W
ith

ca
ll

pa
th

co
nt

ex
t

W
ith

ca
ll

pa
th

co
nt

ex
t

imagick

fotonik3d

roms
lulesh

amg
qmcpack

geomean

imagick

fotonik3d

roms
lulesh

amg
qmcpack

geomean

Fig. 4. Performance (execution time) of using MBI-based profiling for automated application guidance relative to MCDRAM-only (lower is better).

simulation or used workloads that did not allocate data very
frequently [9], [11]. These studies were less concerned with
the overhead of call path detection, and used a naı̈ve stack-
walking approach based on the backtrace facility from the
C standard library to detect call path context at each allocation
request. To demonstrate the potential of call path cloning to
reduce these overheads, we implemented dynamic call path
detection with backtrace in the MemBrain runtime. At
each allocation request, the runtime invokes backtrace to
collect up to four layers of call path context and stores unique
contexts as keys in an efficient map structure. We tested both
locking and non-locking versions of this approach and found
no significant difference between the results.

Table II shows the execution time overhead of context
detection with backtrace alongside the overhead of exe-
cutables that use the call path cloning technique to distinguish
allocation contexts. A separate column (KAllocs) shows the
allocation rate (in thousands of allocations per second) for
each workload. As with all other performance results in this
section, the overhead is computed as the execution time of
the experimental configuration relative to the default execution
time. For consistent presentation of results, we also convert the
performance metric of the throughput workloads (lulesh, amg,
and qmcpack) to execution time by computing the reciprocal
of their result. For these experiments, both the experimental
and baseline configurations use only the MCDRAM tier.

Thus, while dynamic call path detection with backtrace
can incur prohibitive overheads, static call path cloning does
not cause any degradation in most cases, and is, on average,

TABLE II
EXECUTION TIME WITH CONTEXT DETECTION TECHNIQUES RELATIVE TO

MCDRAM-ONLY WITH NO CONTEXT DETECTION (LOWER IS BETTER).

Workload KAllocs Backtrace Static
Second Time Time

imagick 35.2 2.92 1.01
fotonik3d 0.15 0.99 0.98

roms 39.8 4.80 1.05
lulesh 0.06 1.00 0.99
amg 40.2 1.17 1.03

qmcpack 34.1 1.05 1.00
geomean 24.9 1.61 1.01

only 1% slower than default. Indeed, the cost of static call path
cloning is mostly paid in larger executable sizes (as shown
in Table I) and longer compilation times. However, even our
prototype implementation of this technique adds only a few
seconds (with lulesh) to a few minutes (with qmcpack) of
compilation time for our workloads. It is also important to
note that the overheads in Table II do not always capture
the full expense of the backtrace technique as some of
our workloads only begin timing after initializing most of
their data structures. For instance, the initialization period of
qmcpack is over seven times longer with dynamic call path
detection (∼ 870 seconds) than with static cloning (∼ 120
seconds), but this difference is not reflected in Table II.

B. Automated Application Guidance with MBI-based Profiling

Figure 4 shows the performance (execution time) of pro-
gram runs that use the MBI-based profiling to guide data-

imagick fotonik3d roms lulesh amg qmcpack geomean

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45
E

xe
cu

tio
n

tim
e

(r
el

at
iv

e
to

M
C

D
R

A
M

-o
nl

y)
PEBS Sampling Rate

128
256
512

1024
2048

4096
8192

Fig. 5. Performance (execution time) of PEBS-based profiling with different
sampling rates relative to default MCDRAM-only (lower is better).

tier assignments relative to the performance with the entire
application on the MCDRAM tier. Across the three columns,
we present different sets of results to show the performance
when the capacity of the upper tier is constrained to be a
different percentage of the peak RSS of the workload (either
12.5%, 25%, or 50%). The upper row shows the results
when no additional allocation context is used, while the lower
row shows the performance of executables that use function
cloning to distinguish allocation sites with different call path
context. Within each subfigure, we plot four bars for each
workload to show performance with an unguided (static) first
touch policy (on the left), as well as with guidance constructed
using the knapsack, hotset, and thermos strategies. The group
of bars on the right show the geometric mean performance for
each configuration across all of the workloads.

We can make a number of observations from these results:
1) MBI-based profile guidance enhances static data placement,
which can perform surprisingly well in some cases. For
instance, some configurations of imagick and qmcpack obtain
the full benefit of the MCDRAM with only a fraction of
their data statically assigned to the upper tier. 2) High-quality
tiering guidance is more important when the capacity of the
upper tier is more constrained. On average, guidance improves
performance by more than 20% over unguided first-touch
when the upper tier capacity is limited to 12.5% of peak RSS,
but by less than 10% when 50% of the application’s data is
able to fit in the upper tier. 3) In almost all cases, the thermos
strategy obtains equal or better performance than the knapsack
and hotset approaches. On average, thermos significantly out-
performs the other approaches when the profile guidance uses
additional call path context, regardless of the capacity of the
upper tier. 4) Using call path context to distinguish allocation
sites enhances data tiering guidance (note the different y-axis
scales), and is particularly important for workloads such as
imagick and amg that reach only a small number of allocation
sites if context is not considered. For the remaining evaluation,
we only consider executables that use call path cloning to
distinguish allocation site context.

It is also important to note that the guided approach exhibits
a small increase in total capacity compared to the default
jemalloc allocator. For the thermos strategy, capacity increases

imagick fotonik3d roms lulesh amg qmcpack geomean
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

E
xe

cu
tio

n
tim

e
(r

el
at

iv
e

to
M

C
D

R
A

M
-o

nl
y)

PEBS Sampling Rate
128
256
512
1024

2048
4096
8192

Fig. 6. Performance (execution time) of PEBS-based profiling with different
sampling rates. All runs use the thermos strategy, 25% upper tier capacity
limit, and are relative to MCDRAM-only (lower is better).

by < 5%, on average, with a maximum increase of 15% for
roms with 50% upper tier capacity limit.

C. Automated Application Guidance with PEBS Profiling
While the above results show that automated application

guidance can enhance hybrid data placement, the MBI-based
profiling on which they rely requires a separate program
run for each allocation site, and is not suitable for online
applications. Next, we consider the use of low overhead PEBS-
based profiling to guide static data placement, and compare its
performance to the MBI-based tools.

The PEBS subsystem is able to control the amount of
detail it collects by changing the rate by which it samples
architectural events. To understand how this parameter affects
our approach, we varied the sampling rate of our our PEBS-
based profiling tool from once every 128 LLC misses up to
once every 8,192 LLC misses, with steps increasing in powers
of two.3 Figure 5 displays the execution time of the PEBS-
based profiling tool with different sampling rates relative to
the default MCDRAM-only performance. Overall, we find that
the performance overhead of the PEBS-based profiling tool is
relatively low – between 22% and 32%, on average. While
the sampling rate does have an impact, most of the overhead
is due to contention caused by application threads attempting
to allocate data from the same arenas. If we account for this
cost, the overhead of the PEBS-based profiling alone is only
1.6% to 10.7%, on average.

Figure 6 shows the performance (execution time) impact of
using PEBS-based profiling with different sampling rates to
guide the thermos data placement strategy on our MCDRAM-
DDR4 platform with an upper tier capacity limit of 25% of
what is needed by the application. We find that, with only a
few exceptions, the sampling rate does not have much impact
on the performance of profile-guided data placement. This
outcome suggests that, for online applications, the potential
benefits of higher frequency sampling are not likely to out-
weigh its additional cost.

Next, we consider how the accuracy of the PEBS-based
profiling affects its performance, and if there is any potential

3Further increasing the sampling rate past once every 128 LLC misses
caused the system to become unstable and crash frequently.

imagick

fotonik3d

roms
lulesh

amg
qmcpack

geomean

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

E
xe

cu
tio

n
tim

e
(r

el
at

iv
e

to
M

C
D

R
A

M
-o

nl
y)

12.5%

imagick

fotonik3d

roms
lulesh

amg
qmcpack

geomean

25%

imagick

fotonik3d

roms
lulesh

amg
qmcpack

geomean

50%

first-touch
PEBS-guided
MBI-guided

Fig. 7. Performance (execution time) of unguided, PEBS-guided, and MBI-guided strategies relative to MCDRAM-only (lower is better).

imagick fotonik3d roms lulesh amg qmcpack geomean
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

E
xe

cu
tio

n
tim

e/
B

an
dw

id
th

(r
el

at
iv

e
to

M
C

D
R

A
M

-o
nl

y)

PEBS-guided
MBI-guided
cache-mode

Fig. 8. Performance (execution time) (as bars) and total memory bandwidth
(as markers) of PEBS- and MBI-guided runs, alongside cache-mode, relative
to MCDRAM-only (lower is better).

for further improvement. Figure 7 compares the performance
(execution time) of the best PEBS profile-guided configuration
(with sampling rate=512) to MBI-guided placement and an
unguided static first touch strategy. Both guided configurations
use the thermos strategy and all results are shown relative
to MCDRAM-only. The results show that the PEBS-guided
strategy typically outperforms an unguided approach, but is
still significantly slower than MBI-guided data placement.
Interestingly, there is less difference between the performance
of the PEBS- and MBI-guided runs when there is more space
available in the upper tier. Further analysis with individual
workloads indicates that the PEBS profiling does correctly
distinguish some large allocation sites as cold, but it struggles
to differentiate between hot and lukewarm data. Thus, there
is still a need for more accurate bandwidth profiling with low
enough overhead to be suitable for online applications.

D. Comparison with Hardware-Managed Caching

Lastly, we compare the performance of static data placement
guided by application profiling to an adaptive, unguided ap-
proach that relies on hardware-managed caching. For these ex-
periments, we prepare a “cache-mode” configuration that uses
the KNL Hybrid memory mode [47] to exercise 25% (4GB)
of the MCDRAM as a direct-mapped cache to application data
on the lower tier. To provide an ‘apples-to-apples’ comparison

with our approach, we ran the static guidance-based strategies
alongside an otherwise idle process that reserves all but 4GB
of the capacity in the MCDRAM tier.

Figure 8 displays the performance (as bars) and total
memory bandwidth (as markers) of the PEBS-guided, MBI-
guided, and cache-mode approaches, relative to the results with
the MCDRAM-only configuration. Not surprisingly, cache-
mode outperforms the static guidance-based approaches in
some cases (roms and amg). The static approaches have no
mechanism for changing data-tier assignments during the run,
and can struggle with workloads that generate highly variable
usage patterns. Despite this property, static placement with
MBI-guidance either meets or exceeds the performance of
cache-mode for 4 of our 6 workloads. Moreover, MemBrain
achieves this performance without the need to migrate appli-
cation data between tiers, and thus, presents an opportunity
to increase memory efficiency. Overall, the PEBS- and MBI-
guided strategies exhibit performance that is 16% and 1%
worse than cache-mode, respectively, but generate 28% less
memory bandwidth for our workloads.

VII. FUTURE WORK

Our results show that low-overhead architectural sampling
is often not accurate enough to produce optimal data-tiering
guidance. In the immediate future, we plan to conduct deeper
analysis of the PEBS-based profiling approach, and will use
the more accurate MBI-based profiles to characterize and, if
possible, resolve issues that hinder its effectiveness. Later, we
plan to build and integrate with MemBrain an online profiling
tool that automates the production and application of memory
usage guidance without prior profiling. We have also found
that, even with highly accurate data-tiering guidance, some
applications perform better with hardware-managed caching
than with software-directed data placement. To facilitate the
use of software guidance with existing hardware features, we
plan to design and implement new data characterization tools
that automatically identify objects and usage patterns that
work well with hardware caching. Finally, while this study
targeted two-level memory on the Intel R⃝ Xeon Phi, the source
code analysis, profiling, and data management tools we have
developed can be adapted for applications on any platform

with multiple memory tiers. In the future, we plan to modify
our framework for use with other architectures and emerging
memory technologies, including the Intel R⃝-Micron R⃝ Hybrid
Memory Cube [48] and Intel R⃝ 3D XPoint [49], and will
explore the potential challenges and opportunities that arise
from managing their data with MemBrain.

VIII. CONCLUSIONS

Emerging memory technologies are forcing systems to alter
their data management strategies to take advantage of the
different capabilities and performance provided by the new
types of hardware. Most current strategies rely on source
code modifications and/or hardware-based caching to adapt
memory traffic and access patterns to heterogeneous memory
devices. In this paper, we present MemBrain: a software-
based data management framework that aims to address the
limitations of current approaches and enable more efficient
data placement on hybrid memories. MemBrain introduces
new compilation, profiling, and runtime tools to automate
the production and use of effective data tiering guidance
for application software. Our evaluation, conducted on an
Intel R⃝ Knight’s Landing machine with MCDRAM and DDR4,
quantifies the importance of profile accuracy, and demonstrates
that our approach yields significant performance and efficiency
improvements compared to current techniques.

ACKNOWLEDGEMENTS

This research is supported in part by the National Science
Foundation under CCF-1619140, CCF-1617954, and CNS-
1464288, as well as a grant from the Software and Services
Group (SSG) at Intel R⃝ Corporation.

REFERENCES
[1] I. C. Kristian Vatto and R. Smith, “Analyzing intel-micron 3d xpoint: The next

generation non-volatile memory,” http://www.anandtech.com/show/9470/intel-
and-micron-announce-3d-xpoint-nonvolatile-memory-technology-1000x-higher-
performance-endurance-than-nand, July 2015.

[2] A. Sodani, “Knights landing (knl): 2nd generation intel R⃝ xeon phi processor,” in
Hot Chips 27 Symposium (HCS), 2015 IEEE. IEEE, 2015, pp. 1–24.

[3] C. Cantalupo, V. Venkatesan, and J. R. Hammond, “User extensible heap manager
for heterogeneous memory platforms and mixed memory policies,” 2015.

[4] NVIDIA, “Gp100 pascal whitepaper,” https://images.nvidia.com/content/pdf/tesla/
whitepaper/pascal-architecture-whitepaper.pdf, 2016.

[5] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and S. W. Keckler, “Page
placement strategies for gpus within heterogeneous memory systems,” SIGPLAN
Not., vol. 50, no. 4, pp. 607–618, Mar. 2015.

[6] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran, J. Jackson,
and K. Schwan, “Data tiering in heterogeneous memory systems,” in Proceedings
of the Eleventh European Conference on Computer Systems. ACM, 2016, p. 15.

[7] N. Agarwal and T. F. Wenisch, “Thermostat: Application-transparent page man-
agement for two-tiered main memory,” in Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’17. New York, NY, USA:
ACM, 2017, pp. 631–644.

[8] I. B. Peng, R. Gioiosa, G. Kestor, P. Cicotti, E. Laure, and S. Markidis, “Rthms:
A tool for data placement on hybrid memory system,” in Proceedings of the 2017
ACM SIGPLAN International Symposium on Memory Management, ser. ISMM
2017. New York, NY, USA: ACM, 2017, pp. 82–91.

[9] H. Servat, A. J. Pea, G. Llort, E. Mercadal, H. Hoppe, and J. Labarta, “Automat-
ing the application data placement in hybrid memory systems,” in 2017 IEEE
International Conference on Cluster Computing (CLUSTER), Sept 2017.

[10] M. Laghari and D. Unat, “Object placement for high bandwidth memory aug-
mented with high capacity memory,” in 29th Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD), Oct 2017, pp. 129–136.

[11] T. C. Effler, A. P. Howard, T. Zhou, M. R. Jantz, K. A. Doshi, and P. A. Kulkarni.,
“On automated feedback-driven data placement in hybrid memories.” in LNCS
International Conference on Architecture of Computing Systems (ARCS18), 2018.

[12] M. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and G. Loh,
“Heterogeneous memory architectures: A hw/sw approach for mixing die-stacked
and off-package memories,” in High Performance Computer Architecture (HPCA),
2015 IEEE 21st International Symposium on, Feb 2015, pp. 126–136.

[13] M. Oskin and G. H. Loh, “A software-managed approach to die-stacked dram,” in
2015 International Conference on Parallel Architecture and Compilation (PACT).
IEEE, 2015, pp. 188–200.

[14] M. Giardino, K. Doshi, and B. H. Ferri, “Soft2lm: Application guided heteroge-
neous memory management,” in IEEE International Conference on Networking,
Architecture and Storage (NAS), Long Beach, CA, USA, August 8-10, 2016, 2016.

[15] Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu, “Utility-based
hybrid memory management,” in 2017 IEEE International Conference on Cluster
Computing (CLUSTER), Sept 2017.

[16] K. Wu, Y. Huang, and D. Li, “Unimem: Runtime data managementon non-volatile
memory-based heterogeneous main memory,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’17. New York, NY, USA: ACM, 2017, pp. 58:1–58:14.

[17] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi, “Simple but effective hetero-
geneous main memory with on-chip memory controller support,” in Proceedings of
the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Computer Society, 2010, pp. 1–11.

[18] G. H. Loh and M. D. Hill, “Efficiently enabling conventional block sizes for very
large die-stacked dram caches,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 2011, pp. 454–464.

[19] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim, “Transparent
hardware management of stacked dram as part of memory,” in Proceedings of
the 47th Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-47. Washington, DC, USA: IEEE Computer Society, 2014, pp. 13–24.
[Online]. Available: \url{http://dx.doi.org/10.1109/MICRO.2014.56}

[20] C. Chou, A. Jaleel, and M. K. Qureshi, “Cameo: A two-level memory organization
with capacity of main memory and flexibility of hardware-managed cache,” in
Proceedings of the IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-47. Washington, DC, USA: IEEE Computer Society, 2014, pp. 1–12.

[21] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee: Bandwidth-
efficient dram caching via software/hardware cooperation,” in Proceedings of
the 50th Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-50 ’17. New York, NY, USA: ACM, 2017, pp. 1–14.

[22] V. Young, P. J. Nair, and M. K. Qureshi, “Dice: Compressing dram caches
for bandwidth and capacity,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture, ser. ISCA ’17. New York, NY, USA:
ACM, 2017, pp. 627–638.

[23] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr., “Exokernel: an operating system
architecture for application-level resource management,” SIGOPS Oper. Syst. Rev.,
vol. 29, no. 5, pp. 251–266, Dec. 1995.

[24] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières, and C. Kozyrakis,
“Dune: safe user-level access to privileged cpu features,” in Proceedings of the
10th USENIX conference on Operating Systems Design and Implementation, ser.
OSDI’12. USENIX Association, 2012, pp. 335–348.

[25] G. Banga, P. Druschel, and J. C. Mogul, “Resource containers: a new facility for
resource management in server systems,” in Proceedings of the third symposium
on Operating systems design and implementation, ser. OSDI ’99. USENIX
Association, 1999, pp. 45–58.

[26] A. Kleen, “A numa api for linux,” SUSE Labs white paper, August 2004.
[27] M. R. Jantz, C. Strickland, K. Kumar, M. Dimitrov, and K. A. Doshi, “A

framework for application guidance in virtual memory systems,” in Proceedings
of the 9th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, ser. VEE ’13, 2013, pp. 155–166.

[28] N. Beckmann and D. Sanchez, “Jigsaw: Scalable software-defined caches,” in
Parallel Architectures and Compilation Techniques, ser. PACT ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 213–224.

[29] M. R. Jantz, F. J. Robinson, P. A. Kulkarni, and K. A. Doshi, “Cross-layer memory
management for managed language applications,” in Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, ser. OOPSLA 2015. New York, NY, USA: ACM,
2015, pp. 488–504.

[30] M. B. Olson, J. T. Teague, D. Rao, M. R. JANTZ, K. A. Doshi, and P. A.
Kulkarni, “Cross-layer memory management to improve dram energy efficiency,”
ACM Trans. Archit. Code Optim., vol. 15, no. 2, pp. 20:1–20:27, May 2018.

[31] R. Guo, X. Liao, H. Jin, J. Yue, and G. Tan, “Nightwatch: integrating lightweight
and transparent cache pollution control into dynamic memory allocation systems,”
in 2015 USENIX Annual Technical Conference (USENIX ATC 15), 2015.

[32] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers, V. Quema,
and M. Roth, “Traffic management: a holistic approach to memory placement on
numa systems,” in ACM SIGPLAN Notices, vol. 48, no. 4. ACM, 2013.

[33] A. Mukkara, N. Beckmann, and D. Sanchez, “Whirlpool: Improving dynamic
cache management with static data classification,” in Proceedings of the Twenty-
First International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ser. ASPLOS ’16. New York, NY, USA: ACM,
2016, pp. 113–127.

[34] P.-A. Tsai, N. Beckmann, and D. Sanchez, “Jenga: Software-defined cache
hierarchies,” in Proceedings of the 44th Annual International Symposium on
Computer Architecture, ser. ISCA ’17. New York, NY, USA: ACM, 2017, pp.
652–665. [Online]. Available: \url{http://doi.acm.org/10.1145/3079856.3080214}

[35] A. J. Pea and P. Balaji, “Toward the efficient use of multiple explicitly managed
memory subsystems,” in 2014 IEEE International Conference on Cluster Comput-
ing (CLUSTER), Sept 2014, pp. 123–131.

[36] M. R. Jantz, F. J. Robinson, and P. A. Kulkarni, “Impact of intrinsic profiling
limitations on effectiveness of adaptive optimizations,” ACM TACO, 2016.

[37] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program
analysis & transformation,” in Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-directed and Runtime Optimization,
ser. CGO ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 75–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=977395.977673

[38] J. Evans, “A scalable concurrent malloc (3) implementation for freebsd,” 2006.
[39] “pthreads - posix threads, linux programmer’s manual.” [Online]. Available:

http://man7.org/linux/man-pages/man7/pthreads.7.html
[40] “mbind - set memory policy for a memory range.” [Online]. Available:

http://man7.org/linux/man-pages/man2/mbind.2.html
[41] “pagemap, from the userspace perspective.” [Online]. Available: https://www.

kernel.org/doc/Documentation/vm/pagemap.txt
[42] SPEC, “Spec cpu 2017,” 2017. [Online]. Available: https://www.spec.org/cpu2017/
[43] LLNL, “Coral benchmark codes,” https://asc.llnl.gov/CORAL-benchmarks, 2014.
[44] “Flang,” https://github.com/flang-compiler/flang.
[45] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous java performance

evaluation,” in Object-oriented programming systems, languages, and applications,
ser. OOPSLA ’07, 2007, pp. 57–76.

[46] T. Willhalm, R. Dementiev, and P. Fay, “Intel performance counter monitor - a bet-
ter way to measure cpu utilization,” https://software.intel.com/en-us/articles/intel-
performance-counter-monitor, 2012.

[47] Intel, “Intel xeon phi x200 processor - memory modes and cluster modes: Configu-
ration and use cases,” https://software.intel.com/en-us/articles/intel-xeon-phi-x200-
processor-memory-modes-and-cluster-modes-configuration-and-use-cases, Decem-
ber 2015.

[48] H. M. C. Consortium, “Hmc specification 2.1,” 2014.
[49] Intel, “3d xpoint,” http://www.intel.com/content/www/us/en/architecture-and-
technology/3d-xpoint-unveiled-video.html, 2016.

