
Grouper: A Compact, Streamable Triangle
Mesh Data Structure

Mark Luffel, Topraj Gurung, Peter Lindstrom, Senior Member, IEEE, and

Jarek Rossignac

Abstract—We present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for

large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of

a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex.

Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that

vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We present a

linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the initial

ordering of vertices. As a part of this construction, we show how the problem of assigning vertices and triangles to groups reduces to a

well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our

array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles.

Storing only about two integer references per triangle—i.e., less than the three vertex references stored with each triangle in a

conventional indexed mesh format—Grouper answers both incidence and adjacency queries in amortized constant time. Our compact

representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed

processing, as well as efficient out-of-core access. We demonstrate the versatility and performance benefits of Grouper using a suite

of example meshes and processing kernels.

Index Terms—Mesh compression, mesh data structures, random access, out-of-core algorithms, large meshes

Ç

1 INTRODUCTION

TRIANGLE meshes are the most common representation of
surfaces in computer graphics and computational

science. A typical representation of a triangle mesh is as a
table of vertices and a table of indices to the vertices, where
each consecutive triplet of indices represents one triangle.
This “indexed mesh” representation supports tasks such as
rendering, but operations that require knowing which
triangles are adjacent to one another necessitate a linear
search over all triangles. To provide constant-time access to
adjacent elements it is common to store additional
adjacency references. Such information is required by tasks
such as tracing the intersection between surfaces, solving
differential equations defined on a surface, and by most
other geometry processing and analysis applications.

For massive meshes that do not fit in main memory, the

construction of adjacency relationships from an indexed

mesh is a difficult task. A typical approach requires a series

of external sorts [1], temporary storage several times that of

the final data structure (sometimes tens of gigabytes), and

several hours to construct [2], [3], [4], [5]. The final data

structure is usually a factor of 2-3 larger than an indexed
mesh. Working with such a data structure often involves on-
demand paging and explicit caching of portions of the mesh.

As an alternative to such out-of-core data structures,
simple data analysis and geometry processing tasks can
often be implemented as stream kernels that make a single
sequential pass over the mesh. A streaming mesh [6]
interleaves vertices and triangles and encodes when mesh
elements are last referenced, allowing proactive dealloca-
tion and in-memory random access to a small active set.
Such mesh formats, which store only little more information
than an indexed mesh, can easily be constructed on the fly
as a part of a mesh generation process without using any
intermediate disk. However, for tasks that require adja-
cency information, an in-memory partial data structure
must be built and maintained by the stream kernel, which
must map global vertex indices to the in-core data structure.
This data structure is then discarded, and the work required
to build it is replicated each time the mesh is processed, for
instance by each module in a pipelined computation.
Moreover, because stream processing relies on sequential
I/O, it is not well suited for tasks that require only select
subsets of the mesh, such as localized queries and data-
dependent traversals, as finding those subsets may require
visiting the whole mesh repeatedly.

To provide the flexibility of random access while
achieving the resource efficiency of stream processing, we
propose a new all-in-one 1) binary format, 2) adjacency data
structure, and 3) streamable representation, called Grouper.
Our format (see Fig. 1), which builds upon the SQuad data
structure [7], partitions the mesh into groups represented
by fixed-length records that store up to one vertex and two
incident triangles. The mesh connectivity is represented as

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. X, XXXXXXX 2013 1

. M. Luffel, T. Gurung, and J. Rossignac are with the Graphics,
Visualization, and Usability Center (GVU), Georgia Institute of
Technology, Atlanta, GA 30308 - 0760.
E-mail: {mluffel, topraj, jarek}@cc.gatech.edu.

. P. Lindstrom is with the Center for Applied Scientific Computing (CASC),
Lawrence Livermore National Laboratory, Box 808, L-422, Livermore, CA
94551-0808. E-mail: pl@llnl.gov.

Manuscript received 21 Aug. 2012; revised 11 Apr. 2013; accepted 1 May
2013; published online 8 May 2013.
Recommended for acceptance by H. Pottmann.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2012-08-0166.
Digital Object Identifier no. 10.1109/TVCG.2013.81.

1077-2626/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

pointers between adjacent groups. These pointers form
loops in the dual graph. This information is sufficient to
determine both adjacency and incidence, allowing meshes
to be represented using only about two indices per triangle
(i.e., less than the three needed in an indexed mesh).
Grouper stores geometry and connectivity interleaved, and
uses a more general representation than SQuad that allows
meshes to be both streamed in and out of memory.

We show how our Grouper data structure can be
constructed efficiently from an incidence-based streaming
mesh format using only a small memory buffer and
localized reordering of triangles (to decrease storage). The
result may be streamed directly to another process or stored
on disk. In the former case, we show how windowed
streaming of a Grouper mesh, which uses a fixed-size in-
memory buffer, eliminates the need to construct connectiv-
ity on the fly, as normally required by stream kernels that
process incidence-based streaming formats. Because Group-
er uses fixed-size records, it supports direct access to
incidence and adjacency for navigating the mesh. Using
memory mapped I/O, out-of-core support may be provided
transparently to applications. Moreover, we show how
data-parallel processing can be achieved using OpenMP [8]
for those tasks that make sequential passes over the mesh,
allowing substantial out-of-core processing speedups over
prior methods.

2 PRIOR ART

Grouper brings together two threads of research: streaming
meshes for out-of-core computations and compact data
structures for random-access mesh processing (exemplified
by SQuad). We review these two types of representations as
well as external memory data structures in the following
sections.

2.1 Compact Connectivity Representations

SQuad [7] is a triangle mesh data structure that provides
constant-time adjacency queries and makes efficient use of
memory, storing connectivity data in slightly more than
2 references per triangle (rpt). SQuad organizes most
triangles in pairs that are matched with a single incident

vertex. It stores adjacency relationships between triangles,
but does not store vertex indices. Instead it infers incident
vertices by examining a small set of candidates that are
found by following loops in the dual graph. Our Grouper
data structure builds upon these ideas. Although SQuad
preserves vertex ordering, any unmatched triangles must be
stored separately (e.g., at the end of the connectivity array),
which degrades coherence and makes SQuad meshes
difficult to stream both in and out of memory.

The LR data structure [9] is twice as compact as SQuad,
storing about 1 rpt for connectivity, but is not suitable as a
streaming representation because its construction imposes a
global ordering of the vertices of a mesh along a nearly
Hamiltonian cycle. This ordering may be incompatible with
the one in which the mesh is generated, in which case
multiple streaming passes or an external sort is needed to
reorder the mesh. The Zipper improvement of LR stores
only about 6 bits per triangle [10], but suffers from the same
limitations. To be of practical use, we seek a data structure
that can be built on the fly, concurrently with the mesh
generation or processing.

The Tripod data structure [11] also represents triangle
mesh connectivity. Its construction algorithm operates by
contracting edges starting from a seed triangle, resulting in
labels at each corner, and identifying three canonical
outgoing edges per vertex, from which the other incident
edges and faces can be inferred. This linear-time algorithm
permits a single-pass streaming implementation, but the
resulting data structure, at 3 rpt, is less compact than SQuad
and can only represent genus zero meshes. The construction
of Tripod requires additional storage for an auxiliary data
structure that supports adjacency queries and a data-
dependent traversal.

2.2 External Memory Data Structures

A number of external memory data structures for triangle
meshes have been proposed, primarily for interactive
visualization. To handle very large meshes, these data
structures often support multiresolution adaptive refine-
ment. The predominant approach is to partition the mesh
into chunks of many triangles that are paged in from disk in
atomic units [2], [3], [4], [5], [12]. Memory management and
I/O are usually handled explicitly by the application.
Recognizing the performance bottleneck associated with
I/O, recent work has focused on compressed representa-
tions [13], [14], [15] that support local decompression for
access to vertices and triangles. Because these techniques
use variable-length coding, the mesh is again partitioned
into chunks to amortize the cost of specifying the locations
of vertices and triangles in the file across a larger portion of
the mesh. The decompressed mesh is usually cached in a
conventional triangle mesh data structure, along with
adjacency information derived from the compressed format.
Although not as compact as these compressed formats, our
Grouper representation uses fixed-length records and
therefore supports random access at a much finer granu-
larity. Furthermore, accesses involve only array lookups,
and require no decoding or explicit caching.

2.3 Streaming Meshes

Streaming out-of-core computations process a mesh via
sequential I/O, maintaining only a small portion of the mesh
in core, on which random access is possible. Because

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. X, XXXXXXX 2013

Fig. 1. Grouper represents a triangle mesh as groups of vertices and
triangles stored as fixed-size records, most of which encode two
adjacent triangles and one incident vertex. A VTT group (tan: 93 percent)
represents one vertex and two adjacent triangles incident upon it; a VT

group (blue: 3 percent) represents one vertex and one incident triangle;
a T group (red: 4 percent) represents one triangle; and a V group (black:
1 percent) represents one vertex. Thick edges separate groups; thin
edges separate triangles within the same group.

resolving references from triangles to vertices in an indexed
mesh typically require that all vertices be stored and can be
looked up in memory, early work on streaming assumed that
the mesh was represented as triangle soup. Each triangle in a
triangle soup is represented as a triplet of vertex positions
(i.e., with no indices), allowing the triangles to be processed
independently one at a time. Chiang and Silva [16] showed
how a large indexed mesh can be converted to triangle soup
using a series of external sorts, thereby stripping the mesh of
its connectivity information. For stream processing tasks that
require connectivity, this information has to be recovered on
the fly, for example, using geometric hashing on vertex
coordinates [17], [18], [19]. However, if the surface has
boundaries, the full connectivity around a vertex cannot be
known until the entire stream has been processed. To avoid
the problems of working with triangle soup, Isenburg et al.
[20] suggested using a compressed format from which both
local connectivity and geometry can be extracted. However,
construction of this format requires an expensive out-of-core
preprocess.

Streaming Meshes [6] are an out-of-core representation
of indexed meshes that provide connectivity and geometry
without the need to first buffer all vertices. A streaming
mesh may be thought of as a decorated indexed mesh that
interleaves vertices and triangles—to provide a local view
of a portion of the mesh—and that supports garbage
collection via reference counting—to limit the memory
footprint. Instead of storing reference counts, a streaming
format usually associates finalization tags with the vertices
that certify that no future triangle in the stream references a
particular vertex, for example, using one extra bit per vertex
reference. This allows stream kernels to deallocate vertices
when no longer needed, making it possible to process
meshes with billions of triangles on off-the-shelf desktop
computers. Streaming meshes may be compressed and
decompressed on the fly [21], making the transfer of large
meshes more feasible, and if secondary storage is very slow,
improving the performance of mesh processing. A large
number of geometry processing tasks have been adapted to
streaming based on the streaming mesh representation,
including Delaunay triangulation [22], remeshing [23],
topological feature extraction [24], mesh simplification
[25], surface reconstruction [26], [27], sampling [28], and
mesh quality improvement [29], among others.

3 GROUPER

Our compact Grouper representation supports on-the-fly
streaming construction and processing, while also enabling
constant-time random access to vertices, triangles, and their
neighbors.

We present the details of the Grouper data structure in
terms of triangle “corners,” each of which associates a
vertex with an incident triangle. We say that a vertex v and
triangle t are incident if v is a vertex of t; two vertices are
adjacent if they belong to the same triangle; and two
triangles are adjacent if they share an edge. We use corners
as iterators over the mesh. These can be manipulated by a
set of traversal operators. We write operators in a postfix
dot notation, similar to object-oriented programming. The
dot notation c:t does not imply that c is a data record that
contains a t field. For example, an operator may be
implemented as a lookup into an array, or as a function to
compute the value.

The operators applied to a corner c are illustrated in Fig. 3.
They are c:n (next) for circulating (clockwise) the corners
within a triangle, c:s (swing) for circulating (clockwise) the
corners of a vertex, and c:t (triangle) and c:v (vertex) for
extracting the triangle or vertex associated with c. We can
combine these four operators to express other convenient
operators. For example, previous can be written c:p ¼ c:n:n
and opposite can be written c:o ¼ c:p:s:p. Operators v:c and t:c
return an unspecified incident corner of (respectively) a
vertex or a triangle.

In an uncompressed data structure for general polygonal
meshes, such as the half-edge representation [30], these
operators are usually implemented using explicit pointers
or indices. In our case, only c:s is stored directly, while c:n
and c:t are computed from c, and c:v is inferred from c:s.
This inference of c:v is possible by matching each vertex
with one of its incident corners, and by reordering the
corners (and thus triangles) such that the vertex index may
be inferred from the corner index.

Grouper partitions the triangles and vertices of a mesh
into small groups of elements, of which there are four types:
VTT, VT, T, and V (see Figs. 1 and 2). The type indicates

LUFFEL ET AL.: GROUPER: A COMPACT, STREAMABLE TRIANGLE MESH DATA STRUCTURE 3

Fig. 2. Grouper represents vertices and triangles in one of four configurations. The green shaded vertices are matched with these triangles, and the
orange arrows represent swing pointers c:z to corners of other groups or to one incident corner for V groups. The V group has no triangle, so we
associate its vertex with a “virtual” corner. Within a group, corners are assigned in-group indices from zero to seven, with 0 identifying the corner
matched with the vertex (or the “virtual” corner in V groups, described in Section 3.1).

Fig. 3. The standard set of corner operators.

whether the group contains a vertex (V, VT, VTT), a triangle
(T, VT), or two triangles (VTT). Using the construction
algorithm described in this paper, most groups (>90%) are
of type VTT, and consist of a pair of adjacent triangles that
are matched with one of their shared vertices. In a mesh
without boundary there are typically few V groups, and the
remaining non-VTT groups are roughly equally divided into
types T and VT.

Grouper stores a single array M of fixed-length records,
each encoding adjacency and geometry data associated with
a single group. Each record contains seven 32-bit values:
four swing references i; j; k; l to adjacent groups, and three
vertex coordinates x; y; z. We may optionally extend these
records to support user-specified data (e.g., color, normals,
material indices). Conceptually M is formed by interleaving
a swing array S and a geometry array G. For simplicity of
presentation, we will initially assume that S is a single
contiguous 1D array that stores i; j; k; l for each group. We
will further assume that the mesh is manifold without
boundary—an assumption we later relax.

The swing operators (called “swings”) circulate clock-
wise around a vertex and form a closed loop. For each
matched vertex v, we know that its swing loop must pass
through the group containing v. Thus, for any corner c

incident on v we can infer the result of the c:v operator by
traversing the loop with c:s. In particular, using a canonical
labeling of corners within a group, only the “first” corner
(corner 0) signifies a match. Because the average vertex
valence in a mesh with low genus (relative to its number of
triangles) is constant, the search through this swing
sequence completes in expected (average) constant time.

3.1 Connectivity Operators

To define the mesh traversal operators for a Grouper mesh,
we use a specific numbering of corners within a group (see
Fig. 2). Each group covers a range of eight corner indices, of
which at most six are used. Reserving eight rather than six
corners allows us to implement some operators more
efficiently (as bit shifts rather than divisions). Note that
the unused corner indices do not cost us any storage space,
because we do not allocate any per-corner data. Notice also
that odd corner indices are assigned to the right triangle,
which simplifies the index mapping from corners to
triangles and vertices. Because in general not all groups
are of type VTT, some vertex and triangle indices are
unused. However, as we show in Section 7, this overhead
usually amounts to less than 5 percent.

A corner with in-group index x (see Fig. 2) in group g has
a global corner index c ¼ 8gþ x. Therefore, for a given
integer corner index c, we may compute its group index as
c:g ¼ c=8 (where x=y denotes integer division) and its in-
group corner index as cmod 8. For a manifold vertex v

matched with a triangle, we could implement the c:v

operator by walking around v via c:s until a matched corner
(in-group corner 0) is reached. Clearly no such corner will
be reached if v is not matched or if c:s runs into a boundary
(see Section 3.2). In addition, intra-group swings (i.e., from
corners 0 and 5 in VTT groups) never lead to a matched
corner, and therefore following such swings is wasteful
when evaluating c:v.

To address these problems, we define two operators for

internal use, c:z and c:h, which are variants of c:s. The

operator c:z mimics c:s, but skips over intragroup swings

and follows links to and from V groups and across

boundaries. Hence, c:z joins groups incident on c:v in a

circular linked list. We store in the swing table S such links

c:z rather than swings c:s. (Because of their similarity, we

will sometimes refer to both c:s and c:z as swings around

c:v.) We note that c:z refers either to an actual triangle corner

or to a virtual corner in a V group or extension (extensions

are discussed in see Section 4.1.1), and we reserve one bit

with each S table entry c:z to indicate whether c is virtual.

This real bit is true for each non-null entry of VTT, VT, and T

groups and is false for all entries of V groups. For

convenience, we also define another internal operator, c:h,

that applies c:z one or more times to skip over any virtual

corners. These operators are illustrated in Fig. 4. We explain

below how we implement c:v and c:s using c:z.
c:s for intragroup swings involves only flipping the least

significant bit of c: 0 swings to 1, and 5 swings to

4. Intergroup c:s swings, on the other hand, require

accessing the c:z links, which are stored as four entries

per group; one for each of the four vertices incident on the

group (see Fig. 2). To perform such a swing, we first map

the in-group corner index f0; 1; 2; 4; 5; 7g to the correspond-

ing in-group swing index f0; 1; 2; 3g, which due to our

corner numbering is easily computed as c=2 mod 4. Because

these four swings are encoded in the 1D array S as

consecutive quadruplets, we may simply compute group

links as c:z ¼ S½c=2�. Below we will also refer to these links

by group and in-group swing indices as g:i ¼ S½4gþ 0�,
g:j ¼ S½4gþ 1�, and so on (see Fig. 2).

Because all groups incident on c:v are joined by c:z links

and because intragroup swings never lead to a matched

corner, by following c:z around c:v a traversal is guaranteed

to reach the matching corner. Once we find the matching

corner c, we compute c:v ¼ c=8.
Our operators for meshes without boundaries are

implemented as follows:

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. X, XXXXXXX 2013

Fig. 4. Operators c:s (black) and c:h (dashed blue) are implemented in
terms of operator c:z (orange) stored in the swing table S. Actual corners
are shown in orange; virtual corners in V groups and extensions are
hollow. Orange arrows c! c:z traversing but not ending at a corner c:s
in a VTT group indicate that c and c:s share c:z ¼ c:s:z, since only one
swing pointer per vertex is stored within a group.

c:v ¼
c=8 if c mod 8 ¼ 0

c:z:v otherwise

�

c:s ¼
c� 1 if c mod 8 ¼ 0 ^ c:g:l 6¼ ; _

c mod 8 ¼ 5 ^ c:g:j 6¼ ;
c:h otherwise

8><
>:

Here x� y denotes bitwise exclusive or, x ^ y denotes logical
and, x _ y denotes logical or, and ; is a null value for
distinguishing group types (see Fig. 2). The predicate in c:s
determines if the group c:g is of type VTT, in which case
swings from corners 0 and 5 map to corners 1 and 4,
respectively, within the same group. Otherwise, we swing
to a triangle corner in another group using c:h, skipping
over any virtual corners.

Due to the grouping of vertices and triangles, the
remaining operators are straightforward: t:c ¼ 4t þ
ðtmod 2Þ, and c:t ¼ 2ðc=8Þ þ ðcmod 2Þ. Notice that the
assignment of even corners to the first triangle of a group
and odd corners to the second triangle makes this mapping
possible. For a matched vertex v, v:c ¼ 8v. For unmatched
vertices (whose group’s k pointer is null) 8v gives the index
of a virtual corner c, from which we follow c:h to arrive at
v:c. c:n modifies only the lower three bits of c, and hence can
be coded as a small lookup table.

When the connectivity array S and geometry array G are
interleaved as a single mesh array M (as in Fig. 2), we must
translate indices to the array S to corresponding M indices.
(We do not, however, change what is stored in the S array.)
We provide here a general translation assuming four S fields
and n additional fields per group: S½i� 7!M½iþ nði=4Þ�,
again assuming integer division. For instance, S½i� 7!M½i�
when n ¼ 0, and S½i� 7!M½2i� ðimod 4Þ� when n ¼ 4.

When sequentially iterating over all vertices, triangles, or
corners in the mesh by index, we must test if the index
corresponds to a valid mesh element. (This is not necessary
when starting a traversal from a valid element.) The
following predicates test if a vertex v, triangle t, or corner
c is valid:

validðvÞ : S½4vþ 1�:real _ S½4vþ 2� ¼ ;
validðtÞ : S½2tþ 1�:real
validðcÞ : c mod 8 62 f3; 6g ^ validðc:tÞ

where real denotes the bit indicating if a corner is real or
virtual.

Finally, we implement c:n and c:p as the exclusive or
between c and precomputed 2-bit constants (these opera-
tors affect only the second and third least significant bits
of the corner index c). This allows us to encode the
transition table for c:n as a packed 16-bit constant (and
similarly for c:p) and to evaluate these operators in
constant time using only bitwise shifts and logical
operations with no memory accesses:

c:n ¼ c XOR ððð2� c63916Þ � ð2� ðc AND 7ÞÞÞ AND 6Þ;
c:p ¼ c XOR ððð2� 4b1e16Þ � ð2� ðc AND 7ÞÞÞ AND 6Þ:

3.2 Boundaries

Whereas the application can freely visit all corners around
an interior vertex from any other incident corner via c:s,
boundary vertices require more care. Consider a boundary

vertex v with incident corners fc1; c2; . . . ; cmg, such that
ci:s ¼ ciþ1. As a convenience to the application, we wish to
match v with c1 so that v:c ¼ c1 and the remaining incident
corners on v may be visited via c:s. If we instead matched
with any other corner ci, then upon reaching cm the
application (which does not have access to c:h) would have
to backtrack to visit the remaining corners fc1; . . . ; ci�1g
using the inefficient c:u operator. Consequently, when v is a
boundary vertex, we allow v to be matched only with c1. If
c1:t has already been matched, then we create a V group for
v. Otherwise, we set cm:z ¼ c1 to close the loop. Thus, c:s
does not exist when c:h:n:h:n 6¼ c, in which case c:s returns
null instead of c:h. An implementation may for perfor-
mance reasons choose to explicitly store whether c:s exists,
for example, as a reserved bit in c:z. A similar approach
was outlined in [7] to support both boundaries and
nonmanifold vertices.

As discussed above, we use a null value to indicate that
the group does not have a swing in the corresponding
position, and hence to distinguish the four group types (see
Fig. 2). Toward this end, we make the observation that
generally c:z 6¼ c, and therefore a relative swing of zero is
not possible and can be reserved as a null value. One
exception occurs for boundary vertices with one incident
triangle, where to complete the swing loop we store a swing
pointer from c to itself. In this case, we store as a part of the
swing pointer a nonzero bit to mark that this is a real corner,
and thus the stored value must in this case also be nonzero.

3.3 Relative Indexing

Our implementation of Grouper uses relative indexing for
the swing pointers, i.e., we store in the swing table S with
corner c the difference between c:z and c rather than the
absolute index c:z. In practice, we store c:z� 2ðc=2Þ to
ensure that we reach the same intergroup corner c:z from
in-group corners 0 and 1 (and similarly for corners 4 and 5).

Although a subtle difference, relative indexing has some
desirable advantages for out-of-core and parallel proces-
sing. In particular, by interleaving connectivity and
geometry and by using relative indexing, any contiguous
subsequence M 0 �M of the mesh array M is also a valid
mesh, with the exception of those vertices v 2M 0 whose
swing loops extend outside M 0 and therefore cannot be
dereferenced. This can trivially be remedied by slightly
expanding M 0, making it possible to partition and process
(slightly overlapping) pieces of M in parallel without
having to remap indices. Conversely, using concatenation
one may combine independent Grouper streams, for
example, pieces of an isosurface extracted in parallel from
a partitioned domain. (As in other mesh representations,
we would also have to identify and stitch vertices and
edges shared between pieces if a water tight mesh is
desired.) This feature combined with the compactness of
Grouper makes it well suited as an interchange format for
distributed processing.

3.4 Comparison with SQuad

For the reader’s convenience, the remainder of this paper is
self-contained, and familiarity with SQuad [7] is not
required. For the benefit of readers familiar with SQuad,
we compare in this section SQuad with Grouper. At a high

LUFFEL ET AL.: GROUPER: A COMPACT, STREAMABLE TRIANGLE MESH DATA STRUCTURE 5

level, Grouper has 1) a simpler set of traversal operators,
2) the ability to represent a wider class of meshes, and
3) better memory locality that facilitates stream processing
and enables streaming construction.

Operators. Both data structures represent connectivity in
terms of an array S of swing references between corners. In
SQuad, these swing references are between “quad corners.”
That is, triangle corner pairs f0; 1g and f4; 5g in Fig. 2 are
treated as a single quad corner. Because applications work
with triangle corners, SQuad requires back and forth
translation between triangle and quad corners, which
complicates the implementation. Grouper, on the other
hand, is based entirely on triangle corners. As in SQuad, our
new data structure avoids visiting triangle corners 1 and 4
when searching for a matched corner, which conceptually is
equivalent to converting to quad corners—but using only a
simple rightward bit shift. Unlike in SQuad, the S table in
Grouper stores triangle corners, and hence no quad-to-
triangle corner conversion is needed.

Representable meshes. SQuad does not support the notion
of unmatched vertices (V groups), but assumes that all
vertices can be matched. For certain meshes (e.g., those
containing isolated triangles with no neighbors, or triangle
strips with more vertices than triangles) not all vertices can
be matched (since a triangle may be matched with only one
of its vertices). The introduction of a V group allows us to
represent any manifold mesh with (or without) boundary.

Streamability. SQuad stores two dense arrays: G contain-
ing vertex coordinates and S containing swing references.
The nV vertices and matched triangles are stored as the first
nV records of the S array, and are followed by the
remaining unmatched triangles (T groups). Storing these
triangles at the end of the array degrades locality and
results in high-span layouts [6] that can be difficult to
stream. Moreover, the predicate cmod 8 ¼ 0 for identifying
matched corners must be supplemented in SQuad to test if c
lies in an unmatched triangle. In Grouper, we interleave the
G and S arrays and make use of a special T group that does
not use corner 0, allowing us to store these triangles near
their incident vertices and adjacent triangles. In particular,
this allows us to stream out groups using a small memory
footprint, whereas the original SQuad construction requires
the whole mesh, including adjacency information, to reside
in memory. We discuss our construction algorithm next.

4 STREAMING I/O

To handle large meshes, it is necessary that we construct
and process Grouper streams without keeping the entire
mesh in memory. Here, we present a construction algorithm
that matches triangles with vertices and outputs records of
the Grouper representation while keeping only a small
piece of the input mesh in memory. Our streaming writer
reconstructs adjacency information for triangles on the fly,
and so can accept as input an indexed streaming mesh [6],
i.e., an interleaved sequence of vertices, triangles, and
finalization tags. Because the algorithm operates on
streaming meshes, it can be spliced into a processing
pipeline, running concurrently with its source and sink
processes, without saving to an intermediate file. Although
we preserve the ordering of vertices specified by the

application, it is often necessary to reorder the triangles to
match them with a vertex and to pair them.

We also present a corresponding streaming reader that
sequentially reads a Grouper stream and returns to the
application a streaming mesh. Our reader preserves both
vertex and triangle ordering. Both the reader and writer are
compatible with the libsm streaming mesh API [31].

4.1 Grouper Construction: Streaming Writer

In this section, we describe a streaming process that
constructs a Grouper representation from a streaming mesh
consisting of an interleaved sequence of vertex and triangle
records and vertex finalization tags. A finalization tag for
vertex v arrives (at the earliest) with the last triangle
incident upon v. After this happens, we say that v has been
finalized. Note that an arriving triangle may finalize more
than one vertex.

We first provide a brief overview of our approach. For
convenience, we will use V* to refer to groups that contain a
vertex (V, VT, and VTT), and T* to groups that contain at
least one triangle (T, VT, and VTT). We make a distinction
between “groups”—the conceptual constituents of a
Grouper representation—and a “record”—the bytes repre-
senting a group. We maintain two data structures: a FIFO
queue of entries for active groups and a buffer containing
an active portion of the mesh. Each entry in the queue stores
the group type (V, T, VT, or VTT) and either a single vertex
index (for V) or canonical corner index (for T*), from which
the remaining group corners can be inferred. Entries for
V* groups are added at the end of the queue (initially as
V groups) when the corresponding vertex arrives. There-
fore, their order in the queue and hence in the output
stream is the same as the order of the incoming vertices.
Arriving triangles are added to the mesh buffer, which we
examine to determine the adjacency of groups.

Each time a vertex v is finalized, we attempt to match v
with one or two incident triangles present in the mesh
buffer and also identify any incident isolated triangles that
have no remaining vertices available for matching. For each
isolated triangle, we add an entry for a T group to the end of
the queue. We say that a triangle is mapped when it is
assigned to a group, either via matching or when placed in
a T group, which establishes an index for the triangle in
the output stream. For the entry at the front of the queue,
we attempt to create an output record by testing if all of the
group’s swing targets have been mapped (i.e., have an
assigned location in the output stream), in which case we
say that the group is complete. For each complete group
entry at the front of the queue we output a record.

The above process, illustrated in Fig. 5, is event driven,
and computation is triggered each time a vertex, triangle, or
finalization tag is encountered in the input stream. We
detail each of these steps below.

Vertex events. To preserve the vertex order of the input
mesh, when we encounter a new vertex we associate it with
a new group and insert an entry for it in the queue. The
input and output index (i.e., group index) of a vertex may
nevertheless differ, because we interleave T records in the
stream. Therefore, we store with each vertex of the mesh
buffer its output index, i.e., the index of the corresponding
record in the output stream.

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. X, XXXXXXX 2013

We maintain a mesh buffer of active triangles and
vertices until they are assembled into records and no longer
needed. For simplicity, we use a variation of Rossignac’s
Corner Table [32] that stores with each vertex v:

. a triplet of vertex coordinates,

. a reference v:c to some incident corner,

. a bit to indicate whether v has been finalized,

. a reference count of incident triangles not yet
output, and

. an index identifying the record for v in the output
stream.

Triangle events. When we encounter a new triangle in the
input stream, we insert a corner for each of its vertices into
our mesh buffer and for each such corner c we perform the
following operations. 1) For the vertex c:v we increment a
counter storing the number of incident corners. 2) We insert
c as the head of a list of incident corners at the vertex c:v.
This unordered list is stored as a temporary data structure
using the swing references for each corner. The list starts at
v:c, so we can insert in constant time. Later, when v is
finalized, we fix the swing references to be consistent with
their topological order around v. Thus, each triangle corner
c is represented as:

. a reference c:v to the corresponding vertex,

. a reference to the swing corner c:s,

. a bit to indicate if c is linked with c:v (see below), and

. an index for c in the output stream.

Finalization events. When a vertex v is finalized, we start a
process of 1) assigning matched triangles to the V* group
associated with v and, when necessary, creating T groups,
and 2) streaming out complete group records whose swing
references to adjacent groups have been determined. These
two processes cannot be synchronized because a group
record can only be streamed out when it is complete, i.e.,
when adjacent triangles have been incorporated into groups
and proper inter-group swing references can be inferred.
Hence, we keep a FIFO queue of incomplete groups.

We use a new matching process (different from the one
proposed in [7]) to form groups from combinations of active
vertices and triangles. As in SQuad, we strive to match each
vertex with an adjacent pair of previously unmatched

incident triangles. As explained in Section 6, this objective

helps minimize total storage. Typically, some vertices end

up being matched with a single triangle, and some vertices

and triangles may remain unmatched. We experimented

with several matching strategies, and concluded that

eagerly matching a vertex with any adjacent pair of incident

triangles, when possible, or otherwise with a single triangle

worked as well as more sophisticated strategies, for

example, favoring matches with triangles with fewer

unmatched vertices. Note that the constraints on matching

boundary vertices imply that we must wait until v is

finalized to perform matching, as only then can we

determine whether v is a boundary vertex.
We link groups only around finalized vertices to ensure

proper insertion of the V groups in the swing cycle. The V

group of a boundary vertex v is linked between the last and

the first corner around v, and hence acts as a virtual corner

that completes the cycle around the vertex. The V group of

an interior vertex v may in principle be linked between any

pair of groups incident upon v. We say that the corner v:c

pointed to by a vertex v in a V group is linked with v.
The following sequence of steps is executed when a

vertex v is finalized:

1. Update c:s references around v. We use the initial c:s
references, which define an unsorted linked list of
corners incident upon v, and rearrange these
references into swing order around v. From now
on, these c:s references denote the proper swing of
these corners.

2. Attempt to match v. We swing around v and search
for a consecutive pair of unmatched incident
triangles. When more than one pair is available, we
use the first one found. If no pair exists, we match v
with the first unmatched triangle in swing order, if
one exists. If we cannot match v with an incident
triangle, we leave it as a V group.

3. Identify isolated triangles. After matching, some
triangles incident upon v may end up having all
three of their vertices matched with other triangles.
Such isolated triangles become T groups and we add
entries for them at the end of the queue.

LUFFEL ET AL.: GROUPER: A COMPACT, STREAMABLE TRIANGLE MESH DATA STRUCTURE 7

Fig. 5. Illustration of a partially constructed Grouper stream using our streaming writer. Light gray triangles and vertices have not yet been processed;
saturated colors show active groups stored in the queue; while desaturated colors indicate groups that have been output. Triangles and vertices with
thick outlines are active and are stored in the partial corner table. Stored (intergroup) swing pointers are shown as orange arrows; implicit
(intragroup) swing pointers are gray. VTT groups are tan-colored triangles, VT are blue, T are red, and V are red vertices. This figure shows a single
frame from an animation that is included with the article.

4. Output complete groups. We output records for
complete group entries that are at the front of the
queue and remove them from the queue. A V group
is complete after its vertex has been finalized and
linked with a mapped corner. T* groups are complete
when their swing targets have been mapped.

5. Deallocate vertices and triangles. Once the records for a
vertex and all its incident triangles have been output,
no further references to the vertex are possible, and
we deallocate the vertex to make room for new ones.
Similarly, we deallocate a triangle when its vertices
have been deallocated. We track this information
using a reference counter stored with each vertex
that is incremented each time an incident triangle
arrives and decremented when the triangle is output
in step 4.

4.1.1 Handling High-Span Streams

Because the Grouper construction algorithm preserves the
input vertex ordering, the performance of operations on the
resulting mesh depends upon having a streamable input
ordering. In particular, the maximum size of the group
buffer in both the reader and the writer is related to the
largest swing distance, or equivalently to the maximum
index difference between adjacent triangles. And because
the triangle ordering is made “compatible” with the vertex
ordering during matching, the size of the group buffer is a
function of the span of the streaming mesh, i.e., the
maximum index difference of active vertices [6]. This is
so, because a group must be buffered until all of its swing
pointers have been set, and we do not allow outputting
groups out of order (for instance, groups further back in the
queue that have been completed), in part because changing
the location of a group would invalidate all swings to it
from groups that have already been output.

A potential workaround would be to simply reserve a
group and corner indices for the future adjacent triangle t
swung to. However, this might fail, for instance because t’s
corner numbering depends on with which vertex it is
matched, if any, and whether t is paired. Furthermore, this
strategy assumes that t will appear in the near future, and
indeed that it even exists, which may not be the case for
meshes with boundaries.

We note that this buffering problem is not particular to
our representation, but is true for any index-based graph
structure with cycles. For instance, a streaming writer of
Rossignac’s Corner Table [32] or any other adjacency-based
data structure suffers from the same problem.

To handle high-span streams without exhausting mem-
ory, we propose using extensions. An extension serves as a
virtual copy of a record r that redirects any of r’s
unresolved swings, allowing a long (or simply unresolved)
swing to be broken down into a sequence of shorter swings.
Whenever record r at the front of the queue stays
incomplete, for example, because one of its incident vertices
is not yet finalized, the queue continues to grow. When the
queue size exceeds a user-specified limit, we evict r by first
inserting an extension e at the end of the queue and then
pointing any unresolved swing from r to the corresponding
field in e. This allows r and any complete records waiting
on r to be output. Once the extension reaches the front of
the queue, we test if its deferred swings can now be

resolved, and if not, create a second extension, thus further
extending its swing loops.

Although very long swings in high-span streams may
have to be broken down into many extensions, such swings
tend to be few when the width (maximum number of
concurrently active vertices) of the stream is low; a
precondition for frontal streaming [6]. Since each active
vertex must be buffered, the buffer size must be at least as
large as the width. In practice, using a queue of up to one
million groups (our default) the number of extension
groups tends to stay below 1-2 percent even for large
high-span meshes (see Fig. 6). Because each FIFO entry is a
single integer, even larger buffers can often be used to
further limit the number of extensions.

Extensions are identified by our corner operators and
iterators by having all of their corners marked as virtual,
and never contain geometry. Virtual corners swung to in an
extension are by convention assigned odd indices to
maintain the efficiency of c:v, which as described in
Section 3.1 traverses the loop looking for corner 0. Hence,
c:v requires no modification to handle extensions. Similarly,
c:s already tests for and skips over virtual corners in V

groups, and therefore needs no modification either.

4.2 Grouper Consumption: Streaming Reader

As a counterpart to the streaming writer described in
Section 4.1, we describe here a corresponding streaming
reader that reads a Grouper file or stream and emits to the
application an interleaved sequence of vertices, indexed
triangles (that refer to vertices by their global index), and
finalization tags.

Our approach is to emit both vertices and triangles in the
order in which they are stored in the Grouper stream by
sequentially reading and buffering records in a FIFO queue.
Whereas we may immediately pass through the vertex
stored in a record to the application, the vertex indices c:v
associated with triangle corners c are not always readily
available, as they are found by swinging to the corner
matched with c:v, which may appear further along the
stream. Consequently, before emitting the next triangle, we
follow its swing pointers and attempt to complete loops. If
in this process we reach a record that has not yet been read,
then we sequentially input and buffer records and emit
their vertices until the required record has been read. Once
all records in the three swing loops of a triangle t are
buffered, we say that t is complete, at which point we can
infer its vertices and emit t.

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. X, XXXXXXX 2013

Fig. 6. The fraction of extension groups in the stream as a function of
FIFO buffer size and layout of the 55 million triangle david mesh.

The libsm API also provides one finalization bit per
triangle corner that indicates whether the triangle is the last
one in the stream to reference the associated vertex. When
set, the application may deallocate storage for the vertex.
Grouper does not explicitly store any finalization bits,
because we can infer this information by examining the
swings around a vertex. In particular, when a closed swing
loop of group records L ¼ ðc:g; c:z:g; c:z:z:g; . . . ; c:gÞ is
detected for c:v, all triangles incident on c:v are known.
(As discussed above, we also form loops for boundary
vertices.) We thus mark c:v as finalized by the last triangle
stored in the (non-V) record in L with largest index.
Although a triangle’s vertices may in principle be known
before their swing loops are closed, we do not emit the
triangle until it is complete to ensure proper finalization.
Based on this algorithm, we store with each record in the
queue four entries—one per vertex—that each contain a
swing pointer c:z, a vertex index c:v, and a finalization bit.

Once the vertex and triangles in the record at the front of
the queue have been emitted, we can remove and deal-
locate the record. For a V group, we must first ensure that
the swing loop it partakes in has been closed before
removing it from the queue. Consequently, to locate the
next triangle to be emitted, we maintain an additional
pointer into the queue.

4.2.1 Handling High-Span Streams

Because the group record at the front of the buffer cannot be
removed until its vertices have been finalized, the buffer
may grow to be very large if the stream has a high span.
This could be remedied simply by moving stagnant records
to a spill-over table, so that swings outside the buffer are
redirected and looked up in the table.

5 PROCESSING GROUPER

Having described the basic Grouper representation, its
construction, and operators acting upon it, we now turn our
attention to how applications process Grouper streams.

5.1 Frontal Streaming

When memory is scarce or when the Grouper file does not
reside on disk, e.g., arrives over a network or from another
process, we advocate stream processing. In frontal streaming,
the application maintains an active set of vertices—the front,
consisting of introduced but not yet finalized vertices—
which usually varies in size over the stream. Vertices are
identified by global indices (e.g., when referenced by
triangles), and it is customary to store the active vertices
in a map (e.g., a hash). When a vertex is finalized, it can be
removed from the map. Such a data structure is sufficient
to, for instance, compute the surface area of a mesh.

For tasks that require processing not just individual
triangles but larger collections of adjacent elements (e.g.,
simplification, subdivision, smoothing, etc.) the application
also maintains an active set of triangles in a buffer between
the input front and the output front (for applications that
both read and write meshes). This usually involves
dynamically inserting and removing triangles to and from
a partial in-core mesh that supports full connectivity
queries (see [6], [20], [28]). The triangle buffer may or may
not be of fixed size. The dynamic memory management and

construction of such an adjacency-based data structure can
be quite computationally costly. In particular, this effort is
duplicated by each module in a processing pipeline,
multiplying the cost.

5.2 Windowed Streaming

Windowed streaming differs from frontal streaming in that a
fixed-size buffer that holds a superset of the active vertices
(and possibly active triangles) is used. Our implementation
of windowed streaming maintains a circular fixed-size FIFO
queue of records that acts as a sliding window over the
mesh. Each incoming record replaces the least recently read
record, which in a sense amounts to a conservative rather
than eager approach to finalization. As long as the swing
references are reasonably localized and never span more
than the buffer size, this makes for a particularly efficient
mode of processing. In particular, no mapping from the on-
disk format to an in-core partial mesh data structure is
needed (as in frontal streaming), because the two are one
and the same. In case the buffer is too small and a swing
reference points outside the buffer, a spillover buffer (e.g., a
hash map) may be used, as suggested in [6]. Such “high-
span” records are usually rare in otherwise streamable
meshes with a low width, and therefore do not consume a
lot of memory. Before evicting a record, one may determine
if all of its vertices have been finalized by traversing their
swing loops; a complete loop implies that a vertex can be
finalized (even for boundary vertices; see Section 3.2). If not,
the record is moved to the spillover buffer. We found that
our benchmark meshes, when ordered along a single
geometric direction, could be processed without a spillover
buffer while using a sliding window smaller than 3 percent
of the total mesh.

For tasks that only modify the geometry (e.g., smooth-
ing), windowed streaming simply updates the geometry of
each record and passes it through, possibly to a down-
stream module. In case the mesh connectivity is changed,
we use the streaming writer from Section 4.1 to produce a
new Grouper stream.

We note that hybrid frontal and windowed streaming
approaches have been used previously, in which the sliding
triangle buffer is of fixed size but the input and output
vertex fronts are dynamically managed; see for instance
[19], [20], [28]. Xia and Shaffer [29], on the other hand, make
use of fixed-size vertex and tetrahedron buffers. Unlike
Grouper, however, none of the mesh formats employed by
these methods provide adjacency information, and there-
fore they all require on-the-fly connectivity reconstruction.

5.3 Out-of-Core Random Access

In addition to being a lean in-memory data structure,
Grouper supports random-access traversals of meshes
stored in external memory (i.e., disk) by memory mapping
the mesh onto the operating system’s virtual memory space,
for example, using the Linux mmap system call. This
establishes a mapping between the on-disk mesh and the
calling process’s memory addresses, and enables demand-
driven paging of the mesh from disk. This entails loading
fixed-size, contiguous “pages” into memory whenever the
application accesses a page that has either not yet been
loaded or has been evicted from main memory.

LUFFEL ET AL.: GROUPER: A COMPACT, STREAMABLE TRIANGLE MESH DATA STRUCTURE 9

On modern computers, the operating system augments
demand-driven paging by predicting future data fetches
and “prefetching” the associated pages. For mesh traversals
that require random-access, prefetching is unlikely to
predict future access, but for tasks like mesh smoothing
that iterate over the whole mesh (e.g., using a sequential
outer loop), accesses will proceed through the mesh in an
approximately linear pattern, a use case for which prefetch-
ing systems are heavily optimized. Such sequential loops
can trivially be parallelized on multicore computers using
OpenMP [8] directives; something we explore in Section 7.

We note that although our c:v operator may involve
repeated memory accesses, it is often possible to confine
such accesses to the same memory page using a coherent
ordering of the vertices (and thus triangles). Moreover, the
compactness of roughly 2 rpt for connectivity coupled with
a compatible interleaving of geometry and connectivity
promotes locality of reference in Grouper and avoids
excessive thrashing.

Finally, one attractive property of Grouper is that the
paging from external memory is done entirely transparently
from the user application, which treats the Grouper data
structure as though it were a complete contiguous in-
memory array. Consequently, existing applications that rely
on corner operators may use Grouper directly in in-core or
out-of-core mode with no further code changes. In
particular, such applications need not be re-engineered as
stream modules, which might otherwise involve substantial
algorithmic changes.

6 OPTIMAL MATCHING IS NP-HARD

Our greedy matching and pairing algorithm strives to
match one or two adjacent triangles with a shared vertex,
and to leave as few unmatched triangles as possible. In an
attempt to assess its effectiveness, we show that our
problem is equivalent to the well-known maximum indepen-
dent set (MIS) problem, and compare our solution to prior
heuristics for MIS. Given an undirected graph, the MIS
problem is to find a set of mutually nonadjacent nodes of
maximum cardinality; a problem known to be NP-hard.

The matching and pairing needed for Grouper can be
cast as a combinatorial optimization problem in which we
seek to minimize the storage cost. It is easy to see that the
storage cost in number of fixed-size records (excluding
extensions) equals nV þ nU , where nV is the number of
vertices and nU the number of unmatched triangles (i.e.,
T groups). This is so, because each record either stores a
vertex or an unmatched triangle. Since nV is fixed, our goal
is to minimize the number of unmatched triangles nU .

We reduce the matching problem to MIS by constructing a
graph G ¼ ðC;EÞ from a triangle mesh. The nodes C
correspond to the corners of the mesh. Thus each corner
added to the independent set corresponds to matching a
vertex with a triangle. To avoid multiple matches per triangle,
we include inE an edge between each pair of corners within a
triangle. To prevent matching vertices with more than two
edge-adjacent triangles, we add edges between each pair of
nonadjacent corners ðci; cjÞ around the vertex, i.e., corners
such that ci:v ¼ cj:v; ci:s 6¼ cj; cj:s 6¼ ci. Because no edges exist
between adjacent corners, pairs of edge-adjacent triangles
may still be matched with a shared vertex.

The resulting graph is illustrated in Fig. 7 (left). It has all
the right properties except for interior vertices of valence
three. Because the corners fci; cj; ckg around such vertices
are mutually adjacent, nothing prevents all three of them
from being matched with the same vertex. We resolve this
by adding to C three additional nodes fcij; cjk; ckig that
represent pairs of triangles, letting the existing corners
denote unpaired triangles. We also add edges between all
nodes fci; cj; ck; cij; cjk; cjig and between cij and the existing
neighbors of ci and cj (and similarly for cjk and cki), for a
total of 27 additional edges. The maximum independent set
of this graph then represents the matching and pairing with
the lowest storage cost.

We note that since there are roughly twice as many
triangles as vertices, it is in general not possible to minimize
the number of unmatched triangles without also pairing
triangles. In other words, the MIS solution will favor
matching shared over non-shared vertices in adjacent
triangles, since doing so “costs” only one instead of two
precious matched vertices.

We have compared Grouper with several heuristic
algorithms for MIS [33], [34], [35], [36]. Our algorithm is
able to exploit the particular structure of the graph, and
therefore leaves far fewer triangles unmatched than the
more naı̈ve MIS algorithms BASIC and RANDOMOFFLINE

described in [36] and the well-known minimum-degree
GREEDY algorithm (see [34]). On average, we produce
fewer than 3 percent unmatched triangles. For small meshes
with a few hundred triangles, however, we have found that
GRASP [34] and Dharwadker’s algorithm [35] may produce
optimal solutions with no unmatched triangles. Given their
high asymptotic complexity (e.g., the latter runs in Oðn8Þ
time on n nodes), their use on larger meshes may be limited.

7 RESULTS

We here present storage and performance results for our
Grouper representation. We used an 8-core 2.66-GHz Intel
Xeon X5550 computer with 12 GB of 1.33-GHz DDR3
RAM and a 7,200 RPM Seagate Barracuda SATA disk for
our experiments.

7.1 Storage Efficiency

To assess how well we are able to match and pair triangles,
we used our streaming writer with a FIFO queue of at most
one million groups to convert several meshes ordered in
a number of ways, including breadth- and depth-first

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. X, XXXXXXX 2013

Fig. 7. Matching graph for general (left) and valence-three (right)
vertices, which require additional nodes (hollow) and edges (gray).

orderings, and geometric orderings based on linearly
sorting along a single direction and by ordering vertices
along a z-order space-filling curve. We use 32-bit floats and
integer references and assume a fixed geometry storage cost
of 3 floats per vertex, or equivalently 1.5 rpt (references
per triangle) using the approximation nT � 2nV . The
connectivity storage cost of our Grouper representation is
4ðnV þ nUÞ rpt, or roughly 2.0 rpt when nU (the number of
unmatched triangles) is small. In addition to storage
efficiency, we present in Table 1 the overhead component
nU=nV of the storage cost in records stored per vertex (recall
that we must store at least nV records). To calibrate our
results, we compare storage (including geometry) with the
SMB binary streaming mesh format [31]; a variation on
Rossignac’s Corner Table [32] dubbed VST (for vertex
swing table); and meshes constructed by the original in-
memory SQuad method [7], which has more flexibility
when matching because it can choose the traversal order.
We also compare our overhead with the minimum-degree
greedy independent set algorithm [33]. Our comparisons
include only representations that use fixed-length encod-
ings, and a more comprehensive comparison against
representations with variable-length encodings, for exam-
ple, OEMM [4], OoCM [20], SMC [21], or RACM [13] is left
as future work.

The SMB format stores vertex coordinates and indices
as 32-bit words. To distinguish vertices from triangles, one
bit per mesh element is used. These bits are packed into
32-bit words that specify the type of the next 32 records.
One bit per vertex index is reserved for finalization. The
resulting storage cost (geometry + connectivity) is roughly
1:5þ 3:0 ¼ 4:5 rpt. As seen in the table, our format reduces
storage over SMB by about 20 percent, while encoding
incidence and finalization, and (additionally) adjacency.

The VST format stores with each triangle corner c:v and
c:s, and with each vertex v:c, resulting in a total cost of
roughly 1:5þ 6:5 ¼ 8:0 rpt. Consequently VST requires
about 2.2 times the storage of Grouper, while not being
readily streamable.

Because SQuad favors pairing adjacent consecutive
triangles in a spiraling traversal, its storage cost is similar

to our Grouper when given a mesh in a similar depth-first
order. One notable exception is the Puget Sound mesh,
whose relatively high width and span resulted in 15 percent
of records being extensions. With no FIFO queue limit, its
storage cost is reduced to 2.172 rpt. The geometrically
ordered meshes arrive in a less predictable (to the writer)
order, and with less locality of reference. In particular, the
z-ordered meshes are rich in high-span vertices that have
an adverse effect on matching. Nevertheless, even the worst
results of our method show a significant improvement in
matched triangles over the greedy MIS method.

7.2 I/O Speed

We construct a Grouper representation from streaming
input at a rate of about 1.7 million triangles per second
(excluding I/O time). For low-span streams (e.g., breadth-
first and linear geometric orderings) the construction
buffers in memory a maximum of 1-3 percent of the input
triangles. For example, the 134 million triangle Puget Sound
mesh can be converted from a 2.3 GB SMB file to a 1.9 GB
file in our Grouper format using only 9.8 MB of working
memory. This compares favorably with the SQuad in-core
construction, which for the same mesh uses 6.2 GB of RAM
and takes twice as long.

Our frontal streaming reader of Grouper files described
in Section 4.2 achieves a throughput of about 2.8 million
triangles per second (including I/O time), which is roughly
two times slower than reading an SMB file. This difference
in speed is attributable to the need to buffer records, to
resolve triangle-to-vertex references, and to detect finaliza-
tion events using our representation. As shown below, I/O
and processing of Grouper are more efficiently accom-
plished using windowed rather than frontal streaming.

7.3 Operator Speed

At 3.9 nanoseconds, our c:s operator is comparable in speed
to its SQuad counterpart. In spite of c:v being conceptually
simpler, S array accesses in Grouper involve converting
relative indices to absolute ones that are then implicitly
remapped to skip over the interleaved geometry records,
resulting in a 14.1 nanosecond execution time, or 45 percent

LUFFEL ET AL.: GROUPER: A COMPACT, STREAMABLE TRIANGLE MESH DATA STRUCTURE 11

TABLE 1
Storage Efficiency

We report for each mesh its number of triangles nT and percentage of valence-6 vertices. For each layout, we report Grouper connectivity storage in
references per triangle (rpt) and percentage overhead nU=nV in terms of unmatched triangles nU . We also report corresponding results for SQuad,
greedy independent sets, and the total storage ratio of SMB and VST to Grouper for the breadth-first layout.

slower than in SQuad.

7.4 Processing Speed

We evaluated several different modes of accessing our

Grouper format using a suite of processing kernels designed

to exercise a variety of mesh queries and traversal patterns:

. Components. Count the number of connected com-
ponents in the primal graph. This is accomplished
using a generalization of the algorithm presented in
[37], which uses incidence information only and a
union-find forest that is pruned each time a vertex
is finalized.

. Area. Loop over all triangles and compute the total
surface area. This can be computed directly by
maintaining a map of vertex coordinates keyed
by global vertex index, i.e., without maintaining
any connectivity.

. Silhouette. Count the number of silhouette edges
with respect to an arbitrary view direction. For each
incident edge of each finalized vertex v, we compute
the normals of the two adjacent faces that share the
edge. We then compare the signs of the dot products
of the normals with the view direction to determine
if the edge is on the silhouette. Note that we count
these silhouettes even if they are occluded.

. Traversal. Starting from an arbitrary seed triangle,
perform a spiraling depth-first traversal of the whole
mesh by visiting adjacent triangles (as in [32]). To
speed up the computation and keep the stack size
small, we maintain an auxiliary visitation flag with
each vertex and triangle.

. Ascent. Starting from an arbitrary seed vertex,
perform a steepest ascent traversal along the mesh
edges using one of the coordinates as function value.
The traversal ends at a local maximum.

. Geodesic. Starting from an arbitrary seed point and
direction, trace a geodesic path along the surface
until a surface boundary is encountered.

For the first three tasks, a single-pass streaming implementa-

tion is possible, which we describe briefly above. A

corresponding random-access implementation loops over

vertices or triangles in index order, and for connected

components infers finalization information by testing if the

current triangle has the highest index among those triangles

incident on a vertex. (Because such finalization information

allows the union-find data structure to be pruned, this
random-access approach to computing connected compo-
nents is faster than alternative methods, e.g., based on
invading and marking the vertices of each component.) The
remaining three tasks traverse the mesh in a data-dependent
manner dictated by the mesh geometry and/or connectivity,
precluding a single-pass streaming implementation and
necessitating random access. The last two tasks, in particular,
visit only a small subset of the mesh. In these cases, we
executed the task many times using different seeds to obtain
reliable timings.

In addition to the mesh queries involved in these tasks,
Table 2 summarizes the median execution time across
15 runs for each task, data structure, and access pattern. We
note that the execution time depends largely on whether the
mesh has to be fetched from disk or is already partially or
even totally memory-resident. The latter case occurs, for
instance, in pipelined streaming, when the output of one
process is piped directly to the input of the next down-
stream process via shared memory. The mesh may also be
partially cached in disk buffers from earlier processing.
Consequently, we timed each task both when the disk
buffers were explicitly flushed before each run (cold mode)
using the Linux drop_caches mechanism, and when the
caches were warmed by first executing the task once and
then timing the next 15 runs without flushing (warm mode).
These two modes can be thought of as extremes that
provide lower and upper bounds on processing time.
Moreover, by running in warm mode, we are able to
largely exclude the dominant disk access time, allowing us
to measure the underlying performance of each data
structure independent of any speedups obtained through
reduced I/O.

To support direct random access to the Grouper file, we
used memory mapping (both in cold and warm mode). The
area and silhouette computations loop over the mesh
triangles or vertices by index, and trivially parallelize. We
used OpenMP for loop parallelization with static schedul-
ing and two different assignments of threads to loop
iterations: interleaved, in which thread i of n processes
indices knþ i (where k is a nonnegative integer), and
blocked, in which each thread is assigned an equal-size
contiguous subsequence of indices.

To evaluate the different mesh representations, we used
the David mesh in breadth-first order. We converted this
mesh from SMB format to our Grouper format, which very
slightly changed the order of triangles to accommodate

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. X, XXXXXXX 2013

TABLE 2
Performance Benchmark Timing

Median execution time in seconds for our benchmark tasks using different mesh representations and access patterns. Only the top three tasks have
streaming implementations. The leftmost columns show the mesh queries (geometry and adjacency) involved and whether only a subset of the
mesh is visited. We report timings for cold mode (disk caches are initially flushed) and warm mode (disk caches are preloaded). Columns other than
VST and SMB correspond to the use of Grouper in direct (random-access) serial mode and in parallel mode with interleaved and contiguous block
static loop scheduling, as well as using frontal and windowed streaming.

matching. The resulting Grouper representation was then
converted to VST, preserving the ordering of both vertices
and triangles (but removing “holes” in indices due to non-
VTT records).

Based on the numerical results from Table 2, also shown
graphically in Fig. 8, we make the following observations.

In direct access mode on a single processor (see Fig. 8d),
Grouper yields improved performance over VST—even
when the mesh is memory-resident. In cold mode, Grouper
is 1.3-2.4 times faster. Although all tasks visit the same
number of triangles, notice that the geodesic task is much
faster than the others because it often revisits the same
cached subset of triangles, for example, when circling a
cylindrical part of the mesh, such as an arm.

Using OpenMP for loop parallelization on eight cores,
we achieved speedups of up to 6.4�. As is evident from
Figs. 8b and 8c, interleaved thread assignment is beneficial
in cold mode, as this gives each thread some amount of
work to do each time a disk block is loaded, while in
blocked mode the threads contend for I/O and are idle
while waiting for I/O requests to be serviced. In warm
mode, the roles are reversed, in part because of the drastic
differences in latency and bandwidth between memory and
disk accesses. Furthermore, loop blocking provides for
higher locality of reference and thread-local caching,
whereas when interleaved the threads each touch every
single memory page of the mesh via small strides, and in
effect increase memory bandwidth and cache usage by the
number of threads.

In cold frontal streaming mode, Grouper is 1.1-1.5 times
slower than SMB. Because the frontal streaming imple-
mentations are built on top of the same streaming mesh
API, the same tasks are executed for both formats, possibly
including connectivity reconstruction, which does not take
advantage of the adjacency information stored with
Grouper. As discussed above, our Grouper frontal reader
must also buffer records and recover vertex references and
finalization—information that is readily available in the
SMB format. This extra work can be costlier than the
simple processing tasks themselves.

We further note that frontal streaming access is more
efficient than random access using Grouper for tasks that
require only incidence (i.e., components and area). However,
when adjacency information is needed, as in the silhouette
computation, frontal streaming is less efficient, because then
the adjacency information must first be recovered via
construction and dynamic management of a partial mesh
data structure. Note that Grouper already provides this
information in direct mode.

Using Grouper, windowed streaming outperforms fron-
tal streaming by as much as a factor of two. In spite of
having to explicitly maintain a circular buffer of records (we
used a fixed-size buffer of 216 records) and incurring one
disk read per record, windowed streaming is also consis-
tently more efficient than memory-mapped direct access,
both in cold and warm mode, in part due to a much smaller
memory footprint. This performance difference is particu-
larly evident in cold mode, where the sequential reads
made in windowed streaming allow the operating system to
prefetch disk blocks. Although the outer loop in direct
mode is also sequential, the nonsequential accesses made to
incident elements, for example, when resolving vertex
references by following swing loops, result in localized
but nonsequential accesses, making it more difficult for the
operating system to predict the next memory page needed.

8 DISCUSSION

Before concluding this paper, we summarize some of the
limitations and benefits of our Grouper representation.

8.1 Limitations

We envision Grouper being most useful in algorithms that
do not require many “random” changes to connectivity.
Though it is possible to reconstruct groups within the local
neighborhood of a changed triangle, if the number of
groups increases the new records must be placed at the end
of the array, negatively impacting locality of reference and
overall performance. For processing that results in a
completely new mesh, such as subdivision or decimation,
our streaming writer may be used to output the mesh.
High-span streams like depth-first and space-filling order-
ings require the use of extensions, which incur an overhead
in storage.

One possible drawback of our representation is that both
vertex and triangle indices contain “holes” that correspond
to non-VTT groups. Although such holes are easy to
identify, applications that assume contiguous indices must
be modified. Moreover, while rare (less than 5 percent on
average), these holes lead to an overhead in storage for any
user-defined data associated with vertices or triangles.

8.2 Benefits

Our Grouper representation offers the following benefits
over alternative data structures and file formats:

. Like SMB, Grouper is a streaming mesh representa-
tion. However, Grouper also supports random

LUFFEL ET AL.: GROUPER: A COMPACT, STREAMABLE TRIANGLE MESH DATA STRUCTURE 13

Fig. 8. Performance of (a)-(c) streamable tasks and (d) Grouper direct access relative to the VST random-access mesh data structure in cold (blue)
and warm (red) mode.

access to vertices and triangles, and directly stores
adjacency information that an SMB reader must
recover on the fly. In spite of this, Grouper uses
roughly 20 percent less storage than SMB.

. Although VST and Grouper both support random
access, VST does not interleave geometry and
connectivity, and therefore does not support (linear)
stream processing. This interleaving coupled with
relative indexing further enables instant partitioning
for distributed data-parallel processing of Grouper
without reindexing or repackaging. Moreover,
Grouper uses 2.2 times less storage than VST,
resulting in a proportional performance increase in
out-of-core applications.

. Unlike SQuad, Grouper supports a memory-efficient
construction process that allows the mesh to be
streamed out immediately during mesh generation
or editing. Grouper also enforces the locality of
reference that SQuad lacks and is needed for
subsequent stream processing. Finally, Grouper
stores triangle rather than quad corner references,
which results in simpler mesh navigation operators.

. In comparison to out-of-core representations like
OEMM [4] and Isenburg and Gumhold’s out-of-core
mesh (OoCM) [20], Grouper supports streaming
construction and more efficient storage, thereby
reducing time, temporary and persistent disk usage,
and memory usage during construction. For in-
stance, Grouper uses 2.4 times less storage than both
OEMM and OoCM for the David mesh, and is
constructed roughly 100 and 42 times faster than
indexed OEMM and OoCM, respectively.

In addition to serving as the first unified mesh file format
and data structure for both streaming and random access,
we have found Grouper useful as a compact intermediate
representation for constructing even more space-efficient
mesh data structures, such as the recently proposed LR [9]
and Zipper [10] data structures. Building such data
structures requires a temporary mesh representation that
supports adjacency and incidence queries, but usually the
input stores only incidence information. Because Grouper
requires less storage than a standard incidence-based file
format like SMB, and because it can be converted from such
a format using very little memory, it is suitable as both
input and temporary representation for constructing and
possibly even rebuilding mesh data structures in applica-
tions that generate or modify the mesh connectivity.

Finally, a unique strength of Grouper is the support for
both streaming and random access through already estab-
lished APIs. This allows Grouper to be used in existing
streaming or random-access applications with no further
code changes.

9 CONCLUSION

We have presented Grouper: a data structure and format for
representing triangle meshes that provides adjacency and
incidence information in amortized constant time and that
interacts well with virtual memory and processor caches.
Our format supports the libsm streaming mesh API,
making it a drop-in replacement for existing streaming

algorithms. It also supports random-access mesh traversal,

making possible out-of-core algorithms that are difficult to

write in a streaming paradigm. Grouper enables parallel

processing by allowing multiple threads to iterate over a

mesh without the synchronization bottleneck created when

allocating and deallocating vertex storage in a typical

streaming algorithm. We have presented a construction

algorithm for our data structure that operates on streaming

input and that produces meshes whose connectivity

storage, at just over two references per triangle, rival those

attained by the global, nonstreaming SQuad construction

algorithm. We identify the construction problem as a well-

known NP-hard optimization problem, and show that our

algorithm is an excellent heuristic solution. By relaxing the

order in which vertices and triangles are stored, we are able

to improve locality of reference over SQuad, thereby

enabling memory-efficient streaming and more general

out-of-core computations on huge meshes using SQuad’s

compact storage.

ACKNOWLEDGMENTS

This work was performed in part under the auspices of the

US Department of Energy by Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344.

REFERENCES

[1] S.-K. Ueng and K. Sikorski, “An Out-of-Core Method for
Computing Connectivities of Large Unstructured Meshes,” Proc.
Eurographics Workshop Parallel Graphics and Visualization, pp. 97-
103, 2002.

[2] C. DeCoro and R. Pajarola, “XFastMesh: Fast View-Dependent
Meshing from External Memory,” Proc. IEEE Conf. Visualization,
pp. 363-370, 2002.

[3] M. Isenburg and S. Gumhold, “Out-of-Core Compression for
Gigantic Polygon Meshes,” ACM Trans. Graphics, vol. 22, no. 3,
pp. 935-942, 2003.

[4] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno, “External
Memory Management and Simplification of Huge Meshes,” IEEE
Trans. Visualization and Computer Graphics, vol. 9, no. 4, pp. 525-
537, Oct. 2003.

[5] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R.
Scopigno, “Adaptive Tetrapuzzles: Efficient Out-of-Core Con-
struction and Visualization of Gigantic Multiresolution Polygonal
Models,” ACM Trans. Graphics, vol. 23, no. 3, pp. 796-803, 2004.

[6] M. Isenburg and P. Lindstrom, “Streaming Meshes,” Proc. IEEE
Conf. Visualization, pp. 231-238, 2005.

[7] T. Gurung, D. Laney, P. Lindstrom, and J. Rossignac, “SQuad:
Compact Representation for Triangle Meshes,” Computer Graphics
Forum, vol. 30, no. 2, pp. 355-364, 2011.

[8] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon, Parallel Programming in OpenMP. Academic Press,
2001.

[9] T. Gurung, M. Luffel, P. Lindstrom, and J. Rossignac, “LR:
Compact Connectivity Representation for Triangle Meshes,” ACM
Trans. Graphics, vol. 30, no. 4, pp. 67:1-67:8, 2011.

[10] T. Gurung, M. Luffel, P. Lindstrom, and J. Rossignac, “Zipper: A
Compact Connectivity Data Structure for Triangle Meshes,”
Computer Aided Design, vol. 45, no. 2, pp. 262-269, 2013.

[11] J. Snoeyink and B. Speckmann, “Tripod: A Minimalist Data
Structure for Embedded Triangulations,” Computational Graph
Theory and Combinatorics, 1999.

[12] S.-E. Yoon, B. Salomon, R. Gayle, and D. Manocha, “Quick-VDR:
Interactive View-Dependent Rendering of Massive Models,” Proc.
IEEE Conf. Visualization, pp. 131-138, 2004.

[13] S.-E. Yoon and P. Lindstrom, “Random-Accessible Compressed
Triangle Meshes,” IEEE Trans. Visualization and Computer Graphics,
vol. 13, no. 6, pp. 1536-1543, Nov. 2007.

14 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. X, XXXXXXX 2013

[14] C. Courbet and C. Hudelot, “Random Accessible Hierarchical
Mesh Compression for Interactive Visualization,” Computer
Graphics Forum, vol. 28, no. 5, pp. 1311-1318, 2009.

[15] S. Choe, J. Kim, H. Lee, and S. Lee, “Random Accessible Mesh
Compression Using Mesh Chartification,” IEEE Trans. Visualiza-
tion and Computer Graphics, vol. 15, no. 1, pp. 160-173, Jan./Feb.
2009.

[16] Y.-J. Chiang and C.T. Silva, “I/O Optimal Isosurface Extraction,”
Proc. IEEE Conf. Visualization, pp. 293-300, 1997.

[17] P. Lindstrom, “Out-of-Core Simplification of Large Polygonal
Models,” Proc. ACM SIGGRAPH, pp. 259-262, 2000.

[18] S. McMains, J.M. Hellerstein, and C.H. Séquin, “Out-of-Core Build
of a Topological Data Structure from Polygon Soup,” Proc. ACM
Symp. Solid Modeling and Applications, pp. 171-182, 2001.

[19] J. Wu and L. Kobbelt, “A Stream Algorithm for the Decimation of
Massive Meshes,” Proc. Graphics Interface, pp. 185-192, 2003.

[20] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Snoeyink, “Large
Mesh Simplification Using Processing Sequences,” Proc. IEEE
Conf. Visualization, pp. 465-472, 2003.

[21] M. Isenburg, P. Lindstrom, and J. Snoeyink, “Streaming Compres-
sion of Triangle Meshes,” Proc. Eurographics Symp. Geometry
Processing, pp. 111-118, 2005.

[22] M. Isenburg, Y. Liu, J. Shewchuk, and J. Snoeyink, “Streaming
Computation of Delaunay Triangulations,” ACM Trans. Graphics,
vol. 25, no. 3, pp. 1049-1056, 2006.

[23] M. Ahn, I. Guskov, and S. Lee, “Out-of-Core Remeshing of Large
Polygonal Meshes,” IEEE Trans. Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1221-1228, Sept./Oct. 2006.

[24] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas,
“Robust On-Line Computation of Reeb Graphs: Simplicity and
Speed,” ACM Trans. Graphics, vol. 26, no. 3, p. 58, 2007.

[25] H.T. Vo, S.P. Callahan, P. Lindstrom, V. Pascucci, and C.T. Silva,
“Streaming Simplification of Tetrahedral Meshes,” IEEE Trans.
Visualization and Computer Graphics, vol. 13, no. 1, pp. 145-155, Jan.
2007.

[26] R. Allègre, R. Chaine, and S. Akkouche, “A Streaming Algorithm
for Surface Reconstruction,” Proc. Eurographics Symp. Geometry
Processing, pp. 79-88, 2007.

[27] M. Bolitho, M. Kazhdan, R. Burns, and H. Hoppe, “Multilevel
Streaming for Out-of-Core Surface Reconstruction,” Proc. Euro-
graphics Symp. Geometry Processing, pp. 69-78, 2007.

[28] P. Diaz-Gutierrez, J. Bösch, R. Pajarola, and M. Gopi, “Streaming
Surface Sampling Using Gaussian �-Nets,” The Visual Computer,
vol. 25, nos. 5-7, pp. 411-421, 2009.

[29] T. Xia and E. Shaffer, “Streaming Tetrahedral Mesh Optimiza-
tion,” Proc. ACM Symp. Solid and Physical Modeling, pp. 281-286,
2008.

[30] M. Mantyla, Introduction to Solid Modeling. W.H. Freeman & Co.,
1988.

[31] M. Isenburg and P. Lindstrom, “Libsm,” http://www.cs.unc.
edu/isenburg/sm/, 2005.

[32] J. Rossignac, A. Safonova, and A. Szymczak, “Edgebreaker on a
Corner Table: A Simple Technique for Representing and Com-
pressing Triangulated Surfaces,” Hierarchical and Geometrical
Methods in Scientific Visualization, pp. 41-50, Springer Verlag, 2003.

[33] M. Halldórsson and J. Radhakrishnan, “Greed Is Good: Approx-
imating Independent Sets in Sparse and Bounded-Degree
Graphs,” Proc. ACM Symp. Theory of Computing, pp. 439-448, 1994.

[34] M.G.C. Resende, T.A. Feo, and S.H. Smith, “Algorithm 787:
Fortran Subroutines for Approximate Solution of Maximum
Independent Set Problems Using GRASP,” ACM Trans. Math.
Software, vol. 24, no. 4, pp. 386-394, 1998.

[35] A. Dharwadker, “The Independent Set Algorithm,” http://
www.dharwadker.org/independent_set/, 2006.

[36] B.V. Halldórsson, M.M. Halldórsson, E. Losievskaja, and M.
Szegedy, “Streaming Algorithms for Independent Sets,” Proc. Int’l
Colloquium Automata, Languages and Programming, pp. 641-652,
2010.

[37] M. Isenburg and J. Schewchuk, “Streaming Connected Compo-
nent Computation for Trillion Voxel Images,” Proc. Workshop
Massive Data Algorithmics, 2009.

Mark Luffel received the BS degree in computer
science from Georgia Tech. He is working
toward the PhD degree in computer science at
the Georgia Institute of Technology. His re-
search interests include connectivity representa-
tions and intuitive animation tools.

Topraj Gurung received the bachelor’s and
master’s degrees in computer science from the
Georgia Institute of Technology, and the PhD
degree in computer science at the Georgia
Institute of Technology in 2013. His research
interests include compact representation for
triangle meshes and tetrahedral meshes, and
segmentation of 3D scans. He joined Google
in 2013.

Peter Lindstrom received the BS degrees in
computer science, mathematics, and physics
from Elon University and the PhD degree in
computer science from the Georgia Institute of
Technology in 2000. He is a computer scientist
and a project leader in the Center for Applied
Scientific Computing at Lawrence Livermore
National Laboratory. His research interests
include geometric modeling, geometry proces-
sing, data compression, multiresolution and

streaming methods, and scientific visualization. He joined LLNL in
2000, where he leads several research efforts on streaming data
analysis, data locality and compression, and uncertainty visualization. He
is a senior member of the IEEE and the editor-in-chief for Graphical
Models.

Jarek Rossignac received the diplme d’Ing-
nieur degree from the ENSEM, the matrise
degree in mechanical engineering from the
University of Nancy, France, and the PhD
degree in electrical engineering from the Uni-
versity of Rochester. He is a professor of
computer science in the School of Interactive
Computing at Georgia Tech. His research
interests include the design, representation,
compression, analysis and visualization of

highly complex 3D shapes, structures, and animations. Before joining
Georgia Tech in 1996 as the director of the GVU Center, he was senior
manager and visualization strategist at the IBM T.J. Watson Research
Center. He authored 21 patents and more than 150 peer-reviewed
articles for which he received 23 awards. He created the ACM Solid
Modeling Symposia and the Solid Modelling Association (SMA); chaired
25 conferences and program committees; delivered about 30 Distin-
guished or Invited Lectures and Keynotes; and served as the editor-in-
chief of GMOD (Graphical Models), on the Editorial Boards of seven
journals and on 62 Technical Program Committees. He is a fellow of
the Eurographics Association.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LUFFEL ET AL.: GROUPER: A COMPACT, STREAMABLE TRIANGLE MESH DATA STRUCTURE 15

