vSensor: Toward Sensor-rich Mobile Applications

Minsung Jang, HyunJong Lee, Ketan Bhardwaj, Karsten Schwan
{firsthame.lasthame@cc.gatech.edu}

Georgia Institute of Technology

ABSTRACT

Interacting with sensors presents numerous challenges,

particularly for applications running on resource-constrained

platforms like smartphones or tablets. This paper sug-
gests vSensor abstractions providing such applications
with the ease of use for today’s multitude of sensors.
vSensor abstractions also interact with nearby and cloud
resources for the applications to easily process sensor-
acquired data and control actuators in a consistent way,
which permits applications to scale their use of sensors
by leveraging other nearby and cloud resources. The
vSensor abstraction developed in our research seek to
provide globally transparent, uniform access to the am-
bient sensors to unmodified applications as well as those
with the vSensor awareness. We implement and evalu-
ate the vSensor abstraction on Android platforms.

1. INTRODUCTION

The Gartner group predicts that the total number of
sensors to grow to 26 billion units worldwide by 2020 [2].
This plethora of sensors enables a rich set of applica-
tions that can assist users in their daily lives, to help
capture user intent and context [5], to enable intuitive
and meaningful user interaction, and to assist with spe-
cific tasks as in elder care [12], efficient driving [14], etc.

Our work and this paper address the challenges faced
by applications that seek to leverage and use the dy-
namic sets of sensors present on mobile devices and in
the environments in which they operate.

Three particular issues faced by such applications are:

e Diverse nature of those sensors, in part because of
the fragmented nature of today’s sensor ecosystem;

e Computational and data management challenges
in interacting with those sensors, particularly for
applications running on resource-constrained end
devices like smartphones or tablets; and

e Dynamic nature of sensor presence, as users move
in and out of their proximity and run applications
requiring their dynamic access. A simple example
is a smartphone app desiring to interact with sen-
sors in the home when the homeowner pulls into

New Applications for Mobile Devices
in a sensor-rich world

(e mo L=

vSensor abstractions

Cioudcompulmg Services
Connected Infrastructures

Connected Homes
Wearable ®
Devices R —\\' -~ # j

Connected Cars
Connected Cities ?

Flgure 1: Vision of vSensor in a Sensor-rich World

Social Relations

T e e e
4
s i i B

the garage. Doing so requires the app to dynam-
ically acquire access privileges to those sensors,
followed by subsequent phone-sensor interactions
that involve extensive communication and process-
ing activities, and developing such app functional-
ity involves understanding and handling the rich
variety of sensors present in the home and finding
ways to run app functions within the constrained
resources available on smartphones.

The object of our research and of this paper are to
make it easier for applications to leverage and exploit
the on- and off-device sensors present in their current
environments. We do so by developing the vSensor (vir-
tual sensors) abstractions that permit applications run-
ning on resource-constrained devices like smartphones
to interact with and manage the dynamic set of cur-
rently accessible sensors. We achieve this by:

o virtualizing individual sensors — virtual sensors — to
obtain a uniform way to interact with them, thus
removing from applications the need to understand
in detail how to interface with the many special-

ized and custom sensors that surround them; and

e externalizing sensor interactions and processing from

the resource-constrained mobile device to nearby
and remote cloud resources — vSensor abstractions
— to leverage the computational and storage abil-
ities of such always-on facilities for running the
complex functionality implemented by sensor-rich
applications; and

Figure 1 depicts how vSensor make available to ap-
plications the sensors present in their current environ-
ments, with application services running on both edge
and datacenter cloud systems, ranging end user devices,
to nearby computing resources (e.g., a home PC), and/or
in the remote cloud.

Our vSensor implementation for Android platforms
leverages the representative ‘edge cloud’ infrastructure
described in [9], which permits services to run ‘any-
where’, i.e., on devices, nearby machines, and the re-
mote cloud. vSensor extends these underlying func-
tionalities with its new sensor abstractions and access
control methods, where sensor-based applications can
construct virtual sensors, create services that run on
edge cloud (i.e., nearby) or remote cloud resources, and
orchestrate their execution as sets of services running on
the device and/or in the cloud.This paper’s evaluations
of vSensor with concrete applications show them fully
interacting with a variety of ambient sensors and re-
sources, without additional overheads compared to the
less convenient, direct application-sensor interactions,
with the additional ability to scale those interactions to
100s of sensors, actuators, and associated services, even
on resource-constrained platforms like smartphones.

The remainder of the paper is organized as follows.
Mobile applications’ (apps’) current usage of sensors is
explained in Section 2, with vSensor-enabled use cases
shown in Section 3. The design and implementation
of vSensor are described in Sections 4 and 5, respec-
tively. Experimental results in Section 6 demonstrate
our initial implementaion results. Conclusions are in
Section 7.

2. MOTIVATION

With the advent of a world of a trillion sensors and
mobile devices, a new class of applications has been pre-
dicted to emerge rapidly, providing end users with per-
sonalized services based on the precise capture of their
current contexts and intents. Doing so, however, re-
quires those apps to interact with the numerous sensors
present on mobile devices and in users’ current envi-
ronments, to extract personal user contexts and envi-
ronmental conditions. Unfortunately, today’s reality is
that most mobile applications (apps) hardly use sen-
sors, despite the fact that the devices hosting such apps
are themselves sensor-rich. Estimates [3] are that apps

Sensor Count Apps(top 100)

1 64
2 13
3 3
4 0
) 1
6 0
7 0
8 0
Total(%) 81 (1.62%)

Table 1: The number of apps based on their sensor use.
The total number of top 100 apps in each category of
the Google Play Store are 5000 on August 21, 2014.

using at least one sensor in Android devices are just
0.5% of all available apps in 2012, with typical devices
equipped with six sensors on average.

This section updates such estimates with a compre-
hensive study of how today’s mobile applications inter-
act with sensors. The intent is to better understand how
apps interact with sensors, to motivate the functional-
ity of vSensor intended to benefit them. The study is
also a starting point for how vSensor functionality can
enable new classes of mobile apps.

2.1 Methodology

Our study uses a tool that downloads apps from the
Google Play Store that meet some predefined condi-
tions, based on recently announced techniques like [1].
For such apps, we then analyze how they behave on the
Android platform by scrutinizing their Dex bytecodes
and manifest files. An initial study used the top 100
apps in each category on the Google Play Store, result-
ing in a total of 5000 apps (on August 21, 2014). We
plan to expand to almost all free apps in the Store.

2.2 Discussion of Study Outcomes

As shown in Table 1, for the top 100 apps, 81 out of
5000 (1.62%) use at least one sensor. This constitutes
only a small increase over the previous estiate of 0.5%
reported in 2012.

Evident from the statistics reported above is the fal-
lacy of predictions made in the academic literature and
in industry that mobile devices will become hubs in a
sensor-rich world. In theory, many applications could
benefit from leveraging all sensors on devices and in a
user’s current environment (e.g., sensors from wearable
devices, homes, and cars). In practice, this is not the
case, and it remains unclear why today’s apps do not
actively leverage even the potential utility of the sensors
present on their own devices.

vSensor’s approach in reaction to these results is to
try to make it easier for apps to use on-device and

nearby sensors, (i) by addressing the fragmentation is-
sue we have found for the sensors and devices used in
our work (see Section 5.1), and (ii) by dealing with the
dynamic nature and with sensor protection for the sen-
sors currently accessible from a mobile device.

3. APPLICATIONS WITH VSENSOR- CUR-
RENT AND FUTURE USE CASES

This section describes sensor-rich applications writ-
ten with vSensor, able to easily leverage surrounding
sensors to collect notable events and employ nearby re-
sources to process or/and react to them.

3.1 Prototype Applications with vSensor

3.1.1 Unmodified Store Apps using Local and Re-
mote Sensors

A goal of vSensor is to make it easier for existing ap-
plications to transparently and seamlessly scale in terms
of numbers of sensors with their associated data pro-
cessing activities, without the need to modify said ap-
plications whenever additional or new sensors are used.
We demonstrate this functionality with a simple Play
Store applications, termed ’sensor readout’, which reads
the outputs produced by all sensors embedded in an
Android device. With vSensor, an unmodified app like
this can interact with both on- and off-device accessible
Sensors.

3.1.2 Composed Sensors — Combining Sensors via
Services

vSensor can abstract from individual physical sensors
to form new sensor types, but a common application
need is to combine and make use of multiple sensors
to realize some desired app-level functionality. We con-
sider such functionality another case of sensor virtual-
ization and extension. vSensor can group many sensors
of the same type, e.g., all the light sensors in a home. A
concrete example evaluated in our work is an applica-
tion permitting end users to check the current time (on
their smartphone), but without turning on the smart-
phone’s battery-consuming screen. This ’don’t turn on
the screen’ application uses a set of virtual sensors of-
fered by vSensor with access to a home camera and
a phone’s speaker, and it runs its some complex soft-
ware services on the PCloud. The service implements
finger-gesture recognition using the camera: if the user
approaches the smartphone with two fingers, this is in-
terpreted as a desire to check time rather than grasp
the phone;the response is the phone’s speaker stating
the current time, without unlocking and activating the
screen, thus conserving phone power.

3.2 Future Use Cases

vSensor-aware
Applications

Existing legacy
Applications

N
| The Engme API | | SensorManager in Android |

-

vlnual sensors ‘

Remote Sensors ‘ sensors on the device ‘

vSensor
in Android

Android
on the Device

e R
vSensor in edge clouds
Ambient Sensors Ambient Sensors
i =—-
Cloud : :
[Edge Cloud Ti ion Layer |
Cloud
Physical Sensors Resources Actuators
—

Figure 2: vSensor Design

An additional application currently under develop-
ment realizes the aforementioned ‘health virtual sensor’.
This application will allow mobile devices to become
hubs for health-related information about the device
owner. The application periodically measures data like
blood sugar levels, data acquired from wearable devices
(e.g., health bracelets), and even data acquired from say,
an exercise bike used by the owner in a health club.
Analytic services part of the object immediately raise
alarms if unusual readings are detected from the ob-
ject’s virtual sensors, and in addition, they interact with
a cloud-resident service to compute long term health
statistics, implement a dashboard, etc.

4. VSENSOR DESIGN

The key design goal of vSensor is to enable apps run-
ning on smartphones and similarly resource-constrained
end user devices to more easily and efficiently interact
with the many sensors present on the devices them-
selves and in their surroundings. Concerning ease of
use, vSensor seeks to overcome difficulties related to
using many diverse sensors and to handle their poten-
tial incompatibilities and custom APIs. Concerning
efficiency, vSensor makes possible the use of ambient
nearby resources and of the remote cloud, for complex
processing and transformation of sensor data. Figure 2
depicts an overview of vSensor’s design, discussed in
more detail next.

4.1 Design Principles

The vSensor abstraction enables apps to create points
of access and use for sensors and associated sensor ser-
vices and actuators, for single or sets of sensors and
regardless of where these sensors are physically located,
i.e., on the app’s local platform or accessible remotely.
Logical decoupling — sensor virtualization. vSen-
sor virtualizes physical sensors, the goal being to cre-

ate meaningful sensor abstractions with uniform APIs
vs. the diverse, custom APIs of available physical sen-
sors. Virtualization also provides substantial flexibility
for crafting exactly the abstractions desired by applica-
tions, an example being a ‘health’ sensor implemented
by virtual sensors comprised of a scale, a heartbeat sen-
sor on a bracelet, and cameras watching the exercise
equipment being used.

Flexible service execution — sensor services. The
location of a virtual sensor should not determine where
its service codes manipulating sensor data are run: on
the sensor itself, on the platform hosting it, or on other
available processing resources. There is ample previous
work demonstrating the need for such flexibility, rang-
ing from early work on adaptive sensor processing [11]
or adaptive media manipulation [13] to recent work on
edge cloud functionality [6] and cloud offloading for sen-
sors [10]. In accordance with such insights, virtual sen-
sors are able to run on any underlying platform made
available by edge cloud infrastructures [9, 7, 8, 4] with
which vSensor can interact (see the ‘translation layer’ in
Figure 2). Currently, this is the PCloud edge cloud [9],
but it is straightforward to write such a layer for other
infrastructures.

Backward compatibility — sensor illusions. The
virtual sensors via vSensor abstractions should remain
available to existing applications that use them. We
achieve this backward compatibility by having vSensor
export ‘illusions’ of those sensors to legacy apps, while
at the same time, providing the advanced functionality
of use to new applications via a new set of our APIs.

4.2 Basic Operations

Virtual sensors are created and managed with oper-
ations that include group, glance, aggregate, trim, bun-
dle, and reconfigure to meet the design principles artic-
ulated in Section 4.1. Apps invoke such operations via
the ‘Engine APT’ on the Android platform also shown
in Figure 2 and as with object services, these opera-
tions can again be run on any of the resources made
available by the underlying edge cloud — on the device
making the call, on some nearby resource, or in the re-
mote cloud. We next describe some of these API calls
and their functionality.

S. SELECT IMPLEMENTATION DETAIL

This section presents the implementation details needed

for understanding the performance evaluation in Sec-
tion 6.

5.1 Android Realization

Our Android implementation must be (i) backwards
compatible, (ii) transparent to their physical nature,
and (iii) portable permitting virtual sensors to run on
any of the variety of edge cloud infrastructures currently

Name | Hardware/Role(s)

Intel Galileo 1st Gen
Actuator Nodes Intel Galileo 1st Gen
Camera Nodes Exynos 5420 and AMD E450
EC2 m3.large (Cloud resource)
Local 1 Intel i5 (Local resource 1)
Device Galaxy S4 (User’s mobile device)

Table 2: vSensor Testbed Setting

Sensor Nodes

under development [7, 8, 9]. We obtain these properties
as follows. First, to existing sensor-based apps, vir-
tual sensors wrapping existing sensors provide to these
apps the aforementioned ‘illusions’ of the physical sen-
sors these apps currently employ.

Second, with sensor virtualization and the ability to
construct entirely new sensors from both physical sen-
sors and events (e.g., calendar events) associated with
logical artifacts, transparency becomes a pervasive prop-
erty of vSensor’s Android implementation. Third, we
obtain portability by providing a translation layer for
running vSensor nn the PCloud edge cloud.

5.2 The Engine API

In Android, apps using vSensor access virtual sensors
via the ‘Engine API’; which implements methods that
correspond to the operations described in Section 4.2.
The API provides access to both local and remote sen-
sors, via virtual sensors wrapped by vSensor abstrac-
tions.

6. EXPERIMENTAL EVALUATION

We evaluate use cases in Section 3.1 to demonstrate
the utility and performance of the vSensor abstraction.

6.1 Evaluation Setup

Table 2 describes a set of resources in our experi-
ments. Intel Galileo boards(1lst Generation) are used
for remote sensor and actuator nodes. The remote sen-
sor nodes measure humidity and temperature at their
locations while the actuator nodes send notifications to
users via embedded LED bulbs. The camera nodes keep
track of the figure’s gesture of users.

6.2 Initial Results

6.2.1 Unmodified Store Apps using Local and Re-
mote Sensors

We verify the backward compatible capability of the
vSensor abstractions by checking if the existing apps
in the Google Play Store can transparently access the
virtual sensors resulting from what vSensor virtualizes
local and remote sensors. Figure 3 is a screenshot show-
ing that such an app, Sensor Readout, transparently
interacts with local (on-device) and remote (off-device)

Q_ Sensor Readout
SAMSUNG SEniﬁcant Motion S. p

Unknown type

SAMSU NG Step Detector Sensor

Unknown type

SAMSU NG Step Counter Sensor

Physical Sensors
on the Device

Pre<:|p|tat|on

||r.Lsn

L Irl\ nov

BMI

Unknown type

| Ambient Sensors
transparently
visible via vSensor

Heart Pressure
Unknown type

Electric usage
Unknown type

Intrusion detection

Unknown type

Figure 3: A Screenshot of the Sensor Readout App

sensors. First three sensors in Figure 3 are those on
our test device, Samsung Galaxy S4, while the rest are
virtual sensors that are local illusions of remote sensors
created by the vSensor abstration.

6.2.2 Composed Sensors — Combining Sensors via
Services

The Engine API enables mobile applications to com-
bine different virtual sensors to a new kind of a single
virtual sensor that interacts with actuators and services.
This ’don’t turn on the screen’ application combines a
set of cameras at home into a single virtual sensor ob-
ject, which is ‘user’s finger gesture detection sensor’.
The application uses this virtual sensor and runs its
finger-gesture recognition service on either the nearby
resources or the remote cloud(Amazon EC2) based on
a scheduling decision made by the PCloud. The appli-
cation, then, makes the speaker on the phone stating
the current time. Results in Figure 4 summarize our
experiments for the app. We check the current time
ten times during ten seconds for each by turning on the
screen (labeled as ‘Screen’) and by the app (labeled as
‘Speaker’). Figure 4 (a) shows the elapsed time between
the finger detection and stating the current according
to locations where the recognition service runs. If the
service runs on local resources (labeled as ‘Pcl-WLAN’),
the response time is around 97.4ms while the cloud (la-
beled as ‘EC2-WLAN’) 294.5ms. We also compare the
power and energy consumption of the app with those
without the app. Figure 4 (b) clearly shows that the
app can dramatically reduce the energy consumption
by 46%.

These initial results for two use cases shows that (i)
the existing apps can interact with not only sensors on
a device but those remotely available without having
to change their source code, and (ii) vSensor can con-
tribute to open up a new opportunity for mobile appli-
cations via composing sensors.

[
(=]

0

Milliseconds

0

Pcl-WLAN EC2-WLAN
(a) Response time to state the current time. Error bars
show 95% confidence intervals, repectively.

r ——Speaker Screen

w Watt

N
T

[l

@
PR T Y

0 1 J
0 2 4 6 8 Seconds

(b) Power consumption

Figure 4: Results of the ‘Don’t turn on the screen’ appli-
cation. For the total energy consumption, the speaker
and the screen are 22.14 and 40.94 mWH, respectively.
Each circle shows the moment that a user acknowledges
the current time.

7. CONCLUSIONS

With the vSensor approach and abstractions, we ad-
dress several issues with today’s sensors and sensor pro-
cessing ecosystem. First, with vSensor’s uniform virtual
sensors, it becomes easier for applications to interact
with and leverage available custom and specialized sen-
sors. Second, by leveraging edge and remote clouds,
vSensor makes feasible complex sensor processing and
integration activities that are not limited by a smart-
phone’s computing, storage, and battery constraints.

8. REFERENCES
[1] Dex2jar tool.

https://code.google.com/p/dex2jar/.

[2] Press release. http://goo.gl/CziKJa.

[3] Sensor-based apps offer lots of potential but are
hindered by fragmentation.
http://goo.gl/aUhi8N.

[4] Smartthings. https://www.smartthings.com.
[5] BHARDWAJ, K., SREEPATHY, S., GAVRILOVSKA, A.,
AND SCHWAN, K. Ecc: Edge cloud composites. In
Mobile Cloud Computing, Services, and Engineering

(MobileCloud), 2014 2nd IEEE International
Conference on (April 2014), pp. 38-47.

[6] BUEVICH, M., WRICHT, A., SARGENT, R., AND
ROWE, A. Respawn: A distributed multi-resolution
time-series datastore. In Real-Time Systems
Symposium (RTSS), 2018 IEEE 34th (Dec 2013),
pPp. 288-297.

[7] DixoN, C., MAHAJAN, R., AGARWAL, S., BRUSH,
A. J., LEE, B., SAROIU, S., AND BAHL, P. An
operating system for the home. In Proceedings of the

[10]

[11]

[12]

[13]

[14]

9th USENIX Conference on Networked Systems
Design and Implementation (Berkeley, CA, USA,
2012), NSDI'12, USENIX Association, pp. 25-25.

Ha, K., CHEN, Z., Hu, W., RICHTER, W., PILLAI,
P., AND SATYANARAYANAN, M. Towards wearable
cognitive assistance. In Proceedings of the 12th Annual
International Conference on Mobile Systems,
Applications, and Services (New York, NY, USA,
2014), MobiSys ’14, ACM, pp. 68-81.

JANG, M., ScHwAN, K., BHARDWAJ, K.,
GAVRILOVSKA, A., AND AVASTHI, A. Personal clouds:
Sharing and integrating networked resources to
enhance end user experiences. In INFOCOM, 201}
Proceedings IEEE (April 2014), pp. 2220-2228.

Liu, B., JiaNG, Y., SHA, F., AND GOVINDAN, R.
Cloud-enabled privacy-preserving collaborative
learning for mobile sensing. In Proceedings of the 10th
ACM Conference on Embedded Network Sensor
Systems (New York, NY, USA, 2012), SenSys ’12,
ACM, pp. 57-70.

Rosu, D., ScawaN, K., YALAMANCHILI, S., AND
JHA, R. On adaptive resource allocation for complex
real-time applications. In Real-Time Systems
Symposium, 1997. Proceedings., The 18th IEEE (Dec
1997), pp. 320-329.

Siva, L. C. D., MorikAwA, C., AND PETRA, I. M.
State of the art of smart homes. Engineering
Applications of Artificial Intelligence 25, 7 (2012),
1313 — 1321. Advanced issues in Artificial Intelligence
and Pattern Recognition for Intelligent Surveillance
System in Smart Home Environment.

STEERE, D. C., GOEL, A., GRUENBERG, J.,
McNAMEE, D., Pu, C., AND WALPOLE, J. A
feedback-driven proportion allocator for real-rate
scheduling. In Proceedings of the Third Symposium on
Operating Systems Design and Implementation
(Berkeley, CA, USA, 1999), OSDI ’99, USENIX
Association, pp. 145-158.

THRUN, S. Toward robotic cars. Commun. ACM 53, 4
(Apr. 2010), 99-106.

