Towards IoT-DDoS Prevention Using Edge Computing

Ketan Bhardwaj, Joaquin Chung Miranda, Ada Gavrilovska
Georgia Institute of Technology

Abstract

Application-level DDoS attacks mounted using compro-
mised IoT devices are emerging as a critical problem. The
application-level and seemingly legitimate nature of traffic
in such attacks renders most existing solutions ineffective,
and the sheer amount and distribution of the generated traffic
make mitigation extremely costly. This paper proposes a new
approach which leverages edge computing to deploy edge
functions that gather information about incoming traffic and
communicate that information via a fast-path with a nearby
detection service. This accelerates the detection and the arrest
of such attacks, limiting their damaging impact. Preliminary
investigation shows promise for up to 10x faster detection that
reduces up to 82% of the Internet traffic due to IoT-DDoS.

1 Introduction

The IoT-DDoS Problem. Safeguarding the web infrastruc-
ture and services against the highly damaging Distributed
Denial-of-Service (DDoS) attacks is a difficult and pressing
need today. Conventionally, DDoS campaigns are carried out
by botnets which utilize an army of infected computers/devices
to overwhelm a target web service or Internet infrastructure
element with malicious traffic. Such attacks have been studied
extensively in the past. Recently a new and more damaging
kind of application-level DDoS attacks are emerging, where
compromised Internet of Things (IoT) devices are used as
attackers. Examples include the attacks on KrebsOnSecu-
rity [8] and Dyn [7] by the Mirai botnet [S]. We refer to this
type of attacks as [oT-DDoS. IoT-DDoS attacks pose a critical
problem to be solved for broad adoption of IoT.

IoT-DDoS challenges current DDoS security measures in
new ways. The recent application-level IoT-DDoS attacks
evade existing attack detection solutions such as network intru-
sion detection systems (NIDS) because the data in the attack
traffic appears to be, or is indeed originating from legitimate
IP addresses of IoT devices. The sheer amount of the traffic
generated in an IoT-DDoS [5] makes the cost associated with
deploying mitigation solutions so high that only a few compa-
nies with massive infrastructure can afford to handle it, such as

1

Google’s Project Shield [9], Akamai [11] or CloudFlare [12],
who offer on-demand DDoS protection as a service.

Can the Edge Help? In this paper, we explore an approach
which leverages computational resources in the edge of the
network to accelerate the defense from IoT-DDoS attacks, and
arrest them before they can cause considerable damage to both
the attack target as well the Internet infrastructure itself.

We are motivated by the following observations. First, de-
tection of a DDoS is best done close to the victim, whereas its
mitigation and prevention are most effective close to the attack
source. Second, the emergence of a new infrastructure tier
at the edge of the network, including mobile edge computing
(MEC) access points [33], fog computing gateways [26], and
similar elements, presents opportunities to dynamically provi-
sion edge functions [25, 48, 44] to handle the vast amounts of
Internet traffic created by IoT devices.

We posit that this edge tier provides a new vantage point
closer to the source, which has not been considered in other
approaches to counter IoT-DDoS. However, the edge sees
limited network traffic, and is limited in terms of compute
resources. The edge can neither capture the aggregate network
traffic required for IoT-DDoS detection, nor can it scale re-
sources needed for mitigation like the elastic cloud . As a
result, simply deploying existing approaches to absorb DDoS
using infrastructure provisioning will not suffice at the edge.

We observe, however, that the edge of the network — the
wireless and cellular gateways providing connectivity for IoT
devices with the Internet — have capabilities needed for limited
processing of IoT packets. These resources can be sufficient
for capturing lightweight information profiles of the IoT
packets that stream through them. Examples can be as trivial
as packet counts, or reduced packet information containing
header-only data, or more sophisticated algorithms for sketch-
ing streamed data. If these information profiles can be more
rapidly aggregated, relative to what’s possible when aggregat-
ing the original full-featured IoT traffic, and if the information
they carry correlates sufficiently well with the information
necessary to detect an attack, they create a path to acceler-
ate detection of an impending IoT-DDoS and deployment of
appropriate defense mechanisms at the edge infrastructure.

ShadowNet. Motivated by these observations , we propose
ShadowNet — an architecture that makes the edge the first line
of defense against IoT-DDoS. It achieves its goals in the fol-
lowing manner. First, appropriate edge functions are deployed
on the distributed edge infrastructure, on behalf of a backend
IoT application seeking protection. The role of these edge
functions are to sketch the profiles of IoT traffic streaming
from a given edge location. Second, the edge function estab-
lishes a fast path between itself and a special ShadowNet web
service. The edge function uses the fast path to send small
shadow-packets with locally-derived information about IoT
traffic to the ShadowNet web service. ShadowNet can then ag-
gregate that information about the IoT traffic distributed across
a number of edge nodes, detect an imminent IoT-DDoS at-
tack, and respond with some proactive defensive action. The
approach assumes that an edge function and web service can
mutually attest each other to establish trust between them.

In this paper, we present the ShadowNet idea, and argue
that a possible outcome is accelerated detection and response
to an attack, potentially even before it reaches the target. Con-
cretely, we present encouraging preliminary results from ex-
periments we carried out on an initial ShadowNet prototype.
We demonstrate that ShadowNet can detect an impeding IoT-
DDoS attack up to 10x faster than the best case detection at
victim, and prevents injection of up to 82% of the traffic in the
Internet infrastructure by compromised IoT devices. In that
sense, ShadowNet represents a major contribution towards
defenses against IoT-DDoS attacks.

2 Motivation

We present a brief discussion of the technology landscape that
motivates the design of ShadowNet.

DDoS Attacks. DDoS attacks were observed first in the early
2000’s when several web sites (e.g., Yahoo, eBay, Amazon,
and ZDnet) were taken offline, incurring significant financial
losses [41]. In December 2010, the group Anonymous targeted
the web sites of Mastercard, PayPal, Visa, and PostFinance
[49]. Most recently, in 2016, the Krebs On Security [8] and
Dyn [7] websites were victims of massive DDoS attacks facil-
itated by IoT devices. Based on reports from industry leaders
in DDoS protection services, such as Arbor Networks [22],
Akamai [19], F5 [32], Incapsula [13], and Neustar [6], DDoS
attacks in general are becoming bigger, more complex and
more frequent. In summary, IoT-DDoS is a formidable prob-
lem due to its scale, complexity and frequency, which can
prove to be a roadblock for IoT adoption.

DDoS Network Traffic Patterns. DDoS network traffic
patterns mostly depend on the tools used to launch the attack.
Bukac [27] studied the traffic characteristics of common DoS
tools such as High Orbit Ion Cannon (HOIC) [14], HULK [15],
Low Orbit Ion Cannon (LOIC) [16], OWASP HTTP tool [18],
and Slowloris [21]. Based on this study, we can classify the
attack buildup patterns of these tools in two categories: quick
response and gradual buildup. A more recent and prevalent

2

:Moblle :) § c
- — —
I] Core |8 & Cloud
D - s 10T Web
IoT Efg;n’;zdes Old vantage Service
Devices 8 .
ShadowNet ShadowNet points for
edge fast-path DDoS Defense
& I] functions
0 :l Response-less
' . ShadowNet
New vantage point Service
for DDoS Defense Cloud

Figure 1: ShadowNet Overview

technique is hit-and-run DDoS attacks [5] in which the attacker
sends multiple short bursts of quick response traffic followed
by periods of inactivity, making it very challenging to manage.
DDoS Defenses. The objective of DDoS defenses is to de-
tect the attack as soon as possible, and to mitigate it. DDoS
defenses can be source-based, destination-based, network-
based, or a hybrid. They can be deployed before the at-
tack (prevention), during the attack (detection), and after
the attack (source identification and response). In the many
years of DDoS history, many detection and mitigation mech-
anisms have been proposed (source-end detection [45, 39],
secure overlay networks [46, 28, 42], SDN/NFV based ap-
proaches [40, 43, 31, 30] and cloud based approaches [41, 49]).
However, in all cases, Internet users and infrastructure still
incur damage, as the Dyn attack of 2016 can testify [7].

IoT and Edge Computing. Edge computing—the use of
computational resources closer to end devices, at the edge
of network—is an attractive approach to addressing latency
and bandwidth demands of emerging applications. Going be-
yond point solutions, the vision of edge computing, where
web services deploy their edge functions in a multi-tenant
infrastructure, is proposed by researchers [25, 44] and indus-
try initiatives [1, 3]. Edge computing and IoT are deeply
interrelated. First, the anticipated data deluge from tens of
billions of connected devices, potentially related to critical in-
frastructure and services, is a major driver for edge computing
— the only way to operate on this data with low latencies and
low data movement costs is by moving computation closer
to them, along the network edge. Second, the architecture
of IoT deployments is a natural fit for edge computing, as,
for energy-related reasons, IoT device connect through the
Internet through low-power protocols via wireless or cellular
gateways [37, 47, 29], examplifying edge nodes.

3 Overview .
Figure 1 shows the components of the ShadowNet architecture.

With ShadowNet, these edge nodes are securely provisioned
to run application-specific edge functions that handle requests
for corresponding web services. The edge functions use a
fast path, faster than the original path to the application web
service, to relay the traffic profile sketch to a ShadowNet ser-
vice, using small, self-authenticated shadow packets. The
ShadowNet service aggregates these faster sketches from all

Device t; Edge & Cloud
: e :
| [| |
| o m o SN |

Figure 2: Opportunities afforded by ShadowNet.

edge nodes, to make more early observations regarding pos-
sible anomalies. A practical defense mechanism made pos-
sible with ShadowNet involves quickly deploying new edge
functions which implement defensive actions such as blocking
certain IPs at the edge nodes themselves, preventing the spread
of the attack and eliminating attack-related load from the core
network. As with the edge functions, we foresee that the ap-
plications using the ShadowNet service will deploy suitable
anomaly detection, based on their best security practices.

Ideally, the ShadowNet service would be as accurate but
faster in detecting an attack than any analysis done at the
web service itself. However, to maintain lightweightness of
edge functions, accuracy may be traded-off for performance
by employing techniques such as sampling or predictive
analytics. A similar argument is applicable for the counter
measures or actions to the detected attacks.

Figure 2 provides an illustration of the opportunities that
the ShadowNet architecture affords. In current systems, IoT-
DDoS packets, along with regular IoT traffic, traverse the edge
gateways and are propagated to a target application web ser-
vice deployed in a backend cloud or datacenter, accessed via
the wide area network, with the i-th packet taking time #{ +¢".
Since ShadowNet can be reached via the fast path ¢, informa-
tion about the IoT traffic is aggregated more quickly, and, on a
potential attack, appropriate actions can be triggered in a more
timely manner, i.e., in time #;, . This means that IoT DDoS
is detected faster if the following condition holds true for all
packets in an attack: 75 +1f <¢"; the damage prevented is
function of #;,, i.e., the time it takes to start a mitigating action.
Examples of actions can range from triggering an immediate
prevention mechanism, such as blocking the attack traffic, to
raising probabilistic alarms requiring additional investigation.
The later may be needed when the shadow packet information
is lossy with respect to the full packet signature, and cannot
detect it with the same fidelity as when using the original
traffic stream. ShadowNet builds on our previous work on
fast and efficient just-in-time deployment of edge functions
the edge [25]. This keeps ¢, minimal, which is important to
prevent substantial damage from an attack. It also provides
for secure interactions among the ShadowNet components,
and allows for operating on data over encrypted connections
without violating end-to-end security guarantees [24].

4 Feasibility and Challenges

In this section, we discuss the feasibility and the challenges in
addressing the requirements of the ShadowNet system.
Designing a ShadowNet fast-path. First, the effectiveness

3

of ShadowNet depends on the ability to quickly deliver in-
sights regarding the traffic being generated at the edge to the
ShadowNet backend service. Thus, being able to create the
ShadowNet fast-path is a critical element of the solution.

There are two main classes of mechanisms that can be
used practically to create the ShadowNet fast-path. The
first requires hardware-assistance for network slicing to pro-
totype the ShadowNet fast-path using a dedicated network
slice [36, 2, 4], proposed to be a key technology in 5G net-
works. The second set of mechanisms are purely software-
based. These include the use of pre-population of dedicated
routes to the ShadowNet service, thus reducing the network
distance between the edge and the ShadowNet service, using
priority packet scheduling for shadow-packets vs. the other
traffic at the edge infrastructure, or reducing the protocol dis-
tance in the system software stack by using different network
layers for implementing the fast-path and reducing the weight
of the packets to transfer, i.e., sending a small packet contain-
ing a small keyword with self authentication vs. forwarding
the full request to the ShadowNet service. In this paper, we
present our preliminary results by implementing the last two.

Designing a trusted ShadowNet service. After solving
the fast-path challenge, the next question is how to ensure
that only the right packets are accounted for in detecting an
imminent [oT-DDoS. We leverage the shielded execution en-
vironment available to edge functions to send its unforgeable
attestation to the ShadowNet service, which can later be used
to identify packets [23, 25]. To avoid replay attacks, this at-
testation is sent over an encrypted channel with a pre-shared
key between the edge functions and the ShadowNet service.
The pre-shared key can be rotated by another entity such as
the web service using ShadowNet, or the edge infrastructure
owner. Additional challenges come from determining how to
reasonably scale the ShadowNet service. For this paper, we
designed a ShadowNet service as a web service and we use a
DTLS over UDP protocol to realize a no-response service.

Designing customizable prevention. ShadowNet depends
on edge functions that can be quickly deployed at the affected
edge locations (either by the ShadowNet service or indepen-
dently) to gracefully degrade the quality of service in response
to a potential DDoS. With enough edge deployments, the
ShadowNet service could potentially provide the IoT web ser-
vice a peek into the traffic that is going to hit it giving it an
option of either prepare to handle it, or to stop it before it hits
the public Internet infrastructure.

The performance of ShadowNet in preventing loT-DDoS
attacks will rely on its ability to deploy mitigation edge func-
tions in time. Recent attacks [5] happen in burst of 5 minutes,
so if it takes more time to deploy mitigation edge functions,
it would not be effective. Existing research [25], showed
that containers (vs. virtual machines and applications sand-
boxes) can be used to deploy edge functions with acceptable
delays. Further, by pre-deploying images of mitigation edge
functions, this can be further shortened to order of seconds
after detection happens. Concerning how an edge function

prevents the traffic at the edge or the strategies to mitigate an
IoT-DDoS, we simply start selectively dropping packets at all
edge functions. Exploring more sophisticated approaches such
as selecting specialized edge functions or particular APIs to
block to minimize impact is part of the open challenges.
Proof of concept implementation. We prototyped the
ShadowNet edge function and the ShadowNet service in the
Go programming language. We implemented the ShadowNet
edge functions as UDP and HTTP reverse proxies, and
the ShadowNet service as a corresponding server listing
for shadow packets. The edge functions’ fast path to the
ShadowNet web service is based on transmission of a short
packet containing the keyword “shadow” over a low-latency
slice of our testbed network. To detect an IoT-DDoS attack
at the ShadowNet service, we record the arrival time of each
shadow packet with a timestamp, and compare it with the
arrival time of the previous shadow packet. The difference in
the arrival time of two consecutive packets is the inter-packet
spacing, which is directly correlated to the HTTP request
rate, or the UDP transmission rate received at the ShadowNet
edge function. If the inter-packet spacing drops below certain
threshold, i.e., the HTTP request rate, or the UDP transmission
rate at the ShadowNet edge function had surpassed a certain
threshold, we raise an alert.

S Preliminary Experimental Results

Experimental setup. We created the testbed using the GENI
platform, an open infrastructure for at-scale networking re-
search in the US. It allows researchers to request virtual ma-
chines and software-defined networking (SDN) [35] switches
for their own experiments. For our experiments, we requested
four virtual machines (VM): attacker, ShadowNet edge func-
tion, ShadowNet service, and victim. All VM’s are hosted
at our institute’s GENI location, and interconnected by Fast
Ethernet (100 Mbps), as shown in Figure 3(a). Each VM has
one Intel(R) Xeon(R) CPU X5650 @ 2.67GHz core, 1 GB
of RAM running Ubuntu 14.04. To emulate the fast-path in
ShadowNet, we used the 7c and netem Linux utilities to add
delay RTT to the server NICs. The RTTs between different
components are as shown in Figure 3(a) with assumption of
symmetrical links.

Attack characteristics. For our experiments, we consid-
ered attack characteristics of IoT botnets such as HTTP GET
flooding generated by all type of sensors and UDP flooding
generated by video surveillance cameras [38]. Furthermore,
these attacks may be launched for extended periods of time
or using hit-and-run tactics (i.e., short burst of 5 minutes) as
in the Mirai campaigns against KrebsOnSecurity and Dyn [5].
We generated the attacks using BoNeSi, a DDoS botnet sim-
ulator capable of generating UDP and HTTP GET flooding
attacks [10]. For the HTTP GET flooding attack, we used
BoNeSi to generate HTTP GET requests at a rate of 500 req/s.
We programmed a web server in the Go language to generate
a response of 260 KB for every request. This value is the

4

average size of an HTTP web page without including videos,
taken from httparchive.org. The HTTP GET flooding
attack forces the web server to generate a maximum of 1 Gbps
response traffic. We measured that this attack is able to take
down our web server in less than one minute. Similarly, the
UDP flooding attack generates 1000 bytes UDP packets at
a rate of 8500 packets per second (pps). This attack puts
68 Mbps of traffic in the network almost instantly. For both
types of attack, BoNeSi generates requests using 252 attacker
IP addresses from the class C network connected to the at-
tacker VM. We lost 2 IP address that are assigned to the link
between the attacker VM and the edge function VM.

Measurement setup. Our measurement setup is composed of
Open-vSwitch (OVS) [17] switches between the ShadowNet
edge function and the ShadowNet service and victim VMs
(see Figure 3(a)). These switches run sFlow [20] to collect
network traffic statistics, and report them to a central collector
using HTTP. To ensure that the measurements are accurate
we used a common clock synced using sFlow collectors at
all components and ran all detection techniques at the same
time. Also, we configured the polling interval of the switches
to 1 second. This configuration allows us to achieve fastest
detection with sFlow. To show how fast a ShadowNet service
detects an loT-DDoS attack compared to a traditional sFlow-
based approach, we compare the detection time for the HTTP
GET flood and UDP flood attacks for the following:

1. ShadowNet using UDP (SN): an edge function sending
shadow-packets to ShadowNet service and thresholding inter-
packet spacing to detect an imminent DDoS.

2. ShadowNet using sFlow (ESF): an edge function sending
shadow packets to ShadowNet service using an sFlow-enabled
OVS and an sFlow collector while thresholding incoming
packet rate to detect an imminent DDoS.

3. Detection at victim using sFlow (VSF): an sFlow-enabled
OVS at the victim server and thresholding incoming packet
rate to detect an ongoing DDoS.

Results. In our preliminary experiments, we seek answers to
the following questions:
Q. How fast can ShadowNet prevent damage by loT-DDoS?

Figure 3(b) shows detection times for ShadowNet and sFlow
under HTTP GET and UDP flooding attacks, measured in sec-
onds needed for any of the systems to raise an alert after the
attack has started. For an HTTP GET flooding attack, the
ShadowNet service detects an attack in 2.46 seconds by moni-
toring inter-packet spacing of shadow-packets, while by using
sFlow detection, the ShadowNet service detects the attack in
5.30 seconds, and the victim in 5.08 seconds. Similarly, the
ShadowNet service detects an UDP flooding attack in 0.62
seconds, while sFlow detects the attack in 2.01 seconds at the
ShadowNet service, and 6.57 seconds at the victim.

These results demonstrate that a fast-path combined with
a response-less service can be 2.1x and 10.6x faster than tra-
ditional detection methods for HTTP and UDP flooding re-
spectively. Despite that ShadowNet server is counting UDP
packets (Layer 4) and the sFlow agent is counting Ethernet

EdgeScope —
Attacker <—>{ Edge pems O}r/S (_’V;:et:)m
RTT | Function :) .
10ms 100ms| [SFlow| [service — —
ms L : 16—|‘|‘|’P Flooding 10UDP Flooding ¢ sol[= =
25ms | o ——
—— ! — 5 |
" ovs : 2 g 8 3 B
o T 0 £ 60
| SFlow | ! g 6 g
| 1 + 2
| i c % 540
EdgeScope | | ! o 4 4
Service i i 5 o
. L | & ®20
EdgeScope | ! v 2 2 e
ClkSync ™~ i @] 8
| 0 oL 0
Victim ! =4 Lu,_) (L}_) = Lu,_) (,_}_) H-l—l-P UD P
W T vag s g Flooding Flooding

(a)

(b)

(©)

Figure 3: Showing (a) our experimental setup, (b) DDoS early detection, and (c) DDoS damage prevented by ShadowNet.

frames (Layer 2) at the switch, the ShadowNet service pro-
vides faster detection because it does not rely on connection-
based protocols like HTTP to report measurements, which is
the case for the detection application using sFlow. It is im-
portant to note that the dynamics of the HTTP GET flooding
attack generate a moderate request rate to pass undetected by
inbound traffic meters. However, it is the size of the response
payload multiplied by the amount of concurrent connections
in a short period of time that produces the DDoS. The fact
that ShadowNet is able to detect the attack 2.06 times faster
than the victim, while sFlow at ShadowNet detects the attack
just 1.04 times slower that the victim, showcases the benefits
of our approach. Moreover, Figure 3(b) shows that sFlow at
ShadowNet has a high standard deviation and a maximum de-
tection time around 9 seconds, making this detection technique
unsuitable for connection-oriented IoT-DDoS attacks.
Q. How much damage can be prevented by using ShadowNet?
Considering the attack characteristics and the detection time
measurements, Figure 3(c) presents how much damage is pre-
vented by using ShadowNet in terms of percentage of traffic
that did not enter the network. We compare ShadowNet de-
tection time against our measurements at the victim, although
industry standard mean-time-to-mitigation (MTTM) is 5 min-
utes. We assume a mitigation system that provisions network
policies with a configuration delay 0.5 seconds [25]. Fig-
ure 3(c) shows that ShadowNet using UDP shadow packets
prevents from 40% to 82% of the damage for HTTP and UDP
flooding, respectively. ShadowNet sFlow prevents around 60%
of the damage for a UDP flooding attack, while it is not able to
prevent any damage for an HTTP flooding attack. In the best
case scenario, ShadowNet detects a UDP flooding attack in
0.62 seconds, while injecting shadow packets of size 70 bytes
at a rate of 8500 pps on the fast path. This is equivalent to
4.76 Mbps for 0.62 seconds. Similarly, for the HTTP flooding
attack detected in 2.46 seconds generating 280 Kbps.

6 Discussion

The preliminary results are encouraging but they leave out a
number of important open questions. In order to be effective,

5

ShadowNet would need to be applied across multiple networks
and creating a fast path across them presents additional chal-
lenges. Further, it may not be sufficient for the ShadowNet
service to be in a single location. Deployment in multiple
locations can impact the fast-path assumptions and too much
geographical replication would affect aggregation performed
at the ShadowNet service. Given that most recent attacks are
orchestrated from geographically distributed locations, there
are important research questions around replication models for
ShadowNet. Concerning ShadowNet edge functions, there are
open questions on what and how much should be incorporated
in them? For example, in our prototype shadow-packets are
generated per request for each service ShadowNet is protect-
ing. This may pose high overhead at the edge for ShadowNet
to be practical. An appropriate sampling approach can reduce
that overhead. However, the trade-offs in using sampling and
accuracy of detection need to be carefully considered. Further,
to distinguish between flash-crowds and a DDoS, ShadowNet
can use known techniques [34] that can be incorporated in
edge-functions.

7 Summary

We propose ShadowNet as an approach to prevent application-
level IoT-DDoS attacks by leveraging the emerging edge in-
frastructure. It not only protects the web services by detecting
IoT-DDoS 10 times faster than existing approaches but also
prevents 82% traffic to enter the Internet infrastructure, re-
ducing the damage. We presented encouraging preliminary
evaluation with a prototype implementation. Future work will
complete the ShadowNet implementation and evaluations to
study the trade-offs under realistic conditions.

Acknowledgements

We thank the anonymous reviewers and shepherd, Rolf Schus-
ter, for their insightful comments. This work was supported
with funding from the Cisco University Research Program,
the Georgia Tech Center for Development and Applications of
IoT (CDAIT), and VMware’s University Research Fund.

References

(1]
(2]

(3]

(4]

(3]

(6]

(71

(8]

(9]

(10]
(11]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

Etsi mobile edge computing. http://goo.gl/Qef61X.

Network sliceing for 5Sg networks: 5g americas. http://www.
S5gamericas.org/files1414/8052/9095/5G_
Americas_Network_Slicing_11.21_Final.pdf.

Open edge computing. http://openedgecomputing.org/about-
oec.html.

Towards 5g network slicing - motivations and chal-
lenges. http://5g.ieee.org/tech-focus/march-
2017/towards-5g-network-slicing.

Breaking down mirai: An iot DDoS botnet analy-
sis. https://www.incapsula.com/blog/malware-
analysis-mirai-ddos-botnet.html, 102016.

DDoS & cyber security insights. https://hello.

neustar.biz/2016-soc-report-security—
lp.html, 12 2016.

Dyn analysis summary of friday october 21 attack.
http://dyn.com/blog/dyn-analysis—-summary—
of-friday-october-21-attack/, 11 2016.
KrebsOnSecurity hit with record DDoS.
//krebsonsecurity.com/2016/09/
krebsonsecurity-hit-with-record-ddos/,

11 2016.

Project shield. https://projectshield.
withgoogle.com/public/, 7 2016.

BoNeSi. https://github.com/Markus-Go/bonesi, 7 2017.

DDoS mitigation. https://www.akamai.com/us/en/
resources/ddos-mitigation. jsp, 4 2017.

https:

DDoS protection.
ddos/, 4 2017.

Global DDoS threat landscape g4 2016. , 3 2017.

Hoic - high orbit ion cannon. https://www.incapsula.
com/ddos/attack-glossary/high-orbit-ion-
cannon.html, 4 2017.

Hulk, web server DoS tool. http://www.sectorix.
com/2012/05/17/hulk-web-server—-dos—tool/,
42017.

Loic - low orbit ion cannon. https://www.incapsula.
com/ddos/attack-glossary/low-orbit—-ion—
cannon.html, 4 2017.

Open vSwitch. http://openvswitch.org/, 2017.

https://www.cloudflare.com/

Owasp http post tool. https://www.owasp.org/index.
php/OWASP_HTTP_Post_Tool, 42017.
Q4 2016 state of the internet / security report.

https://www.akamai.com/us/en/about/our—
thinking/state-of-the-internet-report/

global-state-of-the-internet-security-

ddos—attack-reports. jsp, 22017.

sFlow - making the network visible. http://www.sflow.org/,
2017.

Slowloris. https://www.incapsula.com/ddos/
attack—-glossary/slowloris.html, 42017.
Worldwide infrastructure security report. https:
//www.arbornetworks.com/images/documents/

WISR2016_EN_Web.pdf, 12017.
6

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

(32]

(33]

(34]

[35]

[36]

(37]
(38]

ARNAUTOV, S., TRACH, B., GREGOR, F., ET AL. SCONE: Se-
cure Linux Containers with Intel SGX. In Proc. of Symposium
on Operating Systems Design and Implementation (OSDI’16)
(Savannah, GA, 2016).

BHARDWAIJ, K. Frames, Rods and Beads of the Edge Comput-
ing ABACUS. PhD thesis, 2016.

BHARDWAIJ, K., SHIH, M., AGARWAL, P., GAVRILOVSKA,
A., KiMm, T., AND SCHWAN, K. Fast, scalable and secure
onloading of edge functions using airbox. In Proceedings of
first IEEE/ACM symposium on Edge Computing.

BoNowml, F., MILITO, R., ZHU, J., AND ADDEPALLI, S. Fog
computing and its role in the internet of things. In Proceed-
ings of the first edition of the MCC workshop on Mobile cloud
computing.

BUKAC, V. Traffic characteristics of common dos tools. Tech.
rep., Masaryk University, Technical report FIMU-RS-2014-02,
2014.

CHOWRIWAR, S. S., MOOL, M. S., SABALE, P. P., PARPELLI,
S. S., AND SAMBHE, N. Mitigating denial-of-service attacks
using secure service overlay model. International Journal of
Engineering Trends and Technology (IJETT) 8, 9 (2014), 37.

Cisco IoT Networking. https://www.cisco.com/c/m/en_-
us/solutions/internet-of-things/iot-system.html.

Favaz, S. K., TOBIOKA, Y., SEKAR, V., AND BAILEY, M.
Bohatei: Flexible and elastic ddos defense. In Usenix Security
(2015).

GI0TIS, K., ARGYROPOULOS, C., ANDROULIDAKIS, G.,
KALOGERAS, D., AND MAGLARIS, V. Combining openflow
and sflow for an effective and scalable anomaly detection and
mitigation mechanism on sdn environments. Computer Net-
works.

HOLMES, D. 2016 DDoS attack trends. https://£5.com/
Portals/1/PDF/security/2016_DDoS_Attack-—
Trends.pdf, 11 2016.

Hu, Y. C., PATEL, M., SABELLA, D., SPRECHER, N., AND
YOUNG, V. Mobile edge computingdATa key technology to-
wards 5g. ETSI White Paper 11 (2015).

JUNG, J., KRISHNAMURTHY, B., AND RABINOVICH, M.
Flash crowds and denial of service attacks: Characterization
and implications for cdns and web sites. In Proceedings of the
11th International Conference on World Wide Web, WWW *02.

KREUTZ, D., Ramos, F. M. V., VERA=SSIMO, P. E,
ROTHENBERG, C. E., AZODOLMOLKY, S., AND UHLIG, S.
Software-defined networking: A comprehensive survey. Pro-
ceedings of the IEEE 103, 1 (Jan 2015), 14-76.

L1, Q., WU, G., PAPATHANASSIOU, A., AND UDAYAN, M.
An end-to-end network slicing framework for 5g wireless com-
munication systems. CoRR abs/1608.00572 (2016).

LoRa Alliance. https://www.lora-alliance.org/technology.

MICRO, T. Persirai: New internet of things (IoT) botnet targets
ip cameras. http://blog.trendmicro.com/trendlabs-security-
intelligence/persirai-new-internet-things-iot-botnet-targets-ip-
cameras/, 5 2017.

(39]

[40]

[41]

[42]

[43]

[44]

MIRKOVIC, J., AND REIHER, P. D-WARD: a source-end
defense against flooding denial-of-service attacks. IEEE Trans-
actions on Dependable and Secure Computing 2, 3 (July 2005),
216-232.

PASSITO, A., MOTA, E., BENNESBY, R., AND FONSECA,
P. Agnos: A framework for autonomous control of software-
defined networks. In 2014 IEEE 28th International Conference
on Advanced Information Networking and Applications (May
2014), pp. 405-412.

PENG, T., LECKIE, C., AND RAMAMOHANARAO, K. Survey
of network-based defense mechanisms countering the dos and
ddos problems. ACM Comput. Surv. 39, 1 (Apr. 2007).
ROBINSON, M., MIRKOVIC, J., MICHEL, S., SCHNAIDER,
M., AND REIHER, P. Defcom: defensive cooperative over-
lay mesh. In Proceedings DARPA Information Survivability
Conference and Exposition (April 2003), vol. 2, pp. 101-102
vol.2.

SAHAY, R., BLANC, G., ZHANG, Z., AND DEBAR, H. To-
wards autonomic ddos mitigation using software defined net-
working. In SENT 2015: NDSS Workshop on Security of Emerg-
ing Networking Technologies (2015), Internet society.
SATYANARAYANAN, M. A brief history of cloud offload: A per-

sonal journey from odyssey through cyber foraging to cloudlets.
GetMobile: Mobile Comp. and Comm. 18, 4 (Jan. 2015), 19-23.

[45]

[46]

[47]

(48]

(49]

SEKAR, V., DUFFIELD, N. G., SPATSCHECK, O., VAN DER
MERWE, J. E., AND ZHANG, H. Lads: Large-scale auto-
mated DDoS detection system. In USENIX Annual Technical
Conference, General Track (2006), pp. 171-184.

SITARAMAN, R. K., KASBEKAR, M., LICHTENSTEIN, W.,
AND JAIN, M. Overlay networks: An akamai perspective.

Advanced Content Delivery, Streaming, and Cloud Services 51,
4 (2014), 305-328.

WANG, Y.-P. E., LIN, X., ADHIKARY, A., GROILVLEN, A.,
Sul, Y., BLANKENSHIP, Y., BERGMAN, J., , AND RAZAGHI,
H. S. A Primer on 3GPP Narrowband Internet of Things (NB-
10T). In arxiv.org (2016).

WILLIS, D. F., DASGUPTA, A., AND BANERJEE, S. Paradrop:
A multi-tenant platform for dynamically installed third party
services on home gateways. In Proceedings of the 2014 ACM
SIGCOMM Workshop on Distributed Cloud Computing (New
York, NY, USA, 2014), DCC ’14, ACM, pp. 43-44.

ZARGAR, S. T., JosHI, J., AND TIPPER, D. A survey of
defense mechanisms against distributed denial of service (ddos)
flooding attacks. IEEE Communications Surveys Tutorials 15,
4 (Fourth 2013), 2046-2069.

