
ECC : Edge Cloud Composites

Ketan Bhardwaj, Sreenidhy Sreepathy, Ada Gavrilovska, Karsten Schwan

College of Computing
Georgia Institute of Technology

Atlanta, GA
{ketanbj, sreenidhy}@gatech.edu, {ada,schwan}@cc.gatech.edu

Abstract—With an ever increasing number of networked
devices used in mobile settings, or residing in homes, offices,
and elsewhere, there is a plethora of potential computational
infrastructure available for providing end users with new
functionality and improved experiences for their interactions
with the cyberphysical world. The goal of our research is to
permit end user applications to take advantage of dynami-
cally available, local and remote computational infrastructure,
without requiring applications to be explicitly rewritten and/or
reconfigured for each scenario and with minimal end user
intervention.

Edge Cloud Composites (ECC) make possible the dynamic
creation of virtual computational platforms that (i) can be
composed from specific capabilities – competences – of partici-
pating devices, (ii) are guided by end user-centric abstractions
capturing current user context and user intent, and (iii) use
dynamic methods for device discovery and ECC maintenance.
In contrast to datacenter clouds, ECC participants can include
both virtualized and non-virtualized devices, and in addition,
services running remotely, made possible by ECC’s CIC
abstractions, where C(ompetence) captures the functional ca-
pabilities of accessible devices and/or remote services, (I)ntent
articulates end user desires, and (C)ontext describing the
current operating environment.

Concrete examples prototyped in this work include Android
applications for distributed video playback, collaborative UI,
and a distributed augmented reality application. For all such
applications, an ECC composed from available devices, and
guided by ECC’s CIC notions, obtains up to 86% performance
improvements and reductions in energy consumption of up
to 37% compared to running on a single device. A resultant
advantage in using ECCs to run applications is the ability
to avoid the unpredictable latency variations seen in device-
remote cloud interactions.

Keywords-Device cloud; Device services; Virtual platforms;
Context-aware services; Platform virtualization; Competence;
Intent;

I. INTRODUCTION

To obtain long battery lifetimes, today’s mobile de-

vices, designed for low energy consumption via energy-

efficient processors, limited memory capacities, and on-

device active power management, intentionally sacrifice the

potential levels of computational ability and functionality

attainable within their current form factors. Cloud-based

services run by companies like Google, Apple, Amazon,

etc., offer one means for applications to escape the limits

imposed by individual devices, yet at the same time, mobile

end users are surrounded by numerous other networked

devices, whether at home, in the office or marketplace, or

in the car. Surprisingly, most of those devices do not inter-

operate seamlessly, with each other and/or with the mobile

user’s portable device, thereby compromising theoretically

achievable computational efficiency and more importantly,

end user’s potential experiences [1].

Current ways to use nearby devices continue to require

manual orchestration [2][3], typically demanding end users

to take explicit steps to setup devices for inter-operation,

and in addition, such setups may differ across the tasks

undertaken, e.g., file sharing, multimedia hubs, etc. As a re-

sult, the eco-system in which these devices operate remains

fragmented. Beyond well-known hardware-software incom-

patibilities and lack of standardized protocols [4], reasons

for such fragmentation include limits in (i) knowledge about

the context in which a device is operating, i.e., which nearby

devices are currently accessible and usable, (ii) information

about nearby device capabilities, (iii) instructions about the

task at hand, and (iv) data about the steps needed to combine

and jointly use the capabilities of multiple devices.

Our research explores the utility and efficient use of

‘nearby devices’ for enhancing the capabilities of end users’

mobile devices and experiences. We borrow from data center

systems the notions of resource consolidation, elasticity,

and dynamic orchestration of many machines’ computational

capabilities, with minimum manual intervention (e.g., as in

‘cloud computing’). The implicit knowledge about tasks to

be carried out, resource accessibility and capabilities plays

a vital role in could computing to achieve benefits of these

notions. On that basis, our solution approach creates a con-

solidated virtual pool of device capabilities – Competences

– composed into a virtual platform able to efficiently carry

out some currently intented task – Intent – enabled and con-

strained by the context in which the end user currently op-

erates – Context. The resulting E(dge)C(loud)C(omposities)

are comprised of sets of cooperating devices guided by CIC:

Competences, Intent, and Context.

ECC technology builds on our own earlier work on ‘de-

vice clouds’ [5] as well as on previous efforts like [1][2][3],

which showcased the need and benefits of platform com-

position, enumerated and compared technologies that can

aid creation of non-fragmented device ecosystems [6].

2014 2nd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering

978-1-4799-4425-5/14 $31.00 © 2014 IEEE

DOI 10.1109/MobileCloud.2014.18

38

Also leveraging middleware for ubiquitous/pervasive ap-

plications [7][8][9], etc., ECC contributes the novel CIC

abstractions and associated runtime mechanisms that make

it easier for end user applications to interact with and

take advantage of nearby devices and the remote cloud,

all without requiring applications to be rewritten and/or

reconfigured (for each scenario) and with minimal end user

intervention. This work contributes the following:

• The proposed CIC concepts are shown to be sufficient

and necessary for consolidating the device ecosystem.

• The concepts’ implementation gives rise to mechanisms

in which network enabled devices can be composed

into efficient virtual computing platforms, termed Edge

Cloud Composites (ECCs), providing a model for ap-

plication developers to realize purposeful device-device

and/or device-cloud interactions.

• CIC guides the creation of ECCs that are able to

carry out representative, useful end user tasks, shown

superior in performance and the consequent levels of

end user experiences offered to end users, compared

to the capabilities of a single device and the use of

remote cloud resources. The ECCs created are dynamic,

reactive to altered device competences, and to changes

in intent or context.

In remainder of this paper, we discuss the need and

benefits of using ECCs with real world usecases, in the

home, office, and in-vehicle environments in section II.

Section III introduces the CIC concepts. Sections IV and V

describe the design and implementation of ECC respectively.

Experimental results, shown in section VI, demonstrate the

importance of the CIC concepts and the overheads with

which changes in CIC induce consequent changes in ECC

used to carry out some currently running user tasks. Related

work and concluding remarks appear at the end.

II. MOTIVATING USE CASES

We first discuss the need for ECC by presenting several

motivating use cases and the resulting benefits. Illustrated

in Figure 1 (i) is a distributed video playback application in

the context of an end-user’s home environment, consisting

of a tablet, PC and/or laptop, large screen TV, and a home

theater audio system. In this scenario, to play a video from

the handheld as a file source, ECC chooses the laptop for its

video decoder competence, and the large TV for its display.

User intent requires a linear, i.e., synchronous, video playout

pipeline extending across participating devices.

The second example, illustrated in Figure 1 (ii), shows

a collaborative UI in an office context, where multiple

devices like laptops, phones, and projector are present with

participants in a meeting. In order to allow participants to use

their own devices to manipulate UI elements on the projected

screen, ECC seamlessly instantiates multiple instances of the

same competence, i.e., touch pads, to create a collaborative

user input system. User intent requires instantiation of a

same capability of many users converging to one device

i.e., many to one processing pipeline spanning participating

devices.

The third example, illustrated in Figure 1 (iii), shows an

in-vehicle distributed augmented reality application, where

information about the vehicle’s current surroundings is pro-

jected on the car’s windscreen. To do so, ECC may utilize

the car’s IVI (assumed to include a front facing camera) and

the user’s smartphone to seamlessly collaborate. Since the

camera cannot wait for the remote cloud to send back its

response or annotations to be displayed on the windshield

of the car, this connection has to be asynchronous in

nature. User intent requires a branching, i.e., asynchronous

processing pipeline spanning participating devices.

The scenarios described above illustrate the need of CIC

notions and explain how they give rise to the construction of

appropriate edge cloud composites (ECCs). More generally,

they demonstrate ECCs guided by CIC to be capable of

achieving following benefits.

Seamless use of accessible devices. The current state of art

in multi-device protocols include uPnP Alliance [10] Sam-

sung AllShare [11], Microsoft’s SmartGlass [12], and Apple

AirPlay [13] – facilitates content sharing among devices, but

does not yet make it possible to automatically create a pool

of resources available for shared use. ECC makes possible

the automated assembly of computational capabilities, to

carry out user-intended tasks. Because the devices being

composed can vary widely in terms of their distinct features

and in addition, operate in dynamic surroundings, ECC goes

beyond datacenter cloud technology to explicitly formulate

and use Competence, Intent, and Context, as a way to expose

and use the diverse features of edge devices.

We motivate the use of these three notions as follows.

First, competence captures the device’ capability to carry

out certain task. Next, intent is needed because assembling

devices purely on the basis of performance-centric metrics

is insufficient, as evident from the simple example above

in which the user wishes to control video playback via

her (relatively slow) handheld device vs. the (faster) home

PC. The example demonstrates that it is important for the

user to be able to explicitly express the intent to view the

video on her handheld, independently of the availability

of other resources. Finally, contextual information like an

end-user’s presence in a particular room, available network

connectivity, etc., may warrant changes in the resultant

assembly. For example, choosing the PC situated in a study

room and the TV in the living room achieves best balance

between performance and power, but does not make sense

for an end user who is working in the kitchen.

End-user device consolidation. While virtualization has

enabled hardware consolidation in large data centers, end

consumers continue to have to explicitly use multiple, dis-

parate devices to run desired functions or utilize certain

39

��������	�
��

���������
����������
�����
	����

������
�
����������������������������
��������������������	��� �������

��	��� ���
�����
	����

!������
�������	����	�������	�
�
"#�
��
�$�	����	����%����

��
�����"&����
����

�'��$�(�
�������������"&�
�$)

�����*�����������
��������	�
���
���	�
�
�++�����'���������,�	�

"�$

�����*���
-++�	�

!������
����%��
���
��������+�	�
����

�����������	������������
������

	���� ������
�����	���������

.��'����
�	�������	�
������������
����	��+���������)

�*���
�	�

"��$

��������	�
�
�����	�����/
����
����� �.��'�����

	�������	�
)
0��������1����������/
����	�������+�	��

	�������	�
)
���2�	���/
���
�����	�������	�)

��������	�
�
!�!�����
���� ������ �
!��������	�

���
1���������������
�����������	����� �
����������� �������

���	�

���
3��������������

���������	�

��� �
��	������'�
���

��+���������	�	�����
(�������,��)

!������
�����������3����

%���
��������
������ ����
����)�

����������/
�
��	������

	�������	� �
3������������+���

��+���������
������,�������*��

��������,�����
	��

"���$

Figure 1: Motivating use cases targeted by ECC: (i) home, (ii) office, (iii) automotive.

device features. ECC proposes to dynamically assemble

capabilities or disparate devices’ functionalities based on

their relative abilities – competences – and to do so in ways

that permit devices to be shared across multiple users and

applications. ECC can do so without further device-level

support, or it can leverage lower level functionality helping

with device integration and use. One such functionality,

based on extensions of modern hypervisor technologies,

is described in [5], and it is this functionality on which

the current implementation of ECC relies. However, ECC

can also be layered on alternative ‘cloud’ realizations, like

the ‘cloudlet’ technology using entire virtual machines to

run desired end user functions [14]. We note this fact

as an important element of the ECC design, because it

demonstrates its unique attribute of being able to work

with (i) ‘raw’ devices – devices that can serve only certain

and specific purposes in user environments, like cameras

or displays, (ii) programmable devices – those that can run

diverse, pre-programmed functions, and (iii) fully virtualized

resources, including home PCs running hypervisors and

remote datacenter machines running cloud infrastructures.

ECC supports these choices because it does not want to

rely solely on remote cloud resources to augment end users’

mobile devices, due to unpredictable end-to-end network la-

tencies to remote cloud resources, intermittent connectivity,

and the potential costs related to data usage on handhelds.

Leveraging locality in tasks. Typically, the tasks accom-

plished by devices fall into two categories i.e., (i) the

tasks requiring aggregation of information from different

sources, efficiently delivered using central entities like cloud

based services, e.g., crowd sourcing applications, social

network applications, etc., vs. (ii) the tasks that can poten-

tially leverage locality, e.g., distributed multimedia playback,

collborative UI for brainstorming in a office or classroom,

etc. For the latter, employing remote cloud based services

can actually deteriorate overall efficiency and experience,

due to unpredictable communication latencies as well as

dynamic changes in cloud accessibility. ECC provides to

such applications ’fallback’ options that leverage nearby in

place of and/or in addition to remote cloud resources.

The manner in which ECC achieves these goals is dis-

cussed next.

III. ECC CONCEPTS

Intuitively, ECC articulates (i) what a user wants to do,

(ii) which resources are available, and (iii) what those

resources’ abilities are. Concretely, in creating ECC, these

notions are used to form an assembly ready to be mapped

to some set of physical devices (and their resources) present

in an environment which includes multiple devices and/or

cloud based services. Concretely, they take the form of CIC

concepts in ECC described in this section.

A. Device Competences

ECC operates at a level of abstraction in which device

descriptions go beyond their innate compute, memory, com-

munication capacities to instead, characterize devices by

the functionalities they are able to provide. ECC’s notion

of competence has two parts – static and dynamic. The

static part comprises of an abstract functional description

or functionality (e.g., display) with associated qualitative

parameters (e.g., frames per second, resolution) and, if

applicable, certain physical characteristics (e.g., screen size)

or characteristics. The dynamic part describes the means to

utilize the device competence, i.e., its accessibility, and its

current state in terms of resources, or availability. Stated

more generally, the competence is described as a structure

with tuples listing the physical and functional resources –

static and dynamic. In keeping up with other cloud ab-

stractions (e.g., EC2’s ‘small’ vs. ‘large’ virtual machines),

ECC does not describe underlying devices at the level of

detail of their hardware characteristics. It is up to either

lower levels of the system software or implementation of

specific instances of competence on a device. The examples

of such low level support include hypervisor-level ‘device

cloud’ functionality as described in [5], to provide the

network linked physical devices (and/or remotely run virtual

machines) to which ECC can map its assemblies. The

approach is consistent with how virtual machine ensembles

in data centers are formed – ECC’s level of operation –

vs. how they are deployed – via cloud infrastructures and

hypervisors. Details about specific competence instances are

provided in implementation section.

Summarizing,

40

Competence is defined as a tuple representing a device’s
exposed functionality, characteristics, availability and ac-
cessibility.

Specifying competence is a semantic problem which is

inherently hard for machines or devices. This is a way

more general problem and in ECC, we handle it partially.

Many approaches are proposed by researchers to address the

problem of representing semantics, e.g., various model based

approaches [15], XML, JSON, RDF [16] based structures

utilized for semantic web, etc. The novelty of this work lies

in simple and effective formulations to address the issues

stated above by decomposing the information into separate

and manageable chunks of information suitable for imple-

mentation on different type of devices. One may argue that

it is not feasible to specify the semantic information and/or

the application requirements or structure in advance. But,

this is a well known trade off between application flexibility

and scalability in deployment of distributed applications in

the data center world. Also, we argue below that a bottom

up hierarchical representation of competence in multiple

levels of abstractions provides a reasonable way to handle

the complexity of representing functionalities in devices. At

the lowest level, competence represents a piece of software

running on a hardware platform of a device which has some

compute capability with some specific I/O which do not have

any dependency, termed as raw competence. Moving a level

up, this computation and I/O operation result in some user

observable events or the other way round that some user

initiated event cause a specific piece of software to run or I/O

operation to be performed, termed as feature competence.

Moving further up, temporally combination these events

result in realization of a user desired task, termed usecase
competence. ECC uses competence to define ‘context’ and

‘intent’ which are described next.

B. User Intent

ECC intent specifies (i) the set of tasks, and (ii) their

interactions, required to attain some higher level user goal,

with (i) stated as required competences and (ii) as guidelines.

By stating tasks in terms of required competences, ECC

leaves room for widely varying implementations of these

tasks i.e., specific instances running on certain devices,

or as instances running in remote virtual machines, with

differing degrees of CPU and memory usage, etc., but all

competent to provide the stated functionality at sufficient

levels of quality. Concerning task connectivities, ECC does

not simply list how one task connects to another but rather,

states intent guidelines about task interactions, such as

whether interactions are synchronous vs. asynchronous, for

example. Concrete examples of intents with guidelines are

shown in Figure 1 (i) for synchronous and Figure 1 (iii),

for asynchronous interactions between competences, and

depicting many-to-one interactions in Figure 1 (ii). More

generally, guidelines specify (i) topology – the connection

configuration between competence instances (e.g., linear,

many to one, etc.), (ii) traversal – referring to how events

travel among competences (e.g., synchronous, asynchronous,

listening, etc.), and (iii) tie – placing constraints on certain

competences o be instantiated on a particular device. Col-

lectively, we refer to these as the ‘three Ts’. Concisely, ECC

defines intent as follows:

Intent is defined as an ordered sequence of events on
‘partially specified’ competences linked by guidelines.

where guidelines place certain constraints on compe-

tences, including on their communications. ECC uses the

concept of context to handle the dynamimism in cyberphys-

ical environment which is described next.

C. Context

Devices operate in dynamic environments, so that infor-

mation about the device functionalities available at a given

point is crucial for applications crossing device boundaries.

The notion of context abstracts this information for ECC

participants. Context captures current device availability and

states, including their status due to multi-tenant operation,

mobility constraints, current location, etc. Since ECC can

operate across distributed devices – device clouds – context

is a distributed entity maintained at runtime, where a device’s

competence to carry out some intended functionality is

affected by factors that include its current availability, acces-

sibility, etc. To reason about choosing the best competence

to realize an intent, in a given context, ECC distinguishes

(i) offered competences, which reside on the same device,

and are accessible directly and offered for provisioning,

from (ii) local competences that exist on a nearby device

currently accessible over some local area network, from (iii)

remote competences that exist on a device or a remote cloud

accessible via the Internet, from cached competences, which

were recently provisioned in previously requested intent.

Stated precisely, a ECC context is defined as follows:

Context is defined as the set of currently accessible
competences.

Context as a list of competences and not a list of devices

provides ECC the ability to represent a situational as well

as operational context because of the way competences are

defined. Using competences in a context, ECC can suc-

cessfully derive the operational and situational information.

The ECC context is sufficient to handle its goals (or any

other system) which are to provide dynamic selection of

the most appropriate device where a functionality should be

instantiate.

IV. DESIGN

A. Software Architecture

ECC provides an application-conscious layer of abstrac-

tion on top of lower level functionality that permits nearby

(and remote cloud) devices to cooperatively carry out the

tasks desired by end users. For any such set of tasks, the

41

�� �� �� �� ��

�		
���
�������

���������������

���	�
��������

�� �� �� �� ��

�		
���
��������
��
����

��������
���

���
�
�
�!�

"��
�#�����
��
�$
%�		�����%�

�& �'

"����
(�
����)�
�����(�
���

"�*���
���
���	�
�����

���
�����

+����
���

����
�
���	�
�,

��

-��.

!� !� !� !� !�

���	�
�����

Figure 2: ECC Software Architecture

role of ECC is to acquire and use the resources required

to carry them out. The role of the underlying device cloud

infrastructure (if available), then, is to provide the actual

resources or devices to which ECC tasks can be mapped.

The outcome is the two-tier infrastructure shown in Figure 2,

depicting sample devices and the low-level device cloud

software supporting their joint use, with ECC utilizing these

resources on behalf of specific end users.

The ECC accepts ‘intent’ descriptions. These are trans-

lated to a set of devices offering appropriate competences.

Their description, along with additional context information,

are used by a decision engine to determine the mapping

to underlying competences implemented as node provided

by the device cloud layer or implemented as standalone

competences in a non-virtualized device. ECC places con-

straints on competence mapping, but leaves it up to the

underlying device cloud to map its competence to specific

underlying physical devices (note the analogy to VCPU to

PCPU mappings in hypervisors, where it is up the a virtual

machine to create the VCPUs to be run, but the hypervisor

is the one that determines their mapping to an adequate

PCPUs [17]). ECC picks federation of competence which

may be present on the same device or multiple devices in

a given context. The decision for choosing the device is

transparent to ECCs decision engine.

The architecture’s description makes clear the dual

application-facing and cloud-facing roles of ECC, driven

by intent for the former and utilizing competences and

context for the latter. In this architecture, the abstractions

of competences, intent, context (CIC) are what drive the

decision engine that constitutes the logic or control tier

that handles the registration of competences (discovery and

enumeration), performs mappings of requested competences

– composes ECC – as per the intent’s guidelines, and

establishes and maintains context.

Shown in Figure 3 is an example highlighting the ne-

cessity of ECC’s dynamic mapping methods. For a video

playback usecase, we show two different contexts, marked

by blue dashed lines: A – with an accessible remote cloud

as well as some local devices such as a TV and laptop,

and B – comprised of only locally accessible devices. For

different user intents – to view the video on a large screen vs.

on a handheld device – ECC mappings will differ, as well.

Mapping differences also arise from changes in competences

– depending on the network connections between devices or

their current loads – and from changes in context – where

the user is currently located. The figure illustrates this by

showing multiple possible competence assemblies marked

by red dashed line (Figure 3).

B. Operation

Next, we outline the operation and interaction of the ECC

elements shown in Figure 2.

1) ECC Application: ECCs application structure is in-

spired from widely deployed SOA distributed applications

which are deployed on loosely coupled devices as opposed

to tightly coupled servers in the data center world. The

devices are said to be loosely coupled because of the

dynamic nature of context which may change at any point

in execution of applications. An ECC application starts by

calling the initialization API, which in turn instantiates the

context and initializes the decision engine. It then requests

an intent using the dispatch API which triggers the decision

engine to search for the competences required to realize

the requested intent from the ones available in the current

context, also considering the constraints (accessibility, net-

work latency, etc.) and opportunities (availability of better

competence). When specific competences are determined,

an interaction with the underlying device cloud or ECC

stack running on a device acquires the resources required

by these instances of competences, much like regular cloud

applications would launch VMs of varying capabilities into

a datacenter cloud. Note, however, the importance of intent

and context information for this mapping, as jointly, these

may impose constraints on deployment, i.e., where specific

functionality may be run (e.g., the only device suitable

for running some functionality, say, a large-screen display

in a specific location). Once successfully deployed, ECC

then carries out an initialization phase in which it calls the

initialization routine for selected instances of competence,

creates and connects their communication channels as per

the intent’s guidelines, and finally, hands off control to the

application for its execution. After this happens, the appli-

cation dispatches a sequence of events on realized intent to

carry out the desired task. During deinitialization phase, the

context, decision engine and the provisioned competences

are deinitialized. To specify an intent application developers

need to create a list of descriptors which guide ECC’s

search for appropriate functionality. ECC doesn’t impose any

restriction on the extent of specification. Dependencies are

specified in advance by developer in intent guidelines. Also

needed are three Ts as guidelines to create the appropriate

42

/�
��
!
��(��

0
�����

�
�����

�
��	
�1

!�����

�
�
�

�����*���

�����*��&

������-
1�2�� �����-1�2��

�����-
1�2�� �����-
1�2��

��

�'���
�

��'���
��+�
	�������	��
��
���	�
����

��,�	�
�'�
���
���	����*������

������)

3����
����
��������	�

3�����
�
���	
�1

3��
�������
�������

	�(4�(�����

��(����
�
���	
�1

3��
�������
�������

	�(4�(�����

Figure 3: ECC operation and creation of different assemblies
with different context and intent descriptions for distributed video
playback.

overlay. The protocol for data transfer implemented in ECC

leverages EVPath’s transport (briefly described in Section V)

to actually transfer the data in form of attached payload

with each event but the interpretation of data content is

implementation specific.

2) ECC Competence Instance: The competence instance

is implementation of some functionality offered by a device.

During ECC initialization, the instance’s registration routine

is triggered by the decision engine. In this phase, each in-

stance generates its competence’s static part and uses ECC’s

registration API to register itself. When an instance is in the

initialization phase, it generates two addresses: (i) a process

address and (ii) a dispatch address. The competence’s static

part and these addresses are used by the decision engine to

realize the requested intent.

3) ECC Decision Engine: The decision engine handles

the creation and/or synchronization of contexts, advertises

offered competences to devices, and dispatches intents, the

latter via intelligent and automatic composition of compe-

tences and/or by reconfiguring a realized intent in response

to failure or context changes. The decision engine employs

the following mechanisms to achieve these goals.

Discovery mechanisms handle the naming and enumer-

ation of the competences that are available in the user’s

current context, using a datagram-based protocol for device

discovery implemented by the EVPath event-based middle-

ware [18] which are then used by the decision engine to

advertise said competences to other devices.

Compose mechanisms search and select appropriate com-

petence instances from the current context when dispatched.

ECC’s decision making process can be formalized mathe-

matically as follows: Let A ↔ B mean that there exists

a network connection between devices A and B, i.e., A

can access B’s competences and vice-versa. If there are N

number of devices offering competences at a given point of

time, represented by competences (Ci), we present the CIC

formulation as shown below.
Competences(Ci) = Competences offered by device Di
Let Si represent the competence instances available in the

current context, and defined as follows
Si = ∪ j=n

j=0Cj∃ Di↔ D j
We can now define context as a superset of all Si and

intent as a function of competences and guidelines as shown

below:
Context (S) = ∪i=n

i=0Si
Intent (I) = f(R, G) ∀ R ⊆ C
Where, R is set of requested competences, G are the

guidelines specified in user intent and C is the overall

competence of a system (C) = ∪ Ci.
With these formulations, the goal of the decision engine

is to find the best set of competence to instance mapping

(M) for a given intent (I) in the current context (S). As

discussed earlier also in section III, competence in (R)

may be partially specified in varying details e.g. in dis-

tributed video playback usecase, R may include display

competence which specifies display competence with 46

inch screen (constraint on physical characteristic) or 60 fps

H.264 video decoder (performance constraint) etc. Instance

selection is accomplished by reasoning on competence de-

scription, physical characteristics, quality parameters and

instantaneous network latency in the same order and is also

constrained by intent guidelines.
Goal : find M ∀ mi ∈ S
Dispatch mechanisms facilitate direct event traversal

among competence instances during operation, using Ev-

Path [18] for event transport. Each event includes the event

description and the associated payload, to facilitate seamless

interactions between instances in a realized intent.
Reconfiguration and Failure mechanisms. In case of con-

text change, or if any instance is not meeting the quality

constraints as specified in intent, reconfiguration mecha-

nisms are triggered. If any instance detects that it is un-

able to dispatch events to the connected instance, failure

mechanisms are triggered. In both cases, the decision engine

checks for another competence which is suitable replacement

of competence instance. If found, it plugs in the new

instance, and restarts the intent, again without involving the

application else intent is destroyed and the application that

requested the intent is notified using a callback.

V. IMPLEMENTATION DETAILS

In this section, we briefly introduce EVPath, describe ECC

implementation, Android-specific details and provide infor-

mation about the competences implemented for motivating

use cases.

A. EVpath
EVpath is designed to be an event transport middleware

layer. Specifically, it is designed to allow for the easy imple-

mentation of overlay networks, with active data processing,

43

routing and management at all points in the overlay. EVpath

specifically does not encompass global overlay creation,

management or destruction functions. Rather, it focusses

on providing efficient environment for routine transport,

while providing interfaces necessary for external manage-

ment layers. The package is built around the concept of

”stones” (like stepping stones) which are linked to build

end-to-end ”paths”. While the ”path” is not an explicitly

supported construct in EVpath, the goal is to provide all

the local, stone-level, support necessary to accomplish their

setup, monitoring, management, modification and tear-down.

Stones in EVpath are lightweight entities that roughly corre-

spond to processing points in dataflow diagrams. For more

details on evpath, you can refer [18].

B. ECC Implementation
ECC is implemented in low level C language to ensure its

portability and ease of integration with device cloud software
such as Cloudlets[14] and Stratus[5]. The implementation
uses EVPath to abstract adressing, network access and
realize the mechanisms described above. During initializa-
tion, the decision engine enumerates competences which are
stored as shared libraries which are dynamically instantiated
at runtime creating a fresh context. When a competence is
instantiated, it results in creation of two evpath stones for
processing and dispatching events. Two separate threads are
created for listening for a context update and for handling
competence events. The self-explanatory ECC API is shown
below:

ECC_init(); // initialize
ECC_get_competence(); // explicit context sync
ECC_dispatch_intent();// dispatch intent
ECC_dispatch_events();// dispatch events
ECC_deinit(); // deinitialize

C. Android-specific Details

In order to expose the ECC functionality to Android’s

JAVA applications, JNI based interface is implemented for

ECC. Also, to allow native code to call JAVA code of appli-

cations and/or services in Android, message passing mech-

anism is required to avoid referencing grabage collected

objects currently in use. Currently, only native instances

of competences are supported in Android ECC. Android’s

features to kill an unresponsive application which does time

consuming activity in UI thread is circumvented by rooting

the device and adding an Android system service exposing

ECC.

D. Required Competences for Usecases

Available open source software packages are used to

implement prototype competences. Specifically, we use the

OpenCV libraries to implement competencies such as video

decode, display, image segmentation, image descriptor ex-

traction, and image descriptor matching. For collaborative

UI, we use X11-tst and Android’s native input API. Another

competence implements retrieving an image from Google

StreetView for some given coordinates to show that any

arbitrary functionality can be represented as a competence.

All competencies are pre-deployed on the devices in the

experimental testbed. We next present details of our experi-

mental setup along with performance results and associated

overheads.

VI. EVALUATION

A. Experimental Setup

Experimental testbed comprised of a laptop with an Intel

Core i7-2670QM CPU (2.2 GHz), a remote cloud participant

realized by an Amazon EC2 high-CPU Medium instance

(running Ubuntu 12.04) and Nexus 7 Android tablet with

Jelly Bean cynogenmMod Android. Cloud access is via a

commercially available 20Mbps Internet connection over

WiFi.

B. Roles of Competences and Context
1) Application performance improvement through

context-sensitive ECC deployment: We contrast the

performances of two requested intents (i.e., distributed

video playback and in vehicle AR usecases) in three

different contexts, including scenarios when (i) competences

are offered by only a single device (i.e., the tablet), (ii)

competences are offered by multiple devices (i.e., tablet and

nearby laptop), and (iii) competences are offered one nearby

and one remote device (i.e., the tablet and an Amazon

EC2 High CPU Medium instance). We employ end to end

processing time for each frame time as a metric to contrast

performance and to highlight ECC deployment benefits.

The evaluation of third usecase i.e. collaborative UI show

similar numbers are omitted in favour of space in this

paper. Figures 4 and 5 show execution performance using

tablet only, with a nearby laptop, and with Amazon EC2

instance. The results of the first experiment are shown in

Figures 4 (i) and 5 (i). Note that with different contexts, the

mapping of competences changes, i.e., instead of choosing

a competence implemented on the same device, ECC’s

decision engine chooses a better competence (nearby laptop

or the Amazon EC2 instance) to realize the given intent.

The advantages seen from using nearby devices (to enhance

user experience compared to using a single mobile device)

vs. using the cloud are consistently apparent, when running

these experiment over a two week period and at different

times of day. Performance advantages over using only a

single device hold for both classes of applications, i.e.,

the linear synchronous (video playback) and the branching

asynchronous (AR), for average improvements of 70.42%

and 86.07%, respectively, when using nearby devices, and

of 58.35% and 69.66%, respectively, when using the remote

cloud. Effect of unreliable internet latencies can be easily

seen (in both Figure 4 and Figure 5) that can render remote

clouds unusable. ECC can shield end users from such lack

of reliability by using nearby devices, specifically, when

seeing internet access to be unreliable, ECC simply switches

44

0

100

200

300

400

500

600

700

800

900
1 8 15

22

29

36

43

50

57

64

71

78

85

92

99

10

6
11

3
12

0
12

7
13

4
14

1
14

8
15

5
16

2
16

9
17

6
18

3
19

0
19

7
20

4
21

1
21

8
22

5
23

2
23

9
24

6
25

3
26

0
26

7
27

4
28

1

Fr
am

e
Pr

oc
es

si
ng

 ti
m

e
m

s

Frame Number

Distributed video playback - Linear synchronous intent

with nearby Laptop with Remote-EC2 with tablet Only

0

200

400

600

800

1000

1200

1400

1600

1 8 15

22

29

36

43

50

57

64

71

78

85

92

99

10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

20
4

21
1

21
8

22
5

23
2

23
9

24
6

25
3

26
0

26
7

27
4

28
1

Fr
am

e
Pr

oc
es

si
ng

 ti
m

e
m

s

Frame number

Runtime reconfiguration

with Remote-EC2 with Nearby-Laptop

1

10

100

1000

10000

100000

1000000

lo
g(

tim
e)

 in
 E

CC

ECC Overhead - Video playback

Process Q Actual Work Dipatch Q Network

Figure 4: (i) Performance benefits in the distributed video playback (linear synchronous intent guideline) use case. (ii) ECC reconfiguration
due to change in context. (iii) Total execution time - ECC’s queues and actual computation.

0

5000

10000

15000

20000

25000

30000

1 4 7 10

13

16

19

22

25

28

31

34

37

40

43

46

49

52

55

58

61

64

67

70

73

76

79

82

85

88

91

94

97

10
0

10
3

10
6

10
9

11
2

Fr
am

e
pr

oc
es

si
ng

 ti
m

e
m

s

Grabbed frame number

Distributed AR - Branching asynchronous intent

with nearby laptop with Remote-EC2 with tablet Only

0

5000

10000

15000

20000

25000

1 4 7 10

13

16

19

22

25

28

31

34

37

40

43

46

49

52

55

58

61

64

67

70

73

76

79

82

85

88

91

94

97

10
0

10
3

10
6

10
9

11
2

11
5

Fr
am

e
Pr

oc
es

si
ng

 ti
m

e
m

s

Frame number

Runtime reconfiguration

with Nearby-Laptop with Remote-EC2

444

1

10

100

1000

10000

100000

1000000

10000000

100000000

lo
g(

tim
e)

 in
 E

CC

ECC Overhead - Distributed AR

Process Q Actual Work Dipatch Q Network

Figure 5: (i) Performance benefits in the distributed AR (branching asynchronous intent guideline) use case. (ii) ECC reconfiguration due
to change in context. (iii) Total execution time - ECC’s queues and actual computation.

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

Video Playback Distributed AR

Po
w

er
 (W

at
ts

)

with tablet only with Remote-EC2 with nearby Laptop

0

5

10

15

20

25

30

35

Video Playback Distributed AR

Ev
er

gy
 (J

ou
le

s)

with tablet only with Remote-EC2 with nearby Laptop

1 2
4

8

16

32

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35 Ti
m

e
to

 re
gi

st
er

 E
CC

 c
om

pe
te

nc
es

 (u
S)

Number of competences

ECC Reactivity

Figure 6: (i) Dynamic power utilization (ii) Energy consumption and (iii) Variation of context update delay with number of competences.

competences between remote clouds and nearby devices for

the given user intent. ECC’s functional formulation could

be further strengthened by use of formal methods like those

first described in [19], which we leave for future work.
2) Reduction in overall energy consumption: For the

experiments described above, we also measure the power

consumed by the tablet, using a Watts up power monitor.

For both usecases, Figure 6(i) shows average dynamic power

utilization (i.e., total power utilization - idle power utiliza-

tion) and Figure 6(ii) shows energy consumption (power

x execution time) during execution of the ECC usecases.

There is no substantial difference in power utilization, i.e.,

differences are in within 0.1 watts, but ECC reduces total en-

ergy consumption for both classes of application, i.e., linear

synchronous (video playback) and branching asynchronous

(in-vehicle AR) by 37.91% and 28.92%, respectively, when

using nearby devices, and by 28.92% and 20.58%, respec-

tively, when using the remote cloud. This is due to reduced

application execution time. The results indicate that using

nearby devices can also serve to save the energy consumed

by battery operated end user devices.

C. Role of ‘Intent’
Use of competences and context can help gain perfor-

mance improvements and energy savings, but additional

information is needed to compose the set of devices needed

to run some user-desired task. ECC’s formulation of ”intent”

enables its decision engine to choose the ‘best’ possible

mapping from competences to concrete instances in a current

context. We highlight the importance of intent by showcas-

ing its role below.

Performance based decisions - not sufficient. The previous

experiments use a performance metric to illustrate the impor-

tance of context, but such performance based selection may

not be ‘best’ for end users. For example, for distributed video

playback (see Figure 3), consider a user desiring to display

on her phone screen, but also available in the same room

is a large TV display. Based on context and performance

criteria only, the TV will be selected as the best competence.

Intent guidelines, then, can be used to tie display competence

to the instance available on the handheld, hence resulting

in a different competence assembly. In other words and

as also shown in Figure 3, different intents can result in

entirely different mappings in the same context, thereby

also creating entirely different user experiences. In another

example, ECC leverages low latency in-home networking to

always select the nearby laptop, but to offload functionality

from that machine, the user can state an intent so as to

force ECC to select the Amazon EC2 instance. Figures 4

(i), (ii) and Figures 5 (i), (ii) clearly show differences in

performance for such alternative configurations (i.e., the

nearby laptop is preferred), hence demonstrating the ability

of intent specifications to control the deployment.

45

D. Reactivity

To demonstrate ECC’s ability to deal with runtime

changes in context, in a second experiment, only one device

is available which results in mapping of intent to that device

(i.e., the tablet with no other devices accessible). During

execution, a second device is turned on (i.e., a nearby laptop

or the Amazon EC2 instance), triggering a change in context

by making its competences accessible. In response, ECC

automatically re-configures the realized mapping to use the

better competence instances now accessible, as highlighted

by the ellipses in Figures 4(ii) and 5(ii). This happens seam-

lessly without any action required from the application. The

change can also be seen to improve performance, i.e., a re-

duction in the end-to-end time per frame. A temporary spike,

i.e., degradation, observed in Figure 4(ii) corresponds to the

reconfiguration period, during which previously instantiated

competences need to stop processing due to synchronous

nature of processing pipeline. The spike doesn’t show up

in Figure 5(ii) because of asynchronous nature of pipeline

utilized in the distributed AR usecase. Through additional

experimentation, we verified that time taken to create and/or

update a context scale linearly with the number of reachable

devices and number of competences offered by devices, as

shown in Figure 6(iii).

E. ECC Overhead

To analyze ECC overheads, we measure the time spent by

each trigger event in competence instance queues, the time

spent in communication, and the time spent in the actual

implementation of competence. As clearly seen in Figures 4

(iii) and 5 (iii), which show the average times spent in the

ECC code vs. that in the actual competence implementation,

ECC overhead is very small. When operating only on

tablet, the overhead is only 0.1% of total execution time. It

increases to 3% when the competence instances are located

on different devices, with a nearby laptop and with the

Amazon EC2 instance.

F. Limitations

ECC’s current implementation serves to illustrate the CIC

notions advanced in our work, but remains limited in several

ways. First, ECC applications must be programmed once as

sets of competences, much like the SOA-based applications

routinely run in datacenter systems. Secondly, we do not

automatically capture end user intent, nor do we offer formal

specification of intent or competences that can be used to

prove correctness properties or performance bounds. Finally,

it lacks learning capabilities in decision engine to improve

its process based on user behavior.

VII. RELATED WORK

Several research efforts explore possibilities to mitigate

fragmentation in the device ecosystems [1][2][3][4][7][8][9].

By introducing the CIC concepts, ECC goes a step further

by providing mechanisms to express and reason about the

diversity in device capabilities and supported functionality,

in the end-users’ tasks’ requirements and their operating con-

texts, and, thereby, to best leverage the aggregate resources

available across nearby devices and remote clouds.

Cuckoo [20], MAUI [21] and Clone cloud [22], try to

leverage the availability of remote clouds to offload compu-

tationally demanding parts of applications from end-user de-

vices. Partitions of applications to offload are automatically

generated based on static analysis or runtime estimation of

resource requirements. ECC’s concepts extend this by also

including nearby devices as possible offloading targets, and

provide mechanisms to deal with the increased dynamism

and diversity in the resulting eco-system.

The MUSIC middleware [23] and Interplay [24] take a

component based software engineering approach to achieve

the self-adaptation of applications on ‘single’ devices. The

approaches provide semantics for implementing components

and a middleware for composition of components into

applications. Industry standards such as OpenMax, OpenCL,

etc., also reflect this approach. ECC leverages these ideas to

include ‘multiple’ devices in such compositions, leveraging

underlying support for device integration via cloud infras-

tructures. ECC takes a step beyond the goal of works like

Groupware [25], i.e., to go from the seamless interaction of

heterogeneous devices to seamlessly collaborating devices.

Creation of cloud-like infrastructure from co-located de-

vices has also been explored in recent projects like Pocket

Cloudlets [14] and Stratus [5], which propose seamless

integration of computational resources of devices to enhance

the performance of unmodified applications running on

participating devices. ECC employs such infrastructure for

mapping its competence assemblies to physical nodes. The

vision for multi-device systems has been proposed and pro-

totyped in projects like Pervasive Collaboration [2], device

ensembles [6] and Dynamic Composable Computing [3].

ECC presents a concrete realization of this vision and several

accompanying use cases.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents the ECC for multi-device environ-

ments. ECC offers C(ompetence)I(ntent)C(ontext) as first

class concepts, in order to make it possible for end users to

enhance the capabilities of their own devices with additional

nearby devices and remote cloud resources. ECC-composed

applications are shown to provide better performances and

can also hide from users the unpredictable internet latencies

inherent in remote cloud access.

However, it will be important to automate the capture

and specification of user intent, possibly by translation from

higher level user statements (e.g., speech). Also needed are

more formal specifications of competences, along with the

use of formal methods when creating competence assem-

blies, to prove correctness and/or other desired assembly

46

properties (e.g., to address privacy issues), all of which will

give rise to alternative or more powerful decision engines.

More specific, shorter term goals of our work include (i)

improved methods for device discovery, and (ii) experimen-

tation with interfaces between ECC and underlying device

cloud infrastructures.

REFERENCES

[1] M. Satyanarayanan, M. A. Kozuch, C. J. Helfrich, and D. R.
O’Hallaron, “Towards seamless mobility on pervasive hard-
ware,” Pervasive Mob. Comput., vol. 1, no. 2, pp. 157–189,
Jul. 2005.

[2] T. Pering, R. Want, B. Rosario, S. Sud, and K. Lyons, “En-
abling pervasive collaboration with platform composition,” in
Proceedings of the 7th International Conference on Pervasive
Computing, ser. Pervasive ’09. Springer-Verlag New York,
2009, pp. 184–201.

[3] R. Want, T. Pering, S. Sud, and B. Rosario, “Dynamic com-
posable computing,” in Proceedings of the 9th workshop on
Mobile computing systems and applications, ser. HotMobile
’08. ACM, 2008, pp. 17–21.

[4] G. Schiele, M. Handte, and C. Becker, “Pervasive computing
middleware,” in Handbook of Ambient Intelligence and Smart
Environments. Springer, 2010, pp. 201–227.

[5] M. Jang and K. Schwan, “Stratus: Assembling virtual plat-
forms from device clouds,” in IEEE CLOUD, 2011, pp. 476–
483.

[6] B. N. Schilit and U. Sengupta, “Device ensembles,” Com-
puter, vol. 37, no. 12, pp. 56–64, Dec. 2004.

[7] S. Yau, F. Karim, Y. Wang, B. Wang, and S. K. S. Gupta,
“Reconfigurable context-sensitive middleware for pervasive
computing,” Pervasive Computing, IEEE, vol. 1, no. 3, pp.
33–40, 2002.

[8] V. Raychoudhury, J. Cao, M. Kumar, and D. Zhang, “Mid-
dleware for pervasive computing: A survey,” Pervasive and
Mobile Computing, vol. 9, no. 2, pp. 177 – 200, 2013.

[9] A. Ranganathan and R. H. Campbell, “A middleware for
context-aware agents in ubiquitous computing environments,”
in Proceedings of the ACM/IFIP/USENIX 2003 International
Conference on Middleware. Springer-Verlag, 2003, pp. 143–
161.

[10] “Universal plug and play alliance (upnp).” [Online].
Available: http://www.upnp.org/

[11] “Samsung allshare.” [Online]. Available:
http://www.samsung.com/us/2012-allshare-play/

[12] “Microsoft xbox’s smart glass.” [Online]. Available:
http://www.xbox.com/en-US/smartglass

[13] “Apple airplay.” [Online]. Available:
http://www.apple.com/airplay/

[14] E. Koukoumidis, D. Lymberopoulos, K. Strauss, J. Liu,
and D. Burger, “Pocket cloudlets,” ACM SIGPLAN Notices,
vol. 47, no. 4, p. 171, Jun. 2012.

[15] C. Henson, K. Thirunarayan, and A. Sheth, “An efficient
bit vector approach to semantics-based machine perception
in resource-constrained devices,” in Proceedings of the 11th
international conference on The Semantic Web - Volume Part
I, ser. ISWC’12. Springer-Verlag, 2012, pp. 149–164.

[16] “Resource description framework.” [Online]. Available:
http://www.w3.org/RDF/

[17] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art
of virtualization,” in Proceedings of the nineteenth ACM
symposium on Operating systems principles, ser. SOSP ’03.
ACM, 2003, pp. 164–177.

[18] G. Eisenhauer, M. Wolf, H. Abbasi, and K. Schwan, “Event-
based systems: opportunities and challenges at exascale,”
in DEBS ’09: Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems. ACM,
2009, pp. 1–10.

[19] X. Liu, C. Kreitz, R. van Renesse, J. Hickey, M. Hay-
den, K. Birman, and R. Constable, “Building reliable, high-
performance communication systems from components,” in
Proceedings of the seventeenth ACM symposium on Operating
systems principles, ser. SOSP ’99. ACM, 1999, pp. 80–92.

[20] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo:
A computation offloading framework for smartphones,” in
Mobile Computing, Applications, and Services, ser. Lecture
Notes of the Institute for Computer Sciences, Social Infor-
matics and Telecommunications Engineering, M. Gris and
G. Yang, Eds. Springer Berlin Heidelberg, 2012, vol. 76,
pp. 59–79.

[21] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman,
S. Saroiu, R. Ch, and P. Bahl, “Maui: Making smartphones
last longer with code offload,” in In In Proceedings of ACM
MobiSys, 2010.

[22] B. Chun, S. Ihm, and P. Maniatis, “Clonecloud: Elastic
execution between mobile device and cloud,” Proceedings of
the sixth conference on Computer systems, 2011.

[23] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen,
J. Lorenzo, A. Mamelli, and U. Scholz, “Software engineering
for self-adaptive systems,” B. H. Cheng, R. Lemos, H. Giese,
P. Inverardi, and J. Magee, Eds. Springer-Verlag, 2009, ch.
MUSIC: Middleware Support for Self-Adaptation in Ubiqui-
tous and Service-Oriented Environments, pp. 164–182.

[24] A. Messer, A. Kunjithapatham, M. Sheshagiri, H. Song,
P. Kumar, P. Nguyen, and K. H. Yi, “Interplay: a middleware
for seamless device integration and task orchestration in a
networked home,” in Pervasive Computing and Communica-
tions, 2006. PerCom 2006. Fourth Annual IEEE International
Conference on, march 2006, pp. 10 pp. –307.

[25] A. Markarian, J. Favela, M. Tentori, and L. Castro, “Seamless
interaction among heterogeneous devices in support for co-
located collaboration,” in Groupware: Design, Implementa-
tion, and Use, ser. Lecture Notes in Computer Science,
Y. Dimitriadis, I. Zigurs, and E. Gmez-Snchez, Eds. Springer
Berlin / Heidelberg, 2006, pp. 389–404.

47

