Ephemeral Apps

Ketan Bhardwaj
Georgia Institute of
Technology
North Ave NW
Atlanta, GA, USA
ketanbj@gatech.edu

ABSTRACT

Despite a tremendous increase in the number of mobile apps,
coupled with their popularity with consumers, there ex-
ists a wide gap in app availability vs. their use. Recent
trends suggest that this gap will further widen in the future.
Ephemeral apps, proposed in this paper, lower the barrier
for end-user app acceptance by removing the app instal-
lation step when ‘trying out’ new apps, without requiring
modifications to current apps or any additional program-
ming efforts by app developers. We estimate the resulting
reduction in time-to-use for apps to be a factor of 10x by
leveraging the emerging ‘edge cloud’ tier of the Internet.

1. INTRODUCTION

The number of apps available in the Google play store neared
1.5 million by the end of 2014. The fast pace and mo-
mentum achieved by the native app eco-system is evident
in Figure (b), which shows the number of new apps per
month during 2014. While new apps abound, a wide gap
exists in app availability and their acceptance. In fact, only
15% of total available native apps are downloaded more than
5,000 times, as shown in Figure (a)ﬂ The app discovery
gap is likely to widen with the impending explosion of new
apps prompted by the wearables, on-demand interactions in
Internet-of-Things, situation-specific apps, etc.

The resulting quandary is that while end users prefer na-
tive apps over web apps or other browser-based interac-
tions [1} 2], due to their faster performance, seamless access
to device features, security, etc., a wide gap will continue to
exists in app availability vs. their actual use. Simply put,
with so many available apps, how can users search, install,
and try them, even if they might benefit from or like them?
This is particularly the case for apps with a transient us-
age model, i.e., those used only in contexts users experience
infrequently. For a developers thriving on innovation and
quick rollout of new apps, this poses a grave concern, as it
creates a high barrier for acceptance of their apps.

!Data source: http://www.appbrain.com/stats/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

HotMobile 16, February 26-27, 2016, St. Augustine, FL, USA

© 2016 ACM. ISBN 978-1-4503-4145-5/16/02. .. $15.00

Do http://dx.doi.org/10.1145/2873587.2873591

Ada Gavrilovska
Georgia Institute of
Technology
North Ave NW
Atlanta, GA, USA
ada@cc.gatech.edu

Karsten Schwan
Georgia Institute of
Technology
North Ave NW
Atlanta, GA, USA
schwan@cc.gatech.edu

a. New app download progression
— less than 500

-~ less than 5000 ﬁ/f
“““ less than 50000 :

<l ol e
T T T T T

10 15 Zl) 25
Number of weeks since launch date

b. New apps uploaded per month

(| Regular apps

w)
Q)

& oo

-)| | HEEE Low quality apps
O o000}

=

@ 30000

Q 20000 |

S 10000 | .

=]

z ‘t

10/14 11/14 12/14 01/15 02/15 03/15 04/15 05/15 06/15 07/15 08/15 09/15 10/15

Month (mm/yy)

Figure 1: (a) App downloads in weeks after launch
with more than 500, 5k, and 50k downloads (b) No.
of apps uploaded to the Google Play store in 2014.

App discovery can be seen as two problems: (i) conteztual
app selection which refers to classifying and presenting rele-
vant apps to users based on their current context, history of
used apps etc., and (ii) barriers to app’s first use which refer
to effort on the end user’s part to install and try out an app
for the first time. This work focuses on the latter — reducing
the barriers in app’s first use by end users. For contextual
app selection, we rely on existing mechanisms employed by
app stores, e.g., recommendation engines, user reviews, etc.,
and addressing that problem is not the focus of this paper.

Specifically, we argue for Ephemeral Apps as new types of
apps that (i) ‘pop up’ instantaneously on end-user devices
in appropriate contexts, (ii) are transient, in that they can
completely disappear including the state they might have
created from the device once the end-user leaves the con-
text, (iii) do not require any additional effort from app de-
velopers, (iv) do not need to change user behaviour of how
they use apps today and finally, (iv) offer similar levels of
performance, access to device features and security as native
apps.

Ephemeral apps make it easy for users to ‘try apps out’
before deciding to install them permanently, hence reduc-
ing barriers in app discovery; or they can use them only
within their current contexts, then discard them, expecting
to experience an updated app next time in the same con-
text, prompting the use of new available apps by end users
and aiding with app discovery. This eliminates not only the

http://dx.doi.org/10.1145/2873587.2873591

need to explicitly install apps that may only be of tempo-

rary interest to a user, but also ‘de-clutters’ end user devices

from too many apps and avoids device pollution from their
persistent on-device state. It also reduces the need for users
to deal with managing their app updates and seeing notifi-

cations for seldom used device-resident apps [4].

Achieving those goals, however, requires both infrastruc-
ture, and systems software support in Mobile OSes.

In terms of infrastructure, ephemeral apps benefit from
the emerging ‘edge cloud’ tier infrastructure situated beyond
the last mile of Internet, including wireless access points
and routers, low-power microservers, and similar. Prior
work has shown such eBozes — short for ‘edge boxes’ — to
be suitable for accelerating the delivery of mobile app ser-
vices, for caching and streaming |4} |3], support for personal
clouds |7} [5], for app acceleration, offlaod or aggregation via
cloudlets [8], etc., and we believe this trend will continue
due to increases in eBoxes’ capabilities. We make another
important observation that most apps turn on the network
to access Internet anyways: out of top 5000 popular apps in
the Google Play Store, we inspected, 98.9% of apps require
Internet permissions. This highlights that using networked
nearby resources for ephemeral apps puts minimal overhead
on mobile devices.

In terms of system support, Ephemeral apps require the fol-

lowing:

e Mobile OSes - Android
1 Ab-initio app streaming support: so that devices can

directly run streamed apps, without requiring their in-
stallation,

2 Invisible app ephemerality support: to keep device clean
of the apps and the associated state created on device
without any app specific modification,

e cBox based app streaming server to allow efficient app
streaming server capabilities on eBoxes, while maintain-
ing performance at par with native apps.

Our previous work showed how to fetch app components
from a remote server and presented an efficient design of app
streaming server [4] to manage app updates that can lead
to potentially better app loading performance for stream-
ing apps, subject to wireless connectivity. However, it as-
sumes that apps are installed on end client devices before
app streaming can occur. We also already explored mecha-
nisms to maintain app cache on eBoxes [3]. In this work, we
build on our previous work but are exploring (i) ab-initio
app streaming support, i.e., streaming without any prior
app and/or configuration on the device, and (ii) invisible
app ephemerality, i.e., system level garbage collection, to
purge the app along with its created/modified state, tar-
geting Android devices. However, it is important to note
that ephemerality is a weaker property than forensic deni-
ability as proposed in [6] and therefore can be supported
with much lower overheads on device side. The clear benefit
of this approach is the elimination of the efforts involved in
searching and installing apps. Stated quantitatively, while
search time vs. the time required to identify some ephemeral
app is hard to estimate, the time taken to download, install,
and start using an app has a quantifiable lower bound. Fig-
ure |2| shows the time taken to simply install an app on an
Android phone (Nexus 5) from a PC connected via USB ca-
ble using Android debug bridge (ADB), measured for 5000
apps - the top 100 in each category dowloaded from the
Google Play store. Our preliminary investigation suggests

1.0

Percentile
o
>

N
=~
T

0.2F

— Install time

0 2 4 6 8 10 1‘2 14 16 18
Time taken to intall apps (s)

0.0 ‘ ‘

Figure 2: Showing CDF of the lower bounds on time
spent during app installation.

that with ephemeral apps, this delay can be reduced by a
factor of 10x, bringing the time required to try an app below
5 seconds.

2. MOTIVATION

The following factors motivate ephemeral apps:
Convenience: Interaction on-demand

With so many available apps for multiple devices owned by
an user, it is very inconvenient for a user to search, install,
and use those apps. Ephemeral apps can reduce this incon-
venience, by providing apps to users based on their con-
nectivity to an eBox. An important angle of looking at
ephemeral apps is in context of the IoT market: it would
be cumbersome to search and install apps for each such pos-
sible ‘thing’.

Performance: Efficiency of native apps

End user preference for native apps is, in part, due to their
faster response times or better performance vs. that seen for
web apps and their consistent user interfaces mandated by
the mobile OSes. Ephemeral apps can keep these character-
istics, by making it possible for native apps to be streamed
from eBoxes and run on devices with the efficiency of native
apps.

Seamless access to device features

End user preference for native apps is also driven by apps
being able to seamlessly access device features for better
user experience. Ephemeral apps can preserve the benefits of
native apps, and address web apps’ limitations on access to
device features, while maintaining the same levels of security
as native apps.

3. GOALS

Ephemeral apps must have the following characteristics from
which we derive the design goals:

Instantaneous: Ephemeral apps must be able to appear
instantaneous in that a single ephemeral app should be able
to appear on end-user devices within 300 ms. This rules out
pushing full app installs on devices automatically and/or
on-demand as the user goes from one context to other.
Transient: Ephemeral apps and the state that they create
on end user’s device must completely disappear from the

device once the end-user leaves the context. Important to
clarify is that the intent is to keep device clear rather than
removing the trace of its execution as was the goal of earlier
work like [6].

No additional effort from app developers: Making
ephemeral apps must not be different from creating native
apps. This is important from a practical standpoint of their
acceptance by developer community.

No change in user behaviour: Using ephemeral apps
must not present a learning curve for end users to use them
i.e., users must be able to use them in same way as they use
native apps installed on device.

Performance and device features: Ephemeral apps must
be able to perform at same level as native apps and have ac-
cess to device hardware on existing devices under existing
permission models.

4. DESIGN CHOICES

We briefly present the available design space to support
ephemeral apps in Android:

4.1 System layer for app streaming

Our goal is that functionality required to support ephemeral
apps must leverage the existing app model supported on
client devices. Modern devices with ‘tall’ mobile OS stacks
are shown in Figure @, and ‘thinner’, well packaged mobile
apps on top. We posit that since the majority of system
level functionality required by apps is abstracted by the app
framework APIs, runtime, etc., provided by the mobile OS,
it is possible to hide the complexity associated with app
streaming and ephemerality completely from app develop-
ers, while providing efficient app execution leveraging de-
vices’ capabilities. On the eBox side, this also allows to
leverage system level information like the order of app com-
ponents to optimize streaming performance [4].

4.2 Streaming from cloud vs. eBox

Mobile devices are subject to well-understood constraints,
such as power consumption. Using remote resources not
subject to those constraints can, enhance user experiences
on devices. Concerning the use of such remote resources for
ephemeral apps, we argue the relative advantage of eBoxes
vs. remote data centers in terms of (i) increasingly fast
wireless networks, (ii) cheap storage at eBoxes to house app
repositories and low access latency due to lower network
distance.

4.3 Ephemeral vs. Native, web, thin client apps

Currently, most mobile OSes like Android, iOS etc. sup-
port the following app models:

e Native app: specifically designed to run on a device’s OS,
uses features exposed by platform via APIs and is con-
strained by OS semantics.

e Web app: the entire app or its parts are downloaded from
the web during execution. It can be accessed from any
web-capable mobile device without requiring operating
system-specific customization.

e Hybrid apps: most native apps utilize web connectivity,
and web apps provide offline modes. The resulting form
of apps are referred to as hybrid apps.

e Thin client apps: require a remote access app, e.g., VNC
client on device while actual execution happens remotely.

We posit that Ephemeral Apps can potentially obtain na-
tive app user experience in terms of responsiveness, access to
device features, security, efficient operation than thin client
apps with central management capabilities of web apps by
allowing on-demand streaming of the native app components
needed for execution, via eBoxes.

S. FEASIBILITY AND CHALLENGES

We are using Android to prototype ephemeral apps. The
simplified interaction between the modified Android mod-
ules and an eBox-based ephemeral app server are depicted
in Figure Presented below are the technical challenges
that need to be solved to support the ephemeral apps:
Handling diverse app Anatomy and Execution

A typical Android app is comprised of AndroidManifest.xml
(app config file), classes.dex (JAVA classes), .arsc file (binary
resource file), assets, res folders (static resources e.g., icons,
strings etc.), native libraries, and miscellaneous components
(certs, HTML help files etc), referred as app components
which are needed during installation and/or execution. In
Android, an app executes as an instance of the Android Run-
time (ART) in which Android framework libraries are pre-
loaded during fork of the Zygote process, and platform fea-
tures are exposed via APIs. To make apps ephemeral, these
components must be made available on demand, via stream-
ing, in a way that does not hurt app performance. With the
current architecture of mobile OSes (specifically, Android),
it is a daunting task because each of these app components is
handled in a different subsystem, e.g., classes.dex are loaded
by the ART runtime, .arsc files are accessed using the as-
set manager, whereas resource in res or asset folder may
be read explicitly. To makes matters worse, these system
components can be used in different ways, e.g., app can use
either a URI and/or binary buffer mode to load static as-
sets. This also highlights an important point that existing
mechanisms like on-demand class loading or JAVA reflection
do not suffice for mobile app streaming.

Ensuring app Integrity, Sandboxing and Permissions

App integrity is established by downloading apps only
from trusted app stores with self-signed certificates from de-
velopers. For ephemeral apps, since there is no installation
step, the mobile OS and ephemeral app servers collabora-
tively need to make available app components and establish
their integrity. We propose to use certificate based verifica-
tion of the ephemeral app server as a valid provider of apps.
The certificate may be provided by app stores or any other
trusted third party and implement a merkel tree of signa-
tures which can be used to verify individual app components
as opposed to full app during installation.

Permissions required by apps are prompted to the user for
approval on installation, at which time each app is assigned
a UID, GID. These are then used to enforce permissions to
access hardware features and inter-app communication us-
ing Binder IPC at linux kernel layer. Android application
sandbox using Linux‘s discretionary access control (DAC)
and SEAndroid mandatory access Control (MAC) to iso-
late an app data and code execution from other apps. For
ephemeral apps, Android needs to support lazy allocation
of UIDs, GIDs and handle app permissions at runtime - a
feature introduced in Android M. We also need to define ap-
propriate SEAndroid policies for ephemeral apps to ensure
security guarantees during their execution.

Managing App State
Android provides no guarantees to apps about their state

and expects them to manage it explicitly via state machine
callbacks. This is consistent with our vision of ephemeral
apps where we propose to capture their app state and clean
it up. However, two types of persistent state are typically
associated with an Android app:

System State:

By system state, we refer to the information Android
maintains about or on behalf of apps during installation e.g.,
its package, (uid, gid) pairs, etc. and during execution e.g.,
web caches, cookies, data journals, per app shared data, app
private files etc.

App State:

o On-device state refers refers to the state needed for app
start or resume, created by an app during execution. e.g.,
shared document-like content handled by Android on de-
vicesaAY local storage and the content of internal state,
like user preferences, handled using the APIs, etc.

e Remote app state refers to state explicitly committed to
a cloud-based backend, e.g., saved game progress. This is
consistent with our ephemeral app vision and requires no
special treatment for ephemeral apps.

e (Content based state: refers to the content used by an app
during its execution that is not part of the app-specific
content cache. Apps may fetch it from some back end
service, their own network-based storage, or some third
party, e.g., mobile ads, etc.

Ensuring app performance. Compared to web apps,
while both app models require network interactions to fetch
the app components, we posit ephemeral apps would per-
form better because of the number and size of web app com-
ponents (JavaScript, HTML, CSS, etc.) vs. native app com-
ponents that need to be fetched, and the additional process-
ing in web apps launching a browser, creating DOM objects,
handling dependencies and rendering those on device which
would not be required for streamed native app components.
Comparing to thin clients, these entail aggressive use of net-
work to fetch screen contents, send user inputs, sync on-
device sensors with remote thin client server for every user
interaction, while rendering of the screen contents on end
user device. In contrast, streamed native app components
would require less use of network because of reduced pay-
load to be fetched and the possibility of reuse of fetched app
components (classes, UI images, etc.) during an ephemeral
app session. This leads us to believe that ephemeral apps
can be more responsive and would require less power than
other alternatives for their execution.

Integration with app stores: Figure depicts our vision

of how ephemeral apps can be made available via collabora-

tion by app stores and eBoxes, i.e., without app developers
to buy into something new. We believe this is important
to continue to leverage auditing capabilities of app stores
that check apps for security before making them available
to authenticated end users, and for continuing to support de-
velopers using pay per use model for ephemeral apps. How-
ever, this doesn’t rule out alternate delivery channels where
app stores can deliver apps to vendor equipment that they
expose as ephemeral apps to end users. An additional inter-
action between eBoxes and app store is required to provide
eBoxes with valid certificates that they can present to end
user devices to verify their integrity as trusted app providers.
Maintaining user trust model: Ephemeral apps blur

Apps submitted
by developers

Users install
apps on device

end user
devices

Apps stored
and streamed
from eBoxes

Figure 3: showing an overview of ephemeral app eco-
system and its potential integration with existing
app stores.

the distinction between web apps and native apps. A subtle
point in introducing ephemeral apps in the app ecosystem
is that users trust apps downloaded from app stores but the
same is not true for web apps. This requires careful con-
sideration of the trust model being used to distinguish end
user’s interaction with ephemeral apps from web app or na-
tive apps. We posit that the app store integration proposed
above and the runtime permission model introduced in An-
droid M in combination can be used to provide a workable
trust model, where only apps verified by app stores will be
provided to eBoxes or vendors that they can make avail-
able as ephemeral apps. The end user devices only show
ephemeral apps being made available by trusted ephemeral
app providers which is verified by certificate presented by
an eBox. For apps that are shown in end user devices, users
would be prompted for specific permissions as they continue
using an ephemeral app, a feature that we developed but is
also introduced in Android M.

Preserving user privacy: Streaming ephemeral apps raises
privacy concerns because with knowledge about which app
components are fetched during execution, it is possible to
infer what a user is doing with it. To address that, we plan
to implement a differential privacy techniques while fetching
app component to reduce these risks. We believe it would be
an interesting proposition if we can actually leverage these
extra requests to fetch somewhat related app components.

6. PROPOSED DESIGN

Ab-initio App streaming: support in Android is designed
to work seamlessly for existing apps. It is designed to op-
erate in two phases (i) Conjuring phase and (ii) Ezecution
phase. The rationale behind the two phase-design of the
ephemeral app life cycle is to (i) not require installation of
apps on device and (ii) ensure faster app discovery by decou-
pling presentation of an app from its launch and execution.
Conguring phase starts when a user invokes his ephemeral
home screen referred to as Stage - a new launcher app on
users’ device connecting to an eBox. Stage requests for list
of available ephemeral apps; on receipt of the response, a
certificate based verification is done to establish the integrity

eApp
repository

Standard OS, libraries |

HTTPS f:l
Conjuror

|App 0 "App 1| | Stage |<—>

Ephemeral
App Server

P
| Native libraries H App Runtime |<—>| IFamulus|

| App Framework

| OS Kernel | |

| Devices | | eBox |

Figure 4: Showing the co-existence of existing and
the proposed ephemeral app ecosystem.

of an eBox/app server as a valid app provider; If the user
trusts it, Stage starts fetching icons of the available apps
to populate the end user’s screen/Stage. In addition to the
icons, the response includes top level hashes from merkle
trees of available ephemeral apps and information needed to
launch an app, e.g., activity name or first class to be loaded.
Ezxecution phase starts when a user decides to launch an
ephemeral app. It is proposed as a new API in Android app
framework which asks the activity Manager to start a new
app runtime (ART) instance. Before forking an instance of
the app runtime, the activity manager asks the package man-
ager to assign a virtual blanket of permissions and to assign
ephemeral uid, gid, that belong to a separate range from
existing uid ranges used in Android, and which can later
be used to handle permission exceptions to provide runtime
permission approvals for ephemeral apps (e.g., if an app re-
quires more than already assigned blanket permissions). To
keep app sandboxing guarantees for ephemeral apps while
also ensuring availability of storage for caching app compo-
nents fetched during app streaming, we plan to implement
a new SEAndroid security context and associated policy:
ephemeral app domain. During execution, app streaming is
designed to work seamlessly for existing apps by intercept-
ing calls to the runtime’s class loader, native library loader
and the app framework’s Asset Manager, and redirecting
those to a remote (e.g., eBox-based) ephemeral app server
via a Streaming Client embedded in the ephemerality man-
ager discussed next. This ensures that even when the apps
are not installed on a device, the running apps are offered
the same runtime environment as if they are installed. Con-
cerning state created by apps, which normally is stored in
app specific folders on the device’s local storage, ephemeral
apps are assigned new location which also helps in providing
system level app ephemerality discussed next.

App ephemerality: To track app’s system state without
support from apps, we plan to (i) route all ephemeral app
component requests through a system wide ephemerality
manager and (ii) add hooks in all app relevant framework
APIs to capture app private state which can then explicitly
logged on-device. Since, ephemerality manager requests the
needed app components, it also checks each received app
component for its integrity using the ephemeral app‘s top
level hash, thereby ensuring runtime app integrity. Briefly,
the ephemerality module must expose a native and JNI in-
terfaces which can be used by the Android app framework
APIs and by individual system services to request app com-
ponents and log app state when apps use those APIs. These
logs are the key to enabling system level ephemerality guar-
antees. Asynchronously saving, discarding and/or syncing of

apps and their states can be supported in order to minimize
ephemerality-related overheads on the system. The ephmer-
ality module allows processing of the logs under different
policies, each of which is derived from end user preference
about the app state. For instance, if a user indicates that he
wants to discard app state then, on app exit, the ephemeral-
ity manager can access the logs to gather app state generated
by that app and deletes them followed by removal of the logs
from the database. Similarly, if an end user chooses to sync
state to an eBox, the Ephmerality Manager sends app state
to an eBox before deleting the logs.

In our incomplete prototype, we support on-demand load-
ing of app-specific classes, assets, etc. but requires a stub
app (stage app) to be installed. Complete implementation
of support for ab-initio app streaming and handling app
ephemerality in Android is currently in progress. We dis-
cuss the proposed design below:

Stage - a new ephemeral apps launcher app: Stage
app communicates with eBox based app streaming server
for available apps. Before populating Stage with app icons,
it established the integrity of eBox using certificate-based
authentication.

App framework support for ephemeral apps
Package Manager: The package manager is modified to
provide information to the app framework about available
ephemeral apps, for assigning UID, GID in a different range
than installed apps, and for creating app specific directories
for their use in caching and/or for ephemeral app state at
launch time.

Activity Manager: The enhanced activity manager sup-
ports the launch of apps in ephemeral mode i.e., launching
new activity for ephemeral apps without interfering launch
of with installed apps. At launch time, the developer signa-
ture attached with the app is checked. Additionally, we plan
to implement a checksum verification for the app executable
and components between device and app stores before start
of actual streaming.

Lazy Permission handler: We added a new permission ex-
ception handler to the ActivityThread which is basically
linux level thread running the application. When the ex-
ception handler is invoked when an ephemeral app incurs a
permission that hasn’t been assigned to it. This give rise to
a permission grant dialog in similar ways the Android frame-
work issues the ‘application not responding’ (ANR) dialog.
Asset manager: The framework’s asset manager is modi-
fied to facilitate loading assets like icons, xmls by redirect
ephemeral app’s asset requests to an eBox vs. its own file
system.

Android app runtime - ART

The following components of ART need to be changed to
support ephemeral apps:

Ephemeral Class linker: We added a new class in ART
that behaves similarly to existing class linker excepts that it
searches and streams the requested app-specific classes from
an eBox vs. the device’s local storage.

Native library loader: Similarly, ART’s interaction with
the native library loader streams app-specific native libraries
from the eBox vs. the device’s local storage.

App Ephemerality support in Android

To seamlessly support ephemerality for unmodified android
apps, we added a core library libephemeralutils which per-
forms all network operations needed for streaming of app
components from the Android app framework and ART run-

time on behalf of ephemeral apps. By doing this, it seam-
lessly facilitates logging of fetched app components. Addi-
tionally, it also provides support - native and JNI APIs -
for explicit logging of any state or change in file created by
an ephemeral app on phone’s file system. We plan to in-
strument Android APIs that are used by apps to write to
phones file system to create a per app log in form of a SQLite
database. These logs are then used to clear device of any
app state or changes made by an ephemeral app.
eBox-based ephemeral app server

The ephemeral app server consists two subsystems:
Conjuror: an HTTPS server establishing the integrity of
an eBox as a valid app provider during connection time; it
pushes apps to the end user device, i.e., app metadata and
TCP port, which will be used for actual streaming of app
components by a client. It is also responsible for maintain-
ing an app repository on a SSD attached to it via USB 3.0
and performs app preprocessing when the apps are added or
updated. Preprocessing includes extracting app metadata
for app push, streaming app components.

Famulus: a TCP socket server handling on-demand stream-
ing of app components for a single app; it implements the
logic to translates app-specific URIs to entries on its own file
system generated by conjurer, which contains uncompressed
apps conforming to the same directory structure as would
be on device with installed app.

7. PRELIMINARY EVALUATION

Experimental Setup: We used a Nexus 5 phone running
Open Source Android v5.0.1.3 for device side evaluation.
The phone is connected to eBox prototyped using Linksys
WRT1900ac 802.11ac Wi-Fi router running OpenWRT. The
same router with an attached SSD of 20GB is used to pro-
totype the eBox based app streaming server.

Feasibility: = We report that we have been able to run
native existing apps as ‘Ephemeral apps’ via app stream-
ing and app ephemerality on Android without requiring any
changes in those apps.

Time to use: Figure [5{iii) shows the lower bounds of
time to to start using an app when installing it from app
store vs. using ephemeral apps. In addition, Figure [5| shows
upto 10x reduction in time to use compared to installation
and launch time of top 40 apps which include the top app
in each category downloaded from Google Play Store. Also,
important to note is that, launching app via app streaming
doesn’t lead to delay in app launch time and hence, leading
us to believe responsiveness is comparable to native installed
apps.

8. SUMMARY

We propose ‘ephemeral apps’ as a solution to address the
gap in app availability vs. end-user acceptance, evaluated
with a prototype implementation on Android. Future work
will complete their implementation and perform additional
evaluations with realistic multi-tenant loads.

Acknowledgement

We would like to thank our shepherd, Kaushik Veeraragha-
van, for his insights during the preparation of the final ver-
sion of this paper. This work is partially supported through
research grants from Intel, VMware, and NSF CNS1148600.

25000

¢ 06¢ Install
0 ¢xxx Launch
e®e ephemeral Launch |
v

20000 |
0 ¢

15000 F ”’ ¢ ¢
¢ ¢
¢ ¢

10000 ¢
X
° o

Time to use (ms)

[J
¢ 0 ¢ 0
5000 X []
® % e o o
x® o [] X v ; @x
X
X L 2% <& X 9 @x x
O " W 6 X% g 2 e 2 0x 08, e g
012345678 910111213141516171819202 829303 73839404 14243444546

Appld

Figure 5: Comparing time to use of ephemeral apps
made available from a nearby eBox vs. lower bounds
of install and launch time for top 40 apps.

X

9. REFERENCES

[1] Apps solidify leadership six years into the mobile
revolution - Flurry @
http://www.flurry.com/bid/109749/Apps-Solidify-
Leadership-Six-Years-into-the-Mobile-Revolution.

2

Mobile apps overtake pc internet usage in u.s. - cnn
money @
http://money.cnn.com/2014/02/28 /technology /mobile/mobile-
apps-internet/.

[3] K. Bhardwaj, P. Agarwal, A. Gavrilovska, and
K. Schwan. Appsachet: Distributed app delivery from
the edge cloud. In 7th EAI International Conference on
Mobile Computing, Applications and Services,
MobiCASE 15, 2015.

[4] K. Bhardwaj, P. Agarwal, A. Gavrilovska, K. Schwan,
and A. A. Appflux: Taming mobile app delivery via
streaming. In 2015 Conference on Timely Results in
Operating Systems (TRIOS 15), Monterey, CA, USA,
2015. USENIX Association.

[5] K. Bhardwaj, S. Sreepathy, A. Gavrilovska, and
K. Schwan. Ecc: Edge cloud composites. In Proceedings
of the 2014 2Nd IEEE International Conference on
Mobile Cloud Computing, Services, and Engineering,
MOBILECLOUD ’14, pages 38-47, Washington, DC,
USA, 2014. IEEE Computer Society.

[6] A. M. Dunn, M. Z. Lee, S. Jana, S. Kim,

M. Silberstein, Y. Xu, V. Shmatikov, and E. Witchel.
Eternal sunshine of the spotless machine: Protecting
privacy with ephemeral channels. In Presented as part
of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), pages 61-75,
Hollywood, CA, 2012. USENIX.

[7] M. Jang, K. Schwan, K. Bhardwaj, A. Gavrilovska, and
A. Avasthi. Personal clouds: Sharing and integrating
networked resources to enhance end user experiences.
In INFOCOM, 2014 Proceedings IEEE, pages
2220-2228, April 2014.

[8] E. Koukoumidis, D. Lymberopoulos, K. Strauss, J. Liu,

and D. Burger. Pocket cloudlets. ACM SIGPLAN

Notices, 47(4):171, June 2012.

	Introduction
	Motivation
	Goals
	Design Choices
	System layer for app streaming
	Streaming from cloud vs. eBox
	Ephemeral vs. Native, web, thin client apps

	Feasibility and Challenges
	Proposed Design
	Preliminary Evaluation
	Summary
	References

