Couper: DNN Model Slicing for Visual Analytics Containers at
the Edge

Ke-Jou Hsu Ketan Bhardwaj Ada Gavrilovska
Georgia Institute of Technology Georgia Institute of Technology Georgia Institute of Technology
nosus_hsu@gatech.edu ketanbj@gatech.edu ada@cc.gatech.edu

ABSTRACT

Applications incorporating DNN-based visual analytics are grow-
ing in demand. This class of data-intensive and latency-sensitive
workloads has an opportunity to benefit from the emerging edge
computing tier. However, to decouple the growing resource demand
of DNN models, from the characteristics and resource limitations
of the infrastructure elements available at the edge, new methods
are needed to quickly slice the DNNs into appropriately-sized com-
ponents, and to deploy those DNN slices to be executed on the edge
infrastructure stacks. This paper presents Couper, a practical solu-
tion that provides for quick creation of slices of production DNNs
for visual analytics, and enables their deployment in contemporary
container-based edge software stacks. Couper is evaluated with 7
production DNNSs, under varying edge configurations.

CCS CONCEPTS

+ Computer systems organization — Distributed architec-
tures; » Networks — Network performance analysis; - Gen-
eral and reference — Design; « Computing methodologies —
Neural networks;

KEYWORDS

edge computing; video analytics application; pipeline processing;
computation offloading; deep neural network; DNN partitioning;
container orchestration

ACM Reference Format:

Ke-Jou Hsu, Ketan Bhardwaj, and Ada Gavrilovska. 2019. Couper: DNN
Model Slicing for Visual Analytics Containers at the Edge. In The Fourth
ACM/IEEE Symposium on Edge Computing (SEC 2019), November 7-9, 2019,
Arlington, VA, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3318216.3363309

1 INTRODUCTION

Video formed over 80% of all Internet traffic in 2018. By 2021, ~250
exabytes data traversing the Internet will majorly comprise of vi-
sual data [25]. Real-time analysis of that visual data is a high value
target as it is central to enabling several classes of important ap-
plications, including surveillance and security, traffic monitoring

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SEC 2019, November 7-9, 2019, Arlington, VA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6733-2/19/11...$15.00
https://doi.org/10.1145/3318216.3363309

and prediction, shopping assistants, to providing care for seniors,
infants or even pets.

Key technology enabling these use cases are deep neural net-
works (DNNs) that have replaced classical computer vision methods
due to their accuracy and effectiveness [37, 41, 59, 60]. Unfortu-
nately, using DNNs to analyze visual data is prohibitively expensive
at scale. The scale manifests itself in three ways: First, the decrease
of image sensor costs increases the amount of available visual data
to be analyzed. To analyze all the visual data using DNNs deployed
in the cloud, data has to be transported from cameras to central-
ized cloud datacenters, posing bandwidth demands on the backhaul
network. Second, cloud latencies are not sufficient for the (near) real-
time nature of some of the driving applications [17, 23, 36, 47]. Both
the bandwidth demand and the latency requirements challenge the
ability of cloud-based deployments to support these services. Third,
the DNNs used for analysis of visual data are continuing to get
deeper and more complicated (e.g., Microsoft’s ResNet (2015) has a
few hundreds of layers vs. Google’s NASNet (2017) has more than
one thousand layers for increased accuracy). The dominant cost in
production DNN-based visual data analysis is serving predictions
from increasingly more complex models. Expecting that the models
can always be deployed on end devices alone is not practical. In
summary, there exists a wide gap among the demand that real-time
analysis of visual data puts on infrastructure capabilities of current
device—cloud deployment models, and the available compute and
network resources. Deploying DNNs on shared and distributed
edge computing infrastructure is a natural step in bridging this gap.

Visual analytics at the edge. Cloud service providers [18, 19, 26]
and mobile network operators [39, 50, 55] are providing or devel-
oping shared infrastructure for deploying such applications at the
edge of the network [33]. Therefore, in theory, the above men-
tioned latency- and bandwidth-related problems will not impede
real-time visual analysis applications. However, expecting that the
resources available as part of the edge infrastructure will always
be sufficient for a full DNN model, is not realistic. First, the hard-
ware technologies considered for the edge tier vary widely in their
resource capabilities [30, 54]. Second, the edge may be shared by
multiple tenants [33]. A resource-limited and multi-tenant edge
cannot be relied upon to always provide the resources needed for
arbitrary production models, when at the same time the demand
for DNN models, and their number and complexity will continue
to increase [58].

Gaps in current solutions. To address these limitations, ongoing
research has taken two main approaches. One approach is to “fit”
DNN models and their execution within the available edge infras-
tructure capabilities. This includes model-level optimizations and

https://doi.org/10.1145/3318216.3363309
https://doi.org/10.1145/3318216.3363309
https://doi.org/10.1145/3318216.3363309

SEC 2019, November 7-9, 2019, Arlington, VA, USA

parameter tuning to achieve a desired accuracy and resource foot-
print tradeoff [69] or to maximize the number of models supported
from an edge location [40]. These solutions aim to create and de-
ploy a new model, from potentially a very large search space, that
will best fit given edge resources. The time and effort required for
model tuning limits the practical use of these approaches. Instead,
applications will use pre-trained or production models, and the
question is how to make it possible for such models to still benefit
from an arbitrary edge. Even as new accelerators specialized for
DNNs augment the edge nodes’ capabilities [53, 56], the Al com-
munity is on an exponential curve of its own [49], and new models
will continue to emerge with different resource requirements.

Model partitioning forms the basis of the second type of ap-
proaches, since it decouples the resource limitations and character-
istics of the edge infrastructure, from its ability to run increasingly
deeper DNNs. Several efforts have developed methodologies to de-
termine how to split a given DNN into components which optimize
a particular metric, such as inference time, data movement latency,
or energy-efficiency [42, 44]. However, searching for an ideal split
point may not be practical, given the variability of the network
characteristics, and fluctuations in the demand and availability
of edge resource due to multi-tenancy. Therefore, one important
question is how to quickly determine sufficiently good partitions.
Furthermore, designing a practical model slicing solution must also
consider the intricacies of the DNN structure, and the streaming
application frameworks and the deployment technology, so as to
dynamically configure and deploy the model partitions as a pipeline
of operations applied to data being streamed across edge and cloud
components.

Summarizing, an open problem is, given a model and a set of
edge resources, how to quickly determine the best way to partition
the model and create deployment-ready model partitions needed to
seamlessly run the model pipeline across the edge and the cloud?

In response, we develop Couper! - a practical solution for rapidly
partitioning visual analytics DNN models for a given edge-cloud
configuration. Couper contributes novel container-based infras-
tructure for model partitioning and deployment, applicable to most
edge software stacks that use containers to deploy applications
at edge infrastructure elements. Given a model and an edge con-
figuration, Couper first determines and evaluates a small number
of sufficiently good split point candidates, in order to quickly se-
lect among them the best one for a target metric. Next, Couper
packages the model slices into deployment-ready containers for
edge software platforms [15, 16, 21], augmented with a data relay-
ing functionality needed to (de-)serialize and (re)direct data flows
across the pipeline components.

Couper is built on the following key principles. First, it adopts
pipelining based on model slicing as a core mechanism to decouple
the requirements of a DNN-based visual analytics application, from
the specific capabilities of the infrastructure elements where it
can be deployed. Second, it adopts separation of mechanisms from
policies, by incorporating mechanisms for model slicing and guided
model evaluation, but specific algorithms to be used for slicing,
evaluation and decision, are specified as inputs in Couper. We

!The name Couper is from the French word couper, which means fo cut, but it is
pronounced as the English name Cooper.

Ke-Jou Hsu, Ketan Bhardwaj, and Ada Gavrilovska

provide insights into important properties of such algorithms that
reduce the number of split points which Couper must evaluate
before reaching a decision. One insight is to take into consideration
the properties of the neural network model, and to support slicing
algorithms focused on articulation points. Slicing at these points
avoids synchronization-related complexities; synchronization is
shown to be expensive in geo-distributed settings [38], such as
across edge nodes and the cloud, and should be avoided. A second
insight is to use edge-aware slice selection methods which avoid
evaluating split points known not to lead to benefits from running
on an edge. Finally, Couper aims to provide deployment readiness:

Solving the partitioning problem quickly is one part of the gaps in

current systems. Making sure that those partitions can be deployed

and executed in device-edge-cloud systems must also be solved.
In summary, this paper makes the following contributions:

o Couper is the first work, to the best of our knowledge, that de-
scribes general system-level support that automates DNN model
slicing and slice deployment in edge-cloud infrastructures. In
designing Couper, we took a systematic approach towards under-
standing the opportunity (Section § 3) to come up with a concrete
design (Section § 4) focused on visual analytics models developed
using TensorFlow [11] and the SAF streaming framework [68],
suited best for deployments of container-based workloads or-
chestrated using Kubernetes [46].

o Second, Couper presents a functional framework that can be used
to explore and evaluate different model slicing methods. We use
it to develop a number of such methods that offer new tradeoffs
when managing the overheads incurred in determing how to
split a model and the quality of the resulting model partitions in
terms of a target metric (Section § 5).

e Finally, using several popular and state-of-the-art production-
ready DNN models, we demonstrate the utility of Couper. Couper
requires minimal resources (Section § 6), and is effective in
quickly determining split points for DNN model deployments
that result in application performance gains through better use
of the available edge computing infrastructure (Section § 7).

2 EDGE COMPUTING AND VISUAL
ANALYTICS: A NATURAL FIT

The demand for new data-intensive services with low and pre-
dictable latencies is driving the emergence of a new edge infrastruc-
ture tier [30, 54]. There are certain characteristic of edge computing
that motivated us to develop Couper in its current form.

The edge comes in many shapes and sizes. Edge computing
is still in its nascent form. A number of point solutions for edge
computing already exist [9], and industry is mobilizing with de-
velopment of new enabling technology [4, 7] and with outlining
the requirements of general purpose edge computing [33]. Many
types of very diverse technologies are being positioned as possible
edge platforms, with capabilities ranging from low-power proces-
sors [24, 70], densely positioned on rooftops and lamp posts, to
custom racks for server-grade processor blades specialized for de-
ployment in cellular base stations [14]. Depending on the location
of deployment within the access network, at gateways, cellular base
stations, and other end points in the network data paths between
devices and remote cloud datacenters, the edge resources and their

Couper: DNN Model Slicing for Visual Analytics Containers at the Edge

network distance from the client devices and the cloud vary. As a
consequence, edge computing provides many trade-offs that have not
been fully explored.

The edge is a dynamic, shared resource. The edge infrastructure
is envisioned to be (almost certainly) shared by services packaged
in containers [15, 16, 21], running potentially different applications,
or serving different tenants of a single type of service. Such shared
use will further increase the effective dynamism in the resource
footprint available to a tenant for the execution of its edge workload.
As a result, in this paper we consider a range of configurations of
edge computing platforms and different network distances among
the client, edge and cloud, running containerized workloads.
DNN based visual analytics: The killer app for the edge. Vi-
sual analytics is considered the killer app for edge computing due
to the pressure it puts on the backhaul in terms of bandwidth, and
due to its latency sensitivity, which can be impossible to address
just with a remote cloud. The growth in the complexity, depth and the
number of deep neural network models being used for visual analytics
is also pushing their compute requirements, and makes it difficult to
reason about the performance of the models with different kinds of
edge infrastructure.

A different perspective on edge for visual analytics. Others
have already argued for the importance of using the edge for visual
analytics with low latency and low data movement costs [52, 57].
Instead, we ask the question, how can visual analytics applications
leverage the available edge to achieve desired performance goals. Note
that the desired performance goals may differ based on application-
specific or operating constraints. They could be purely based on
inference latency (i.e., the time to process and classify a visual
image frame), or may be concerned solely with data movement
costs, or the overall frame processing rate, or other factors such as
energy usage, etc. For example, analysis of data from secure cameras
deployed at public places to quickly spot unattended items (e.g., at
airports) [71], or to detect suspicious vehicles in motion [35, 40],
are scenarios where processing speed and latency are crucial. Other
application such as the ones using drone-attached cameras for
land surveys [2, 67] are primarily concerned with minimizing data
movement cost and reducing bandwidth demand in analytics.

3 UNDERSTANDING THE OPPORTUNITY

To better understand the design space for Couper, we present our
observations from evaluating an off-the-shelf visual analytics appli-
cation with several production-ready DNN models (Table 1), under
different deployment scenarios. For these analyses, we use an edge
configuration that exemplifies a single point in the range of pos-
sible edge capabilities [54] (Table 2). This allows us to illustrate
the opportunities that model slicing can present for visual analyt-
ics applications with different resource demands relative to what
is available at the edge, and the requirements that need to be ad-
dressed with Couper’s design. The concrete opportunities that an
application can realize will differ based on the concrete availability
of compute and communication resources at the edge. In Section
§ 7, we evaluate Couper with four edge configurations that range
from a low-end device to a high-end server system with a GPU
accelerator, similar to what is commonly found in cloud datacen-
ters, and show that Couper can offer benefits across these different

SEC 2019, November 7-9, 2019, Arlington, VA, USA

Single host

ITTTECTTTETITETT
Camera [—| Transformer
LT

DNN
evaluator

First host

Frame Frame
L sender P eceiver [[

Second host

Case (a)

Case (b)

O [1[] -]
Case (¢)

[+

C-[T-E-

Figure 1: Image classification pipeline structure and three
deployment cases: (a) running a full application including
DNN inference on device only, (b) running the DNN infer-
ence on cloud, (c) running the DNN inference on edge.

settings. Note that although not explicitly used in our evaluations,
even lower-end edge platforms may comprise GPUs, or other future
accelerators [22].
Experimental testbed. We use a streaming visual analytics appli-
cation developed using the Streaming Analytics Framework, SAF [68].
SAF allows creation of arbitrary pipelined visual analytics applica-
tions where users can customize their own application by stacking
up operators. For instance, a basic image classification application
in SAF has four stages in sequence, as shown in Figure 1: (1) camera,
to extract a raw image from either a device or a file, (2) transformer,
to transform a raw image into the input format of an ML model,
(3) DNN evaluator, to run the model inference, and (4) classifier, to
map the inference result to a label. To connect the pipeline stages
when deployed across machines, SAF uses messaging processors
(SAF provides ZMQ [27] and gRPC [65]) to send and receive frames.

We evaluate SAF with seven popular DNN models listed in Ta-
ble 1. All of the DNN models are public TensorFlow pre-trained
models. The models are characterized with different classification
accuracy and different complexity in terms of number of Tensor-
Flow Operations [13], referred to as operators in this paper. An
operator is the minimal computing unit of a model; within each
model, operators are further grouped into layers corresponding to
a specific type of DNN functionality, such as a layer combining
variable square and summation operators [8]. The TensorFlow li-
brary offers APIs that allow all operators in a model to be listed [5].
From Table 1, we see that the models with higher accuracy tend to
have more operators, and theoretically consume more computing
resource for model inferencing.

The physical testbed is based on three server-class machines
representing a client device, an edge node and a cloud server. We

SEC 2019, November 7-9, 2019, Arlington, VA, USA

Ke-Jou Hsu, Ketan Bhardwaj, and Ada Gavrilovska

Model VGG 16 | MobileNet V2 1.4 | ResNet V2 50 | Inception V3 | Inception ResNet V2 | NASNet 331 | PNASNet 331
Top-1 Accuracy 71.5 74.9 75.6 78.0 80.4 82.7 82.9
Operators 54 158 205 788 871 1265 939

Table 1: The models with their accuracy and number of operators [12].

Machines | CLOfred | #CPU o (GB) GPU
(GHz) processors
Client 3.0 2 1 N/A
Edge 35 8 32
Cloud 3.1 48 96 Nvidia P100

Table 2: Hardware specifications of the testbed

Round-trip time . Throughput
Parameters (ms)P Jitter (ms) (Mbis;)
Client-to-edge 7.68 2.49 89.90
Edge-to-cloud 42.46 11.58 50.22
Client-to-cloud 49.20 13.39 41.02

Table 3: Network characteristics in the testbed

orchestrate a container cluster across these machines, and deploy
the application as a pipeline of Docker containers. We manipulate
the CPU frequency and limit the resources allocated to the con-
tainers running the client or edge functionality; in the experiments
presented in this section we use the configurations specified in
Table 2. We make an assumption that the client device and the edge
machine are “nearby” (i.e., on the same LAN in our testbed), while
the cloud server is remote (i.e., requires WAN), consistent with char-
acterizations for edge computing presented elsewhere [48]. Table 3
summarizes the communication links between the nodes.

Using this testbed, we explore the following questions:

What are the edge benefits for visual inference? To illustrate
the different ways that a visual inference application can benefit
from the edge, we first evaluate the different deployment scenarios
shown in Figure 1: (a) run every stage on the client device to save
communication cost, (b) offload the DNN processing to the cloud,
to reduce inference time, and (c) offload the DNN processing to the
edge. With respect to the application pipeline stages, camera has
to always remain on the device, transformer, DNN evaluator and
classifier are run all on cloud (b) or all on edge (c).

Figure 2 shows the average latency of processing a frame based
on repeatedly streaming the same video (see the left-hand-side fig-
ures with green bars). The latencies of the two most time consuming
stages in the pipeline, model inference and data transmission, are
shown stacked for the cloud and edge cases (Figure 2b and Fig-
ure 2c¢). The right-hand-side figures with orange bars show the
frame drop rate. Note that we allow frames to be dropped in the
pipeline to avoid backpressure between stages, since the camera
processor continuously produces about 24 frames per second. An
imbalanced pipeline drops more frames and affect the overall image
processing quality [40]; a high frame processing rate is a desirable
property for visual analytics applications.

We make the following observations. First, models have different
compute resource requirements. Newer, more sophisticated models
will continue to evolve and to deliver improved experiences for

Data transmission [l ML inference

PNASNet PNASNet
NASNet NASNet
Inception ResNet Inception ResNet
Inception V3 Inception V3
ResNet V2 ResNet V2
MobileNet V2 MobileNet V2
VGG 16 VGG 16

0 20 40 60 80 10C
Second (s)

70 75 80 85 90 95 100
Percentage (%)

(a) Running ML inference on client

PNASNet 4 TN PNASNet
NASNet [NASNet
Inception ResNet [N Inception ResNet
Inception V34l Inception V3
ResNet V24l ResNet V2
MobileNet V24 MobileNet V2
VGG 161 [VGG 16

—t
0 02040608 1
Second (s)

70 75 80 85 90 95 100
Percentage (%)

(b) Running ML inference on cloud

PNASNet TN PNASNet
NASNet 1 [NASNet
Inception ResNet [N Inception ResNet
Inception V34 [Inception V3
ResNet V2 1 [ResNet V2
MobileNet V2 1] MobileNet V2
VGG 16 1 [VGG 16

0 02040608 1 70 75 80 85 90 95 100

Percentage (%)

(c) Running ML inference on edge

Figure 2: Observed performance of the scenarios shown
in Figure 1 using different DNN models. The green bars in
left figures show end-to-end processing latencies; the orange
bars on the right side correspond to frame drop rates.

users; not one single type of device can be guaranteed to suit every
model. Use of edge resources is critical for supporting models with
resource requirements which exceed what is available on the client
device alone.

Second, although a high-end cloud server may result in shortest
processing latency on deeper DNNs (from ResNet to PNASNet), the
edge configuration is the one that is able to process more frames.
Considering Figure 2a, in the client case there is no data transmis-
sion involved. However, frames are still dropped because of the
lower processing speed of the device, i.e., the frame processing rate
degrades for models with longer inference latency. In contrast, the
cloud case (Figure 2b) experiences constant drop rates regardless of

Couper: DNN Model Slicing for Visual Analytics Containers at the Edge

[camera [RPC processor [I] Transformer [l DNN evaluator [3] Image classifier

Client Edge Cloud

Frame Frame DNN Frame Frame DNN
[sender||[” | receiver I evaluator 1 MES LI M evaluator 2]

Figure 3: Structure of an image classification pipeline based
on Figure 1 when sliced across an edge and a cloud.

the model. This is because the bottleneck of the pipeline changes
from compute to network I/O. Since camera keeps generating the
same stream of raw image frames for each of the models, they
all experience similar amount of dropped frames. The edge case
(Figure 2c) has more compute capacity than the client, and is able
to reduce the number of frames dropped due to the client’s pro-
cessing speed. The edge is connected to the camera via a faster
network, which reduces the number of network-related dropped
frames, compared to the cloud. In summary, the use of edge infras-
tructure provides opportunities to maintain higher frame processing
rates, resulting in fewer dropped frames, and, consequently, higher
application quality.

Finally, when the edge node has sufficient resources to perform

the inference just as fast as the cloud, as is the case for models
such as VGG and MobileNet for this edge configuration, combined
with the faster network, use of edge resources results in both lower
processing times and lower drop rates.
How would model slicing make further improvements? Al-
though the edge machine is closer to the camera and reduces data
movement cost, it still degrades ML inference time on some models
when compared to the cloud. For the edge configuration used in
the above experiment, Inception, ResNet, NASNet and PNASNet
exhibit 2X or higher slowdown, compared to when running in the
remote cloud with powerful servers with GPUs. Such slowdowns
may not offset the value provided from the reduction in frame drop
rate. Slicing the model into partitions which are then deployed as
a pipeline across the edge and the cloud presents opportunities to
achieve a tradeoff of reducing the frame drop rate, while still getting
the benefits from the cloud’s compute resources needed to maintain
low processing times. The feasibility of achieving strictly improved
processing time compared to a purely cloud-based deployment will
depend on the properties of the communication links and on the
resources available at the edge.

To illustrate the opportunities from DNN slicing, for concrete-
ness, we evaluate it with the ResNet v2 50 model, which has a large
number of relatively simple operators. Among them, we consider
34 operators for possible split points in the model, based on our in-
tuition. Figure 3 shows how the application pipeline changes when
the model is sliced: two pairs of message passing operators and an
additional DNN evaluator are needed for a deployment involving
three nodes, a client, edge and cloud. Figure 4 presents the end-
to-end latency and frame drop rate observed with each split point.
Each point on the x-axis in the figure corresponds to the operator
at which the DNN model is sliced, and the resulting performance is
evaluated. The stacked bars show the different components of the
overall inference time, shown on the left-hand-side y-axis. The dots
on the black line mark the frame drop rate for each configuration,

SEC 2019, November 7-9, 2019, Arlington, VA, USA

with values shown on the right-hand-side y-axis. The split points
listed on the x-axis are shown in their execution order. In other
words, choosing the split points on the left side means “cutting” the
model earlier, and placing fewer operators for processing on the
edge. These initial operators of a DNN handle higher-dimensional
data, which means that the earlier cuts lead to more time spent in
passing metadata between operators. We observed that metadata
transmission becomes a bottleneck and results in higher frame drop
rate. Looking closely, for this configuration, the split point "pool5"
becomes the most efficient deployment with a lowest rate of frame
drops. In comparison to simply deploying the full DNN model at
the edge, as shown in Figure 2c, model slicing improves the overall
performance by reducing the frame drop rate by 10%, in this case,
while still keeping the same processing delay. Similarly, in compari-
son to simply deploying the full DNN model in the cloud (Figure 2b),
model slicing decreases the data movement cost by requiring lower
data transmission between the client and cloud across the Internet.
Splitting the DNN at the operator "pool5" reduces the frame drop
rate by 20% compared to when running the full DNN in the cloud.
Challenges in slicing a model. The above discussion establishes
that the decision on how to best deploy a visual analytics work-
load at an edge, cloud, or to partition it across both, depends on a
number of factors: the DNN model, the workload (frame rate), the
configuration of the available resources (compute and the network
connectivity). A trivial way to solve this is via a strongman ap-
proach, i.e., by systematically evaluating splitting the model at each
possible operator. But this is only practical when considering how
to best deploy a single model for a fixed set of resources (e.g., client
and cloud), for a fixed workload (camera resolution and frame rate),
and typical LTE or WiFi connectivity. When considering a shared
edge infrastructure, where resources available for the application
processing may only become known at deployment time, such sys-
tematic evaluation of all possibilities quickly becomes impractical.
Furthermore, the strongman methodology is simple when applied
to only the simplest types of the current models. A shared edge
infrastructure will need to support, potentially concurrently, many
applications and the models they use, and it will exhibit variability
in the available resources. Additional factors that need to be consid-
ered relate to the operations and processing costs associated with
the deployment stacks, including the video streaming or deep learn-
ing frameworks used by the application. Applying the strongman
approach will present scalability challenges and will be of limited
practical use.

The Need for Couper. Instead, there is a need for a system that
can efficiently determine a sufficiently good way of deploying an
application that uses a DNN model and a given edge resource
configuration. Preferably, this will be automated and will produce
deployment-ready instances of models and partitions, that can be
immediately executed. These requirements led us develop Couper,
described next.

4 COUPER OVERVIEW

Assumptions. The design of Couper makes the following assump-
tions. First is the availability of dynamically provisionable, con-
tainerized edge infrastructure, a trend that is prevalent in ongoing

SEC 2019, November 7-9, 2019, Arlington, VA, USA

W Edge inference [J Data transmission M Cloud inference -e-Frame drop rate

Ke-Jou Hsu, Ketan Bhardwaj, and Ada Gavrilovska

3 = 100
. — —_ B
L 9 @
2 @
'g =1
2
o 80
«Q
70 3
o~
ol L L A I E I I L P L L e o e o ol ol e o el o o e e o e o o o o ol | &
e Q Q © o © el el o o 13
Q o [} o = = = e~ = N N N N N N w w w w w w w w S S S S S o (o] o «Q «Q Qo
2 3§ 8§ 8 =222 2 =2 BB R DDBDDRQ Q@ 9 @ D 0 © QL2 2 E&E L2 Q2 2 8 a & £
=z 2z =2 c > x> = = = g
S & 2 2 =2 2 b v = =2 2 Db e s 22 2D K 222N ZF F O LE g
8 £ 3 T T 9 9 9§ T T & 9 © © T T H o o o & & T T & & & 8§ 8§ g S N
=1 8 D 6 a Q Q o a 6 o Q. Q o a a Q o Q Qo o Q. a E Q. Q o 3 3 5 [} (]
< @ > © ® Q Q Q ® © Q Q Q o ® © Q Q Q Q o Q. @ @ Q Q. o = = z 4
=] a QO
& g 2 g e 9 e 2 2 2 3 ¢ a
e 8 5 5 s 5 s 5 g = s < g
= 9o 2 o 2 o o o o 3
=2 f= = c = j= =2 c
3 3 3 3

Figure 4: Running image classification with the ResNet v2 50 model sliced across an edge and a cloud. Each bar indicates the
operator where the model is split, starting from the first operator in the model.

edge infrastructure developments. Couper also assumes that appli-

cation soundness is not affected by running it at the edge vs. in the

cloud, i.e., no functional discrepancy arises simply due to running

an application at a different location. Next, we assume that informa-

tion about the structure of the DNN model used in the application

is discernible, either as metadata or can be queried using support

from the underlying DNN framework which was used to generate

the model (e.g., TensorFlow) [1]. Finally, Couper assumes that it

has access to minimal staging resources needed to evaluate a work-

load - i.e., a DNN model - prior to deployment in the edge-cloud

production environment. All of the above are reasonable as per the

industry trends.

Scope. The scope of Couper is to be able to run a given DNN-
based application pipeline across infrastructure consisting of edge

and cloud nodes efficiently. Couper does not impact the accuracy

or the functional properties of the DNN model or the application

(e.g., classification classes, etc.). For slicing, the primary scope of

Couper is on system-level support, as opposed to on the develop-
ment of an optimal algorithm for determining slicing boundaries

of an application.

Goals. In order to meet some specified service-level objective

(SLO) such as latency or quality-of-analysis (frame drops), Couper

aims to provide for automated and timely evaluation of different

ways to partition a DNN model (i.e., at different split points), to

select among them the best slicing point, and to deploy the model

partitions for processing across the edge and cloud infrastructure,

by using knowledge about the model, the application framework

that it uses, and the infrastructure characteristics.

Workflow Summary. The high level workflow for Couper is shown
in Figure 5. Couper takes as input one (or more) containers that in-
clude elements of a streaming visual analytics application pipeline,

structural information about the incorporated DNN model and the

machine learning framework, workload characteristics in terms of
frame rates and resolutions, and infrastructure description concern-
ing the resources available at the edge and the network distances

between edge and the cloud.

With these inputs, Couper quickly reduces the search space for
the potential slicing boundaries. For instance, we show the benefits
of a user-specified slicing algorithm (Subsection § 5.1) which consid-
ers the model structure to slice only at articulation points. Couper
automatically slices the application, adds the required support for

(de)serialization and messaging, and creates a number of candidate
container pairs: one for edge and one for cloud. Couper takes those
containers and stages their execution with a user-specified or pre-
defined workload, hardware configuration and network conditions.
In each iteration, Couper selects a pair of candidate as a potential
solution or rules it out. This search is short circuited using a user-
provided slice selection method (Subsection § 5.4) when determined
that further execution will not result in selection of a different slice.
Finally, when the best pair of containers is selected, they are passed
on to the production environment for deployment.

Couper serves two purposes. First, Couper makes it possible to

split a model automatically without any support either from the
application framework or the ML models. This is made possible
due to its plug-in-based design that can be used in conjunction
with different algorithms. We use Couper to design a number of
these algorithms to highlight the tradeoffs it affords with respect
to finding an ideal slicing point vs. speeding up the slicing process
while still ensuring that the application objectives are met. Second,
Couper creates deployment ready slices of DNN models that result
in a balanced pipeline for a specific edge configuration and network
conditions. This includes support for integration with the underly-
ing streaming and ML frameworks, support to serialize-deserialize
the state of the ML models that is exchanged between its elements
(operators), and to interface with the container orchestration layer
(i.e., Kubernetes). While the utility of Couper is demonstrated using
visual analytics application, we note that it can be applicable to
other types of applications that employ DNNs.
Limitations. The implementation of Couper currently supports
applications built with the SAF streaming framework, using Tensor-
Flow models, and packaged and deployed as Docker containers. The
approach can be ported to other application frameworks, different
ML toolsets and packaging technology. In its current form, Couper
performs the slicing once for a particular model when the ML ap-
plication is first started. It considers edge computing resources
available at that time, and does not dynamically adapt the slicing
within a single run of the same application. However, Couper can
be extended to run periodically or on-demand in order to address
this limitation. Similarly, the current implementation considers
only one edge and one cloud, however, Couper can be extended
to multiple tiers of edge infrastructure that may be present or get
deployed in the future [54].

Couper: DNN Model Slicing for Visual Analytics Containers at the Edge

Staging Environment
Q\
> Sicing
Model Slicer | &

algorithm

List of split points

Application
‘Wrapper

Container images

Hardware Slice 3Mthd Production
Evaluator | & Environment
otet | Byaluator ko
The best split point
Publisher Containers

Figure 5: The workflow of Couper

5 DESIGN

There are four main components in Couper, illustrated in Figure 5.
At the beginning, a Model Slicer cuts the DNN based on a user-
defined slicing algorithm, and exports the candidate splits. The
Application Wrapper builds container images for each split par-
tition, based on the pipelined structure of the application and the
underlying application frameworks. The Slice Evaluator uses a
representative workload in Couper as it iterates through the list of
candidate splits and evaluates each one. The evaluation is guided by
a user-defined method for selecting a best split point. The method
specifies which metrics to use when comparing among different
configurations, and when to terminate the evaluation process (e.g.,
until all split points are evaluated, or as soon as the edge node runs
out of computing power to support “bigger” slices). Finally, the
Publisher prepares the partitions from the selected split point into
ready-to-ship containers.

We next describe in more detail each of these components and
the input algorithms that control their execution.

5.1 Model Slicer

The Model Slicer module is designed to find all possible split points
of the given DNN model. Prior work [42] presented a straightfor-
ward approach which considers every operator as a potential split
point. However, doing this for production-ready DNN models is
non-trivial due to the large number of potential split points. For
complex models this would results in many hundreds or even thou-
sands of pipeline configurations to be evaluated. At the very least,
this requires time to deploy the prepared split points in a staging
environment and to process the representative workload through
each pipeline configuration, and poses significant resource demand
on the infrastructure supporting the evaluation of the workloads.

In contrast, Couper allows for customized slicing algorithms to
be specified for the slicing process. We illustrate the utility of this
feature by incorporating a sample algorithm that uses the following
criteria to reduce the number of possible slicing points which should
be considered by Couper.

SEC 2019, November 7-9, 2019, Arlington, VA, USA

axPool

ReLu HSqueezeHReshapej

Conv2D

weights

Figure 6: A simple 9-operator model with candidate split
points shaded in orange. Three candidates are selected ac-
cording to Couper’s sample slicing algorithm.

e Bypass the first and last operators: Model Slicer does not
consider the first and last operators in a model as split points. If
one of the two operators is chosen, it simply means that the whole
inference is executed on a single machine without any slicing.
Moreover, typically the first operator is a pre-processing one
that feeds external data into a model, and not really an operation
related to inference processing. For example, in a TensorFlow
model, this is the Input operator.

Only split at articulation points: Model Slicer does not slice
at operators where the DNN graph structure is such that it has
multiple parallel paths between different operators. It does so to
avoid the issues of synchronization that could functionally im-
pact the inference or introduce large amounts of communication
overhead at runtime, that would make slicing irrelevant from a
performance perspective. This is incorporated in the sample al-
gorithm which only selects articulation points in the DNN graph
as potential split points.

Ignore placeholder operators: While parameters and reading
operations in the DNN graph can also be possible split points,
these operators should be excluded. If they are selected as split
points, the first stage in the pipeline just loads the parameters
without performing any operation and then passes them to next
stage. Since parameters are already part of the pre-trained pro-
duction DNN, this situation would only result in additional re-
dundant data transmission.

Figure 6 shows an example of a DNN model where the operators
selected as possible split points by this algorithm are shaded. This
illustrates that the slicing algorithm simplifies the slicing process
by selecting fewer candidates to be evaluated by Couper, compared
to the list of all possible splits of a DNN.

5.2 Application Wrapper

The Application Wrapper creates the corresponding pipeline of
containers for the DNN model slices for each of the candidate split
points, and passes those to be evaluated by the Slice Evaluator.
It packages the application and model slices into Docker [32] im-
ages, and configures the range of starting and ending operators
corresponding to the split point. Additional intermediate functions
are inserted at the head and tail of each slice container to per-
form (de)serialization of the tensors and data transmission over
the network. No other changes are required in the containerized
application or the DNN. The serialization is implemented using
Protobuf [31] over gRPC [65].

The Application Wrapper manages the buffer sizes of the frame
queues in the streaming framework, and the duration of the eval-
uation, to ensure that the evaluation results are sound. This is a

SEC 2019, November 7-9, 2019, Arlington, VA, USA

Method
Adaptor
N)
! Method | | Next
S * | iteration

Stop verification
The best
Referee N
split point
Profiler

kubeconfig
Creator

Container
images

Figure 7: The functions in Slice Evaluator

non-intuitive functionality needed by Couper. In ideal scenarios,
it should be straightforward to perform the evaluation given a
test input workload. However, most visual analytics application
pipelines use non-blocking communication and allow for frames
to be dropped. This presents a challenge for Couper since it must
ensure that enough frames are actually processed during the eval-
uation in the staging environment. We observed that application
behavior converges just in a few frames, so it is sufficient to use
a small number of frames for evaluation. However, enough time
must be allocated for the pipeline to initialize, process frames and
be cleaned up before next iteration.

5.3 Slice Evaluator

The Slice Evaluator evaluates the split points in the candidate list
and selects the best one. This procedure is accomplished by four in-
ternal modules, illustrated in Figure 7: Method Adaptor, kubeconfig
Creator, Profiler and Referee.

The Method Adaptor controls the evaluation of the split point
configurations based on a user-provided slice selection method. The
customized method determines (1) whether there are split points
which can be eliminated from the candidate list based on network
capacity usage, (2) which split point in the candidate list to run,
and (3) when to stop. Based on the method, in the first iteration,
Method Adaptor determines whether to remove some split points
to reduce the problem space. In each subsequent iteration, Method
Adaptor determines whether to stop the evaluation, or to choose a
next split point to run.

Since Couper runs on a Kubernetes [46] system, it relies on the
Kubernetes configuration file, kubeconfig, to deploy the pipeline of
containers across hosts. Each time a split point is chosen by Method
Adaptor, the kubeconfig Creator updates a new kubeconfig. The
kubeconfig file specifies the deployment of pipeline slices to hosts,
applies resource limitations on the pipeline containers based on
the configuration of the production (or target) edge infrastructure,
and configures their communication links to mimic the network
conditions. The containers are configured to run as jobs instead
of services, since the Slice Evaluator only needs to examine their
execution for the fixed duration of the evaluation period. Once
a new kubeconfig is created, Creator runs the kubeconfig in the
Kubernetes staging area, spawns the containers, and starts the
execution.

The Profiler monitors the container execution, captures relevant
per-operator and end-to-end model metrics, low level metrics such

Ke-Jou Hsu, Ketan Bhardwaj, and Ada Gavrilovska

D@{%}@@D T2}]

(a) Strongman: go through all candi- (b) Comm-slim: ignore the candi-
dates dates with high networking cost

(d) Hybrid: the combination of

(c) Early-stop: stop earlier when
comm-slim and early-stop

edge is overload

Figure 8: Illustration of four slice selection methods. The
same model example as in Figure 6 is used; the shaded blocks
are split candidates selected by Couper’s sample slicing algo-
rithm. The blocks are marked with the iteration number of
when a candidate is evaluated; X indicates candidates which
are bypassed by the corresponding selection method.

as resource utilization, and high level metrics such as processing
latency and frame drop rate. When the execution finishes, the
Profiler collects the result, sends them back to the Method Adaptor,
and the Kubernetes resources created by kubeconfig for the slice
point evaluation are cleaned up.

If the Method Adaptor determines that the evaluation process
can terminate, the Referee goes through each performance log
generated by Profiler, and decides the appropriate split point with
lowest inference time per frame or lowest data movement cost, as
specified by the selection method.

5.4 Sample Slice Selection Methods

Couper permits different methods to be used for the slice selection
process. We describe the currently supported ones. This set can be
extended with more advanced versions of these algorithms, or in
order to account for other important metrics (such as energy).

In order to make a selection, Couper must consider the end-to-
end performance of a pipeline, as well as any internal overhead
resulting from model slicing. Either factor can be important to
the application - i.e., performance vs. operating costs. Also, both
factors can lead to reduction of the search space. For instance, if
the amount of network communication is crucial (e.g., when an
application is deployed to use a cellular network with a limited
bandwidth), the split should be chosen among ones which generate
low data transfer demand. Similarly, when focusing on end-to-end
processing time, if a split results in inference times which exceed
a (user-defined) threshold, selection is made from the candidates
exercised before it.

A straightforward choice for a method is to take the strongman
approach (Figure 8a) which iterates over all possible candidate split
points and finds the ideal one. Since verifying all possibilities is time-
consuming, we identify other methods which significantly reduce
the complexity of the evaluation process, while still resulting in
model slices which meet the applications’ target performance goals.
To manage data transmission costs, we implement a comm-slim
method (Figure 8b) that avoids evaluating the split points with
high data transmission demand. The point at which a DNN model
is split determines the size of metadata that must be transmitted

Couper: DNN Model Slicing for Visual Analytics Containers at the Edge

between the hosts running the DNN slices. The comm-slim method
considers metadata size, in conjunction with the network configura-
tion, latency or capacity thresholds, to determine which split points
should be bypassed during evaluation. For example, in Figure 8b,
the candidate marked with X; is excluded by the comm-slim method
due to its large output sizes.

Similarly, to ensure a balanced pipeline execution, we devise
another method called early-stop method (Figure 8c). It deter-
mines when the load generated by a slice at the edge creates a
processing bottleneck in the pipeline, resulting in an increase in
dropped frames, or in exceeding the target latency; this information
is used for early termination of the evaluation process. During the
evaluation loop in the Method Adaptor, the candidate split points
are listed starting with the first operators in the model, thus, the
edge node progressively receives more load with each subsequent
split point. Using the early-stop method, the evaluation stops when
the inference time at the edge stage exceeds the inference time
on the cloud. For example, in Figure 8c, one of candidates is not
examined, since it may exceed the permissible load on the edge.
Compared to the comm-slim method which can be run offline, in
the early-stop method, the number of iterations can only be deter-
mined at runtime depending on operating conditions, therefore it
is evaluated by executing each of the pipeline configurations in the
staging area. Finally, we consider a method which combines the
benefits of both comm-slim and early-stop, and refer to it as the
hybrid method (Figure 8d). It first reduces the search space by
applying the comm-slim method, but then considers only up to a
candidate split point which satisfies the early-stop method.

5.5 Publisher

The Publisher’s task is to deliver a set of production-ready con-
tainers for the visual analytics application. It first builds container
images based on the DNN model, the application and the chosen
split point. Then, it creates a kubeconfig according to the hardware
specification of the production infrastructure. This kubeconfig is
ready for production usage to run the containers as services.

6 IMPLEMENTATION

As illustrated in Figure 5, Couper runs in a Kubernetes staging area.
We used a Kubernetes cluster to create the staging environment
since it provides controls for container management and for config-
uration of compute and network resource allocations, necessary to
mimic the production environment. The fidelity of the emulation of
the production environment in the staging environment is directly
related to the accuracy of best split point found by Couper.

DNN model slicing. The Model Slicer and the sample slicing
algorithm are implemented in Python with approximately 50 lines
of code. They rely on TensorFlow-supported APIs, such as GraphDef,
Session.graph.get_operations, Operation’s inputs, type, etc., to load
the model, and to understand its graph structure and the types of
its operators. Using a single low-end CPU, the Model Slicer requires
only few seconds to traverse the graph of the DNN and to generate
a list of split point candidates. For NASNet, the DNN model with
most operators among the models we evaluated, the operation takes
3 seconds. For the other DNNS, it completes even faster. Currently,

SEC 2019, November 7-9, 2019, Arlington, VA, USA

the output list of split candidates is stored as a text file; only a
few-kilobyte file can record hundreds of split points.

Packaging the application image. The Application Wrapper
and Publisher build container images for the application pipeline.
The manner in which application images are built can have a signif-
icant impact on the performance and the resource requirements of
Couper. For instance, the use of SAF [68] creates dependencies on
several other libraries: for computer vision, such as GStreamer [6]
and OpenCV [10]; for machine learning evaluation, such as Tensor-
Flow [11]; and for RPC, such as gRPC [65] and Protobuf [31]. The
image covering all required libraries is 7GB, which raises challenges
when targeting deployments in resource-constrained environments.
The image size reaches up to 10GB after we packed the SAF source
code, image classification application, and all 7 DNN models. The
size is further increased by including the CUDA driver and related
libraries for GPU execution. However, dynamically creating these
container images is also time-consuming, and it can take 2 hours
for building the image, depending on the CPU.

In order to eliminate this bottleneck from the Application Wrap-
per, which needs to repeatedly create or configure container images
based on all candidate split points, the implementation of Couper
relies on two strategies. The first strategy involves using the same
container image across the client, edge, and cloud; the role of each
stage is defined by the launch command. Since only a single image
is used for the whole pipeline, the image only needs to be rebuilt
when there are updates at the application level. The second strategy
involves building-in the DNN model’s structure and parameters
within the application image. For configuring a split point, ideally,
it would be needed to modify the DNN model (structure and pa-
rameters) and to rebuild the images. To avoid repeatedly rebuilding,
Couper adds interfaces, supported from the application or from
the the DNN framework, to just attach information describing the
operator graph for each DNN slice, as specified by the split point.
During evaluation, the Application Wrapper attaches the split point
configuration at runtime, without rebuilding the images. Once a
split point is chosen, the Publisher takes few minutes to pack the
DNN slice configurations by referencing the previous base images.
We also deploy a private Docker registry [3].

Evaluating split points. The four functional components in the
Slice Evaluator in Couper are run in sequential order. Each com-
ponent consumes negligible resources for workflow management
operations, such as parsing the split candidate list and result logs,
generating new kubeconfig files by updating other parameters,
and for monitoring the evaluation process. Most of the computing
resources of the staging area are consumed by the pipeline contain-
ers being evaluated. The containers are run as jobs and they are
stopped gracefully (using SIGTERM) after few minutes. Currently,
the duration is configurable and can be user-provded. As explained
earlier, Couper needs to ensure that sufficient number of frames are
processed in order to determine the frame drop rate of a split point
configuration. Container clean-up can also be performed quickly,
as can the tasks performed by the Profiler and Referee, both imple-
mented using lightweight scripts. Note that Couper assumes that
the staging area resources should be representative of the resources
available in production, since we only rely on controls to scale up
and down the container resources, without incorporating more
sophisticated performance modeling and prediction techniques. If

SEC 2019, November 7-9, 2019, Arlington, VA, USA

Table 4: Hardware specification of the testbed configura-
tions.

GPU machines are used in production deployment, we assume that
GPUs are available in the staging area as well.
Couper is available at https://github.com/GTkernel/couper.

7 EVALUATION

With the evaluation of Couper, we aim to answer to the following

questions:

e How do the DNN models sliced with Couper and deployed across
edge and cloud improve end-to-end performance compared to
full-offloading to cloud?

e How much does Couper improve the time taken to find the best
split point compared to a strongman approach?

e How does the performance of the model split points selected by
the slicing methods supported by Couper compare to the best
split point found by the strongman approach?

Experimental Setup. The experiments were carried out using
server-grade machines from the Chameleon [43] research infras-
tructure. We configured a Kubernetes cluster with three worker
machines acting as client, edge and cloud, and a master responsible
for orchestration. To model different operating scenarios, com-
prising different edge node capabilities, we used standard Linux
management tools (such as tc and cpufreq-set) to control parameters
such as CPU frequency, number of available cores, use of Nvidia
P100 GPUs, and the network between each of those machines. The
hardware configurations used in the presented results are tabulated
in Table 4.

Workload. For reproducibility, we used a 1280x720 video as the
test input. This video is a publicly available film of around 2 min-
utes [66]. It shows several objects and the correctness of the (sliced)
image classification application can easily be verified. To ensure
that Couper works for production-ready models, in all experiments
we used official trained models from TensorFlow-Slim [12].

Practical feasibility of model slicing and utility of Couper.
We report that Couper was able to slice all production-ready DNN
models listed in Table 2, without any modifications of the models,
their metadata, or of the streaming framework SAF [68] that in-
corporates them. As such, Couper makes it possible for arbitrary
workloads to gain benefits from the edge, regardless of the gap in

CPU freq | #CPU | RAM | GPU RTT (ms)
(GHz) proc | (GB) client | cloud

Client device 2.0 2 1 N/A ;]
Low-end 2.0 4 16 1 65
edge
Mid-end 3.1 8 32 15 50
edge
High-end 3.1 16 64 25 42
edge
Super-high- 31 16 64 |1 25 42
end edge Nvidia

P100
Cloud server 3.1 48 96 2

Nvidia

P100

Ke-Jou Hsu, Ketan Bhardwaj, and Ada Gavrilovska

PNASNet PNASNet
NASNet NASNet
Inception ResNet Inception ResNet
Inception V3 Inception V3
ResNet V2 ResNet V2
MobileNet V2 MobileNet V2
VGG 16 VGG 16

0 10 20 30 40 50 60 70
Percentage (%)

0 10 20 30 40 50 60 70
Percentage (%)

(a) By inference latency (b) By frame drop rate
Figure 9: Best performance found by the hybrid method in
Couper across different DNNs and edge specifications, nor-
malized by the scenario of running the entire model in the
cloud.

the models’ resource requirements and resource availability at the
edge.

End-to-end performance. To demonstrate the benefit of Couper
on end-to-end performance, we compare the best split points found
by the hybrid method of Couper for different edge configurations
and network conditions, vs. running the whole inference pipeline
in the cloud. The best split point is defined by two metrics: time-
to-inference (Figure 9a) and drop rate of frames (Figure 9b). As
evident from the results shown in in Figure 9, for the different
models considered in the evaluation, Couper results in 40%-90%
improvements in inference latency, and in reducing the number
of dropped frames by 60%-99%. We attribute the improvement to
reduction in the amount of data that needs to be transferred, and
to better utilizing the resource at both the edge and the cloud by
partitioning the model. We do not claim that Couper incorporates
the best algorithm to find the slicing boundaries, however the results
justify the design of Couper and validate its utility. Future work
can focus on the design of better algorithms and selection methods.

Note that during the experiments, not all edge configurations
were able to fit each of the models. In fact, there is not a single
edge configuration that is optimal for all DNN models, owing to
their different resource footprints, as discussed earlier in Section
§ 3. The results in Figure 9 report a summary of the best results ob-
tained with Couper, based on an edge configuration with sufficient
processing capacity. For instance, for VGG we report the results
obtained with a high-end edge, and for NASNet and PNASNet, we
report the results from using Couper for a super-high-end edge (the
edge with GPU shown in Table 4). The remaining models’ require-
ments can be satisfied with a mid-end edge. This was done to make
sure that the results do not have any bias due to resource pressure
on the edge due to model execution. In summary, Couper-enabled
model slicing improves end-to-end performance of DNN based visual
analytics applications.

Time-to-slice. A strongman approach to finding the best perfor-
mant model deployment would entail running every candidate split
point provided by the Model Slicer. This could be time consuming,
even if we consider a constant time is needed to evaluate one layer.
For deeper models, the number of operators could be in thousands.
To show how well Couper addresses this, we present experimental
evaluations for a fixed hardware specification when using different

https://github.com/GTkernel/couper

Couper: DNN Model Slicing for Visual Analytics Containers at the Edge

SEC 2019, November 7-9, 2019, Arlington, VA, USA

Method Original # | Strongman | Comm-slim | Hybrid Inception | Inception ResNet | PNASNet
Model
operators V3 V2 331
VGG 16 54 52 20 1 Th i i
: e evaluation time 2 T -
MobileNet 158 155 132 3 of strongman
V214 Low-end edge 1 1 1
ResNet V2 50 205 34 15 1 Mid-end edge 2 3 1
Inception V3 788 34 15 2 High-end edge 10 16 1
Inception- 871 106 28 3
ResNet-V2 Table 6: The evaluation time of the hybrid method across dif-
NASNet 331 1265 7 3 1 ferent edge configurations, compared to strongman method
PNASNet 939 7 3 1 (in minutes).
331

Table 5: The number of layers taken for evaluation by meth-
ods with the setting of client-mid-end edge-cloud

models. Table 5 lists the original number of operators and the ac-
tual split points executed in evaluations, when using the different
methods currently supported in Couper. Note that evaluations of
each split point are independent of each other, and can be paral-
lelized given enough staging resources. Effectively, it means that
with sufficient resources, the Slice Evaluator can reach a decision
faster. Nonetheless, the key point here is not to consider the abso-
lute time spent in evaluation, but to look at the number of points
exercised to reach a decision. It is obvious that verifying more split
points will take more time; evaluating all possible ones could take
a large amount of time, making it potentially difficult to justify the
execution of the slicing evaluation in the first place. The sample
algorithms in Couper help mitigate the problem by reducing the
search space, first by finding slicable layers, then by choosing which
ones among them to evaluate.

Table 5 shows the reduction in the numbers of points that are to
be evaluated with different methods in Couper. For instance, even
when the strongman method is used, it reduces number of points
to be evaluated down to 34 candidates from 205 layers for ResNet
V2, and also 34 ones from 788 layers for Inception V3. It is a signifi-
cant reduction in the search space. We posit that these reductions
will be even more substantial going forward, as DNNs get deeper.
Intuitively, as the complexity of the graph of the models increases,
there are fewer articulation points in the DNN model structure
(typically represented as a graph) and more dependent dataflows
between layers are introduced. As a result, there will be a greater
number of operators where slicing would incur more overhead
than benefit. When the comm-slim method is used, it considers
the network performance to constrain the evaluation. This more
aggressively reduces the number of split points to be evaluated,
and considers only the ones incurring low data movement costs.
The hybrid method further reduces the number of candidate split
points, and consequently the evaluation time, based on the early-
stop method. For most of the models (VGG, ResNet, NASNet and
PNASNet), when considering a “mid-end” edge node (see Table 4)
and using the hybrid method, only a single split point is evaluated
as a possible splitting candidate. What this simply indicates it that
for these models, the cloud is way more powerful than a CPU-only
edge node. We show later in this section that this is not a model-
specific restriction, instead, for a different edge configuration, when
the edge node has a GPU accelerator, slicing across edge and cloud

is beneficial. The presence of accelerators is a valid assumption for
edge infrastructure components, currently explored by many edge
providers.

We highlight again that we do not make a claim that Couper
incorporates the best methods to slice all future DNN models. It
may happen that some breakthrough structural innovation in DNN
models changes the interaction between layers. For Couper to re-
main relevant in those disruptive scenarios, Couper separates the
policies from the mechanism for slicing a DNN model, and allows
users to provide plug-in methods in the system.

For currently available production-ready models, with the hy-
brid method, the number of split points to be evaluated not only
changes based on the DNN model, but also varies based on the
hardware specifications. To demonstrate this, we use Inception V3,
Inception ResNet V2 and PNASNet 331, while changing the edge
configuration. Table 6 lists the time taken for evaluating slices, in
minutes, for the strongman and the hybrid methods. The results
show that the hybrid method greatly reduces the evaluation time
when compared to strongman. Another observation is that as the
compute capacity of the edge increases, the hybrid method tends
to try more layers. It is because, first, for the high-end edge setting,
where the edge node is closer to the cloud and has lower trans-
mission cost, the comm-slim method explores more layers. Second,
the high-end edge is more powerful, therefore it can handle more
processing needed during inference, and ends up being terminated
later by the early-stop mechanism.

In summary, the results presented in this section show that Couper
drastically reduces the time needed to carry out the slicing when
compared to a strongman approach.

Quality-of-Slice. Although it is important to reduce the time to
slice a DNN, it is also critical to ensure that slicing done in less time
also provides performance benefits. To demonstrate that, we use
Couper with different client-edge—cloud configurations running
the same three DNN models as in the last experiment. Figure 10,
Figure 11 and Figure 12 show the frame inference latency and the
drop rate per each split point for each of the models. The strongman
method can choose 106 split points for Inception ResNet V2. For
clarity, we only show a partial view of all split points, and hide the
less critical ones (split point id 28-99).

For each of the three models, we evaluate the outcomes from
Couper for the first three edge configurations listed in Table 4. We
use a different symbol to differentiate among the methods used
to find a split point, and a different color to differentiate among
the different metrics used in making the decision. Red symbols

SEC 2019, November 7-9, 2019, Arlington, VA, USA

[l Edge inference Data transmission

@ Hybrid: best latency

I Cloud inference
@ Strongman: best latency

0 Strongman: best frame drop rate

Ke-Jou Hsu, Ketan Bhardwaj, and Ada Gavrilovska

-8~ Frame drop rate

& Hybrid: best frame drop rate

100
~ t 3m 80 3
C 3
] 60 8
8 40 g
3]
) 20 R
0
(a) Low-end edge
100
= 80 &
O 3
2 60 &
g 40 @
) 20 R
0
(b) Mid-end edge
100
0.5+] 80 g
~ -_—
b . 60 2
c — — — ’ -— 5
3 40 @
] [] 2
— 20 R
0- 0

0O 9 9 @ 9 9 9 9 9 O 9 9 9 9 9 » 9 9 © 3 °
g 8 8 8 88 8 8 8 2 8 8 8 8 8 8 3 33 3 3 3 3 3 3 3 3 3 2 8 8 8 a &
S 3 3 3 3 3 3 3 3 % 3 3 3 3 3 3 & X X X X X X X X X X X a9 3 3 c & =
S 2T 2R R R R R ETBIRRRRRRERRERE S 222 @ @ @ @ @ @ v 2 2 @ 3 3
o s s & e e a0 0 0 o0 o0 o o o | >
e~ \- T\~ B T T O o O T~ =7 e e S A A I = T -<H N (R = -1
® ®» ®» ¥ ¥ ¥ T O T 2 T O T L 9O H 2 o g oo D OO DO N NN T 0 o 0o @
L & 2 8 g g g = g g g g e =83 g 82 222 27 5 I o QL Q
g 9 g g 9 g g o Fl, a9 9 3 g o 5|, T LT L2 T Q 2 2 9 T Q 9 o
S a 0 g © 0o o © S o @ o g @< o 9 &g 9 g 9 g g 9 g 9 S
5 @ € 3 a € 3 a ¢ %8 535 ga c 3 ac & o0 6 6 6 6 6 0o © o o © S »
< < < 3 < < 3 3 3 3 3 3 3 3 3 3 3 3 = 2
O 9 9 9 9 9@ 9 9o ©o o 9 a

£ 2 02 8 B o8 8 8 8 8 8 2 8 g

° °

o o

=3 =1

(c) High-end edge

Figure 10: Best split points found by strongman and hybrid methods across different edges with model Inception V3. Red

symbols mark the solutions for shortest processing latency; yellow symbols are for shortest frame drop rate.

show the solution with lowest inference latency, while yellow ones
show the solutions with lowest frame drop rate; circle symbols
mark the best split point found by the strongman method, while
diamonds are found by the hybrid method. For the PNASNet model
in Figure 12, two additional styles of markers represent the other
two methods: squares mark the best split points found by comm-
slim, and triangles the ones found by early-stop. For this model we
also use a fourth infrastructure configuration, where the edge is a
high-end server with a GPU.

In these experiments, we first observe that the best splitting deci-
sion for achieving lowest inference latency may not be the same as
the one with lowest frame drop rate. For instance, in Figure 11a, the
yellow circle corresponding to the split point for lowest (best) frame
drop rate has twice longer (worse) inference latency than the best
one of the latency-centric choices. Also, for this particular model
(ResNet V2) and edge configuration (low-end), the latency-centric
benefits from using the hybrid method are limited; albeit, hybrid
still achieves the lowest time-to-slice. This further justifies the de-
sign decision to keep methods as plug-ins. This also highlights an
opportunity for further research in designing more comprehensive
methods for different use cases, with support for different metrics
and SLOs.

Note, however, that in most cases the hybrid method actually
performs very well. When splitting with the goal of lowest infer-
ence latency (red diamonds), we obtain perfect matches with the
strongman decision for different models and different edge config-
urations (see Figure 10b, Figure 10c, Figure 11b, and Figure 11c).
Even when the hybrid method does not find the best split point
(which means the diamond symbols are not marked at the same
split point as the circles), the solution found by the hybrid method
still has relatively good performance compared to strongman (such
as in Figure 10a and Figure 12d).

For the more compute-intensive PNASNet, we also include evalu-
ations with the super-high-end edge with a GPU (Figure 12d). In all
graphs in Figure 12, we mark split point decisions from the comm-
slim and early-stop methods as well, to show that the shortcomings
of the hybrid method can be addressed with different algorithms.
In the course of bypassing splits with high networking cost, the
hybrid method may miss splits with comparably shorter overall
inference time. The early-stop method is more efficient at finding
the same split point as the strongman method, and can do so much
more quickly than strongman - the best match is found within
only 3 iterations in this case. Early-stop remains effective whenever
the edge is limited in its compute resource. For the super-high-end

Couper: DNN Model Slicing for Visual Analytics Containers at the Edge

[l Edge inference Data transmission

@ Hybrid: best latency

I Cloud inference
@ Strongman: best latency

Strongman: best frame drop rate

SEC 2019, November 7-9, 2019, Arlington, VA, USA

-8~ Frame drop rate

Hybrid: best frame drop rate

|- 100
_ N -
-] -— el
- - — — [u— R 802
-
2 2 60 &
£0.54)
g |mm oy @ mm— 0%
(2] _— —_
20 R
0 — —— — 0
(a) Low-end edge
1 100
o
— 80 @
]
= 8
] 60 S
0. g
§ 40%
(7] 20 R
== ct 0
(b) Mid-end edge
1 100
— B -
- 80 @
I o
-]
2 - 60 3
505 - ¢ &
$ _— 40%
3 - - - [J — -— - 3
ey . -— - — 20 ®
0l —— = BN — — — 0
Q Q o (o} (o} (o] [} Q Q (o} (o] [} o Q Q (o} I I I I I 3 3 I I o Q Q
6 © 6 © ¢ © © o o g 6 6 © © o ¢ g 6 o o o o o o T T o © © ¢
2 22 2 2 2 2 2 2 x 2 2 2 2 2 2 %x 3 o o6 o6 o o oo o o 2 2 2
S S S s Eiebos s 828888888 ¢880C04¢
3 o o o o | e I I R R &}
e N e et i 5528553
© 2 2 0 2 2 ¢ 50 2 ¢ o 5 2 o o 2 G S Z 8 8 8 & ¢ o0 2
=1 = c =1 =1 I =1 = c =1 = c 3 = c 3 3 c
z 3 < 3 z 3 < 3 3 < 3

(c) High-end edge

Figure 11: Best split points found by strongman and hybrid methods across different edges with model Inception ResNet V2
(only showing split points 1-27 and 100-106). Red symbols mark the solutions for shortest processing latency; yellow symbols

are for lowest frame drop rate.

edge in Figure 12d, the processing of the pipeline slice at the edge is
accelerated with a GPU, and the dominant end-to-end performance
bottleneck is the communication cost between the edge and the
cloud. In this case, the hybrid method is more effective at discov-
ering good split points than early-stop. Comm-slim chooses the
same split points as what is found by the strongman method for
both metrics (circles and squares match for both colors). Although
comm-slim takes an extra iteration more than hybrid, it continues
to evaluate the later split point and can discover if that one becomes
the best choice for shortest latency.

Summary. In summary, the evaluation reaffirms the possibility
that DNN-based ML applications can benefit from edge computing
in terms of achieving significantly better performance than when
deployed using only the cloud. In addition, they also demonstrate
that DNN slicing is important and practically feasible for unlocking
these benefits in terms of faster inference and improved inference
quality, than when running the entire DNN on edge devices or in the
cloud. More importantly, the results demonstrate the importance
of a system such as Couper, which provides support for different
slicing algorithms, since the choice of the algorithm offers different
tradeoffs in the resources required to perform slicing vs. the perfor-
mance of the sliced model. We show that Couper makes it possible
to support algorithms that determine the best split point in a quick
and accurate manner.

8 RELATED WORK

Our work leverages a large body of prior research on machine
learning for streaming and visual data, on partitioning of machine
learning models, and on the role that edge computing can play for
accelerating machine learning and analytics services.

Machine learning model improvements and evaluation. When
considering neural network improvements, machine learning spe-
cialists concentrate on building models which are easier to train and
have higher accuracy [37, 61]. Instead of delivering a new, improved
model, Wang et al. [69] propose the idea of composing pre-trained
models for a faster and still precise inference. Crankshaw et al. [28]
present a new framework which links applications and multiple
DNNs, in order to find out the most accurate model for a specific
application. The goals of Couper are orthogonal; it aims to make
it possible to automate and speed up the efficient deployment of
a given application-provided model across edge and cloud infras-
tructure components in a way that best leverages the available
resources.

Machine learning on streaming data and model slicing. Run-
ning state-of-art models for real-time video analysis increases the
accuracy of the analytics, but also the latency and resource con-
sumption. Several prior efforts focus on reducing the overall latency
and resource demand of video analytics models by showing the
benefits of model partitioning [34, 41, 45] or by developing support
for combining and sharing model layers [40]. [34] slices models into

SEC 2019, November 7-9, 2019, Arlington, VA, USA

[} Edge inference Data transmission
[] Strongman: best latency B Comm-slim: best latency

Strongman: best frame drop rate Comm-slim: best frame drop rate

100
o)
~ ¢ 80 & _ 3
2 A 0 § = 8
T = 60 3 T1 3
5 = 5§ 5
Q Q
8 n 40 ¢ 9 ©
(2] - 0 -
20 2 X
< =S
0 0 0
QO O O =h =h =h oh QO O O = =h =h oh
6 6 ® 35 35 35 5 6 6 ® 5 5 5 5
5 3 =2 8 8 ® 5 3 =92 ® ® D
S 2.5 5= S =S5 5=
Sox2238 Sox823F
0 T 9 € g = o o T 9 € o = o
S 2 9 5 3 o S 2 9 S 3 9
= 5 3 c a 2 5 3 c o
o g = a o 2 = Q
§°_’. g%

(a) Low-end edge (b) Mid-end edge

[Cloud inference
A Early-stop: best latency
Early-stop: best frame drop rate

Second (s)

Ke-Jou Hsu, Ketan Bhardwaj, and Ada Gavrilovska

-8~ Frame drop rate
¢ Hybrid: best latency
Hybrid: best frame drop rate

100 100

v v

80 & 80 o

3!’, A 9

1 60 3 T1 ¢ 60 3

-~ C -

| Y Q

40 e o B 40 Q

—_ N . —_

20 2 20 X

< <

0 0 ol e EH = =l
QO O O =h =h =h o QO O O = =—h =—h oh
o O ®o >3 3 3 3 o OO ® > I3 I3 3
5 3 = 0D ® D D 5 3 = D 0 DD
< 2.5 55 = S 2.5 5=
Sox2238 Sox823F
8 T g € g = o O T g € p = o
5 2 © 5 3 5 2 © 5 3 o
T 3 3 c o < 35 3 c o
2 O = a 2 9 = a

§E’. g&i

(c) High-end edge (d) Super-high-end edge

Figure 12: Best split points found by four methods across different edges with model PNASNet 331. Red symbols mark the
solutions for shortest processing latency; yellow symbols are for lowest frame drop rate.

short sub-graphs to be executed in parallel on different devices. This
solution achieves great performance and improves efficiency, but is
hardware-specific and depends on a complicated software stack to
optimize the partitioning and to provide for synchronization among
the sub-graphs. Other examples present algorithms and method-
ologies for partitioning models to optimize for resource utilization
such as energy constraints [42, 45] or for the characteristics of the
network [42]. By providing support for externally-specified slicing
and split point selection algorithms, Couper presents a solution
which can leverage the decision engines developed in efforts such
as these, while also affording the benefit of automated creation of
deployment-ready analytics pipelines.

Machine learning on edge. Machine learning and inference are
important workloads for edge computing. In addition to contribu-
tions to model slicing for edge [42], other work has made advances
in orchestration frameworks and algorithms for deploying and man-
aging machine learning applications in distributed, multi-tenant
and/or multi-device scenarios [62-64], for determining the best
model for a given edge [51], or for specializing machine learning
for edge scenarios [29]. Prior research has also shown the utility
of using machine learning to optimize control-plane operation and
other functionality performed at the edge, such as security, use of
storage or network capacity [20, 52]. These efforts illustrate the
growing trend of building DNN-enabled applications for the edge,
and the need for a systems such as Couper which can assist with
their deployment across diverse and shared edge infrastructure.

9 CONCLUSIONS

We have presented Couper, a tool to automatically slice DNN based
visual analytics applications to run them efficiently at the edge in-
frastructure. We showed that Couper can be applied with arbitrary
production models and for different infrastructure configurations.
Couper integrates the basic mechanisms needed for its operation,
but provides support for different decision engines, in the form of
algorithms for model slicing and for selection of best model slices.
This, in turn, allows Couper users to trade the overheads incurred

in terms of execution time and resources needed to decide how to
split a model, vs. the quality of the model slices with respect to the
target metrics. We demonstrate experimentally that Couper can
automatically create deployment-ready DNN pipelines which can
deliver significant improvements in inference time (i.e., latency)
or inference quality (i.e., percentage of processed frames), com-
pared to edge- or cloud-only model deployments, and that these
pipelines can be created with overheads which range from compa-
rable to 100x less than a strongman approach to model slicing. We
believe that Couper will be helpful in deployment of DNN-based
applications at edge computing infrastructure in general.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd, Mahadev
Satyanarayanan, for their valuable feedback toward improving the
paper. The work on this project was supported through funding
grants, gifts, and equipment donations by Hewlett Packard Enter-
prise, Intel, VMware, and the Applications Driving Architectures
(ADA) Research Center, a JUMP Center co-sponsored by SRC and
DARPA.

REFERENCES

[1] [n. d.]. A Tool Developer’s Guide to TensorFlow Model Files.
tensorflow.org/guide/extend/model_files
[2] [n. d.]. AirBux Aerial: Drone based visial data collection and delivery.
https://airbusaerial.com/.
[3] [n.d.]. Docker Registry. https://docs.docker.com/registry/
[4] [n.d.]. Fog Computing. http://www.cisco.com/c/dam/en_us/solutions/trends/
iot/docs/computing-overview.pdf.
[5] [n. d.]. Graphs and
https://www.tensorflow.org/guide/graphs.
[6] [n.d.]. GStreamer: open source multimedia framework.
freedesktop.org
[7] [n. d.]. Intel Network Edge Virtualization. https://networkbuilders.intel.com/
network-technologies/nev.
[8] [n.d.]. Models and layers | TensorFlow. https://www.tensorflow.org/js/guide/
models_and_layers
[9] [n.d.]. Netflix Open Connect. https://openconnect.netflix.com/en/.
[10] [n.d.]. OpenCV. https://opencv.org
[11] [n.d.]. TensorFlow. https://www.tensorflow.org.

https://www.

Sessions | TensorFlow.

https://gstreamer.

https://www.tensorflow.org/guide/extend/model_files
https://www.tensorflow.org/guide/extend/model_files
https://docs.docker.com/registry/
http://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
http://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
https://gstreamer.freedesktop.org
https://gstreamer.freedesktop.org
https://networkbuilders.intel.com/network-technologies/nev
https://networkbuilders.intel.com/network-technologies/nev
https://www.tensorflow.org/js/guide/models_and_layers
https://www.tensorflow.org/js/guide/models_and_layers
https://opencv.org

Couper: DNN Model Slicing for Visual Analytics Containers at the Edge

[12]
[13]
[14]
[15]
[16]

[17]

[18

[19]

[20

[21]

[22]

[23

[24

[25]

™
&

[27]
[28]

[29]

[30]
[31]

[32

[33]

[34]

[35

[36

[37

[n. d.]. TensorFlow-Slim image classification model library. https://github.com/
tensorflow/models/tree/master/research/slim

[n. d.]. tf.Operation. https://www.tensorflow.org/api_docs/python/tf/Operation
[n. d.]. Vapor. https://www.vapor.io

2018. Akraino Edge Stack. https://www.lfedge.org/projects/akraino/.

2019. Deutsche Telekom Completes World’s First Public
Mobile Edge Network, Powered By MobiledgeX Edge-Cloud
R1.0. http://mobiledgex.com/press-releases/2019/02/19/

deutsche-telekom-completes-worlds-first- public-mobile- edge-network-powered-
by-mobiledgex-edge-cloud-r1-0.

Telefonica Alpha. 2017. The Edge: Evolution or Revolution? http:
//acm-ieee-sec.org/2017/Edge%20Computing%20SEC%20Keynote%200ct%
202017%20Pablo%20Rodriguez.pdf

AWS. 2018. AWS Greengrass - Amazon Web Services. https://aws.amazon.com/
greengrass/ [Online].

Microsoft Azure. 2018. IoT Edge | Microsoft Azure. https://azure.microsoft.com/
services/iot-edge/ [Online].

Ketan Bhardwaj, Joaquin Chang Miranda, and Ada Gavrilovska. 2018. Towards
IoT-DDOS Prevention Using Edge Computing. In USENIX Workshop on Hot Topics
in Edge Computing (HotEdge’18).

Ketan Bhardwaj, Ming-Wei Shih, Pragya Agarwal, Ada Gavrilovska, Taesoo Kim,
and Karsten Schwan. 2016. Fast, Scalable and Secure Onloading of Edge Functions
using AirBox. In Proceedings of the 1st [EEE/ACM Symposium on Edge Computing
(SEC’16).

Saman Biookaghazadeh, Ming Zhao, and Fengbo Ren. 2018. Are FPGAs Suit-
able for Edge Computing?. In ACM Workshop on Hot Topics in Edge Computing
(HotEdge’18).

Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog
Computing and Its Role in the Internet of Things. In Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing (MCC ’12). ACM, New
York, NY, USA, 13-16.

Charles E. Catlett, Peter H. Beckman, Rajesh Sankaran, and Kate Kusiak Galvin.
2017. Array of things: a scientific research instrument in the public way: platform
design and early lessons learned. In Proceedings of the 2nd International Workshop
on Science of Smart City Operations and Platforms Engineering, SCOPE@CPSWeek
2017, Pittsburgh, PA, USA, April 21, 2017. 26-33. https://doi.org/10.1145/3063386.
3063771

Cisco. 2017. Cisco Networking Index: Forecast and
Methodology, 2016-2021. https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-vni/
complete-white-paper-c11-481360.html

Google Cloud. 2018. Cloud IoT Core | Google Cloud. https://cloud.google.com/
iot-core/ [Online].

Zeromq community. 2011. Distributed messaging - zeromq. http://zeromq.org
Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J. Franklin, Joseph E. Gon-
zalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving
System. In 14th USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI 2017, Boston, MA, USA, March 27-29, 2017. 613-627.

Harshit Daga, Patrick Nicholson, Ada Gavrilovska, and Diego Lugones. 2019.
Cartel: A System for Collaborative Transfer Learning at the Edge Cloud. In ACM
Symposium on Cloud Computing (SoCC’19).

Jim Davis, Philbert Shih, and Alex Marcham. 2018. State of the Edge: A Market
and Ecosystem Report for Edge Computing. https://www.stateoftheedge.com.
Google developers. 2018. Protocol Buffers. https://developers.google.com/
protocol-buffers/

Docker. 2018. Docker - Build, Ship, and Run Any App, Anywhere.
//www.docker.com

ETSI Mobile Edge Computing [n. d.]. ETSI Mobile Edge Computing. http:
//goo.gl/Qef61X.

Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram
Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S. Chung, and Doug Burger.
2018. A Configurable Cloud-Scale DNN Processor for Real-Time Al In 45th
ACM/IEEE Annual International Symposium on Computer Architecture, ISCA 2018,
Los Angeles, CA, USA, June 1-6, 2018. 1-14.

Harshit Gupta, Zhuangdi Xu, and Umakishore Ramachandran. 2018. DataFog:
Towards a Holistic Data Management Platform for the IoT Age at the Net-
work Edge. In USENIX Workshop on Hot Topics in Edge Computing (HotEdge
18). USENIX Association, Boston, MA. https://www.usenix.org/conference/
hotedge18/presentation/gupta

Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai, and
Mahadev Satyanarayanan. 2014. Towards wearable cognitive assistance. In The
12th Annual International Conference on Mobile Systems, Applications, and Services,
MobiSys’14, Bretton Woods, NH, USA, June 16-19, 2014. 68-81.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition. CVPR, Las Vegas, NV, USA, 770-778.

Visual

https:

(38]

[39

[40

[41

[42

[43

[46

[47

(48

[49

[50]

[51

(53]

(54]

[55

(56

[57

[59

SEC 2019, November 7-9, 2019, Arlington, VA, USA

Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R.
Ganger, Phillip B. Gibbons, and Onur Mutlu. 2017. Gaia: Geo-Distributed Machine
Learning Approaching LAN Speeds. In 14th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2017, Boston, MA, USA, March 27-29,
2017. 629-647.

Vodafone Qatar’s Chief Operating Officer Mohamed Al Sadah Interview. [n.
d.]. Vodafone Smart Stadium. http://www.businessrevieweurope.eu/technology/
1116/Vodafone- smart-stadiums-and- the- 2022- Qatar- World- Cup.

Angela H. Jiang, Daniel L.-K. Wong, Christopher Canel, Lilia Tang, Ishan Misra,
Michael Kaminsky, Michael A. Kozuch, Padmanabhan Pillai, David G. Andersen,
and Gregory R. Ganger. 2018. Mainstream: Dynamic Stem-Sharing for Multi-
Tenant Video Processing. In 2018 USENIX Annual Technical Conference, USENIX
ATC 2018, Boston, MA, USA, July 11-13, 2018. 29-42.

Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.
NoScope: Optimizing Deep CNN-Based Queries over Video Streams at Scale.
PVLDB 10, 11 (2017), 1586-1597.

Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor N. Mudge,
Jason Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative Intelligence
Between the Cloud and Mobile Edge. In Proceedings of the Twenty-Second Inter-
national Conference on Architectural Support for Programming Languages and
Operating System (ASPLOS). ASPLOS, China, 615-629.

Kate Keahey, Pierre Riteau, Dan Stanzione, Tim Cockerill, Joe Mambretti, Paul
Rad, and Paul Ruth. 2018. Chameleon: a Scalable Production Testbed for Computer
Science Research. In Contemporary High Performance Computing: From Petascale
toward Exascale (1 ed.), Jeffrey Vetter (Ed.). Chapman & Hall/CRC Computational
Science, Vol. 3. CRC Press, Boca Raton, FL, Chapter 5.

Jong Hwan Ko, Taesik Na, Mohammad Faisal Amir, and Saibal Mukhopadhyay.
2018. Edge-Host Partitioning of Deep Neural Networks with Feature Space
Encoding for Resource-Constrained Internet-of-Things Platforms. In 15th IEEE
International Conference on Advanced Video and Signal Based Surveillance (AVSS).
Jong Hwan Ko, Taesik Na, Mohammad Faisal Amir, and Saibal Mukhopadhyay.
2018. Edge-Host Partitioning of Deep Neural Networks with Feature Space Encod-
ing for Resource-Constrained Internet-of-Things Platforms. CoRR abs/1802.03835
(2018).

Kubernetes. 2018. Production-Grade Container Orchestration. https://kubernetes.
io

Edward A. Lee, Bjérn Hartmann, John Kubiatowicz, Tajana Simunic Rosing, John
Wawrzynek, David Wessel, Jan M. Rabaey, Kris Pister, Alberto L. Sangiovanni-
Vincentelli, Sanjit A. Seshia, David Blaauw, Prabal Dutta, Kevin Fu, Carlos
Guestrin, Ben Taskar, Roozbeh Jafari, Douglas L. Jones, Vijay Kumar, Rahul
Mangharam, George J. Pappas, Richard M. Murray, and Anthony Rowe. 2014.
The Swarm at the Edge of the Cloud. IEEE Design & Test 31, 3 (2014), 8-20.
Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled Ben Letaief.
2017. A Survey on Mobile Edge Computing: The Communication Perspective.
IEEE Communications Surveys and Tutorials 19, 4 (2017), 2322-2358. https:
//doi.org/10.1109/COMST.2017.2745201

Rick Merritt. 2018. AI Becomes the New Moore’s Law. https://www.eetimes.
com/document.asp?doc_id=1333471.

Tain Morris. 2019. DT-Owned MobiledgeX to Power German Telco’s Edge
Rollout. https://www.lightreading.com/mobile/mec-(mobile-edge-computing)
/dt-owned-mobiledgex-to-power-german-telcos-edge-rollout/d/d-id/740845.
Samuel S. Ogden and Tian Guo. 2018. MODI: Mobile Deep Inference Made Effi-
cient by Edge Computing. In USENIX Workshop on Hot Topics in Edge Computing,
HotEdge 2018, Boston, MA, July 10, 2018.

Arun Ravindran and Anjus George. 2018. An Edge Datastore Architecture For
Latency-Critical Distributed Machine Vision Applications. In USENIX Workshop
on Hot Topics in Edge Computing, HotEdge 2018, Boston, MA, July 10, 2018.
Ananda Samajdar, Parth Mannan, Kartikay Garg, and Tushar Krishna. 2018.
GeneSys: Enabling Continuous Learning through Neural Network Evolution in
Hardware. In Proc of 51st Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO’18).

Mahadev Satyanarayanan, Wei Gao, and Brandon Lucia. 2019. The Computing
Landscape of the 21st Century. In Proceedings of the 20th International Workshop
on Mobile Computing Systems and Applications (HotMobile '19).

Alisha Seam. 2019. AT&T Unlocks the Power of Edge Computing: Delivering
Interactive VR over 5G. https://about.att.com/innovationblog/2019/02/edge_
computing_vr.html.

Hardik Sharma, Jongse Park, Divya Mahajan, Joon Kyung Kim, Chenkai Shao,
Asit Mishra, Emmanuel Amaro, and Hadi Esmaeilzadeh. 2016. From High-Level
Deep Neural Models to FPGAs. In IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO’16).

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
Computing: Vision and Challenges. IEEE Internet of Things Journal 3, 5 (2016),
637-646.

Rags Srinivasan and Agnieszka Zielinska. 2019. Data at the Edge. https://www.
stateoftheedge.com.

Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. 2016. Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning. CoRR

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
https://www.tensorflow.org/api_docs/python/tf/Operation
https://www.vapor.io
https://www.lfedge.org/projects/akraino/
https://mobiledgex.com/press-releases/2019/02/19/deutsche-telekom-completes-worlds-first-public-mobile-edge-network-powered-by-mobiledgex-edge-cloud-r1-0
https://mobiledgex.com/press-releases/2019/02/19/deutsche-telekom-completes-worlds-first-public-mobile-edge-network-powered-by-mobiledgex-edge-cloud-r1-0
https://mobiledgex.com/press-releases/2019/02/19/deutsche-telekom-completes-worlds-first-public-mobile-edge-network-powered-by-mobiledgex-edge-cloud-r1-0
http://acm-ieee-sec.org/2017/Edge%20Computing%20SEC%20Keynote%20Oct%202017%20Pablo%20Rodriguez.pdf
http://acm-ieee-sec.org/2017/Edge%20Computing%20SEC%20Keynote%20Oct%202017%20Pablo%20Rodriguez.pdf
http://acm-ieee-sec.org/2017/Edge%20Computing%20SEC%20Keynote%20Oct%202017%20Pablo%20Rodriguez.pdf
https://aws.amazon.com/greengrass/
https://aws.amazon.com/greengrass/
https://azure.microsoft.com/services/iot-edge/
https://azure.microsoft.com/services/iot-edge/
https://doi.org/10.1145/3063386.3063771
https://doi.org/10.1145/3063386.3063771
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://cloud.google.com/iot-core/
https://cloud.google.com/iot-core/
http://zeromq.org
https://www.stateoftheedge.com
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://www.docker.com
https://www.docker.com
http://goo.gl/Qef61X
http://goo.gl/Qef61X
https://www.usenix.org/conference/hotedge18/presentation/gupta
https://www.usenix.org/conference/hotedge18/presentation/gupta
http://www.businessrevieweurope.eu/technology/1116/Vodafone-smart-stadiums-and-the-2022-Qatar-World-Cup
http://www.businessrevieweurope.eu/technology/1116/Vodafone-smart-stadiums-and-the-2022-Qatar-World-Cup
https://kubernetes.io
https://kubernetes.io
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/COMST.2017.2745201
https://www.eetimes.com/document.asp?doc_id=1333471
https://www.eetimes.com/document.asp?doc_id=1333471
https://www.lightreading.com/mobile/mec-(mobile-edge-computing)/dt-owned-mobiledgex-to-power-german-telcos-edge-rollout/d/d-id/740845
https://www.lightreading.com/mobile/mec-(mobile-edge-computing)/dt-owned-mobiledgex-to-power-german-telcos-edge-rollout/d/d-id/740845
https://about.att.com/innovationblog/2019/02/edge_computing_vr.html
https://about.att.com/innovationblog/2019/02/edge_computing_vr.html
https://www.stateoftheedge.com
https://www.stateoftheedge.com

SEC 2019, November 7-9, 2019, Arlington, VA, USA

[60]

[61]

[62

[63
[64
[65

[66

[67

[68

(69

[70

(71

]
]

]

abs/1602.07261 (2016).

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. 2015. Going deeper with convolutions. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. 1-9.
Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. 2016. Rethinking the Inception Architecture for Computer Vision.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016. 2818-2826.

Nisha Talagala, Swaminathan Sundararaman, Vinay Sridhar, Dulcardo Arteaga,
Qianmei Luo, Sriram Subramanian, Sindhu Ghanta, Lior Khermosh, and Drew
Roselli. 2018. ECO: Harmonizing Edge and Cloud with ML/DL Orchestration.
In USENIX Workshop on Hot Topics in Edge Computing (HotEdge 18). USENIX
Association, Boston, MA.

Zeyi Tao and Qun Li. 2018. eSGD: Communication Efficient Distributed Deep
Learning on the Edge. In USENIX Workshop on Hot Topics in Edge Computing,
HotEdge 2018, Boston, MA, July 10, 2018.

Surat Teerapittayanon, Bradley McDanel, and HT. Kung. 2017. Distributed
Deep Neural Networks Over the Cloud, the Edge and End Devices. In IEEE 37th
International Conference on Distributed Computing Systems (ICDCS).

CNCEF project The gPRC authors. 2019. grpc.io. https://grpc.io

Tile. 2017. tile | Lost panda | together we find. https://www.youtube.com/watch?
v=u-evd9B-ZKg

Deepak Vasisht, Zerina Kapetanovic, Jongho Won, Xinxin Jin, Ranveer Chandra,
Sudipta Sinha, Ashish Kapoor, Madhusudhan Sudarshan, and Sean Stratman.
2017. FarmBeats: An IoT Platform for Data-Driven Agriculture. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17).
viscloud. 2018. Streaming Analytics Framework (SAF). https://github.com/
viscloud/saf

Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, and Joseph E. Gonza-
lez. 2017. IDK Cascades: Fast Deep Learning by Learning not to Overthink. CoRR
abs/1706.00885 (2017).

Dale F. Willis, Arkodeb Dasgupta, and Suman Banerjee. 2014. ParaDrop: A
Multi-tenant Platform for Dynamically Installed Third Party Services on Home
Gateways. In Proceedings of the 2014 ACM SIGCOMM Workshop on Distributed
Cloud Computing (DCC ’14). ACM, New York, NY, USA, 43-44. https://doi.org/
10.1145/2627566.2627583

Tan Zhang, Aakanksha Chowdhery, Paramvir (Victor) Bahl, Kyle Jamieson, and
Suman Banerjee. 2015. The Design and Implementation of a Wireless Video
Surveillance System. In Proceedings of the 21st Annual International Conference
on Mobile Computing and Networking (MobiCom ’15). ACM, New York, NY, USA,
426-438. https://doi.org/10.1145/2789168.2790123

Ke-Jou Hsu, Ketan Bhardwaj, and Ada Gavrilovska

https://grpc.io
https://www.youtube.com/watch?v=u-evd9B-ZKg
https://www.youtube.com/watch?v=u-evd9B-ZKg
https://github.com/viscloud/saf
https://github.com/viscloud/saf
https://doi.org/10.1145/2627566.2627583
https://doi.org/10.1145/2627566.2627583
https://doi.org/10.1145/2789168.2790123

	Abstract
	1 Introduction
	2 Edge computing and Visual analytics: A natural fit
	3 Understanding the Opportunity
	4 Couper Overview
	5 Design
	5.1 Model Slicer
	5.2 Application Wrapper
	5.3 Slice Evaluator
	5.4 Sample Slice Selection Methods
	5.5 Publisher

	6 Implementation
	7 Evaluation
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

