
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/335580693

From Back-of-the-Envelope to Informed Estimation of Edge Computing

Benefits in Minutes Using Castnet

Conference Paper · June 2019

DOI: 10.1109/ICFC.2019.00028

CITATIONS

0
READS

18

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Practical Edge Computing Applications View project

Create new project "Resource Management for Virtualized High Performance Clusters" View project

Ketan Bhardwaj

Georgia Institute of Technology

15 PUBLICATIONS 104 CITATIONS

SEE PROFILE

Ada Gavrilovska

Georgia Institute of Technology

121 PUBLICATIONS 1,211 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ketan Bhardwaj on 24 September 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/335580693_From_Back-of-the-Envelope_to_Informed_Estimation_of_Edge_Computing_Benefits_in_Minutes_Using_Castnet?enrichId=rgreq-3fc97533e8b893c73127c0905ae9c17e-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4MDY5MztBUzo4MDY2NzI4NTEyOTIxNjBAMTU2OTMzNzIwMzc4NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/335580693_From_Back-of-the-Envelope_to_Informed_Estimation_of_Edge_Computing_Benefits_in_Minutes_Using_Castnet?enrichId=rgreq-3fc97533e8b893c73127c0905ae9c17e-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4MDY5MztBUzo4MDY2NzI4NTEyOTIxNjBAMTU2OTMzNzIwMzc4NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Practical-Edge-Computing-Applications?enrichId=rgreq-3fc97533e8b893c73127c0905ae9c17e-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4MDY5MztBUzo4MDY2NzI4NTEyOTIxNjBAMTU2OTMzNzIwMzc4NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Create-new-project-Resource-Management-for-Virtualized-High-Performance-Clusters?enrichId=rgreq-3fc97533e8b893c73127c0905ae9c17e-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4MDY5MztBUzo4MDY2NzI4NTEyOTIxNjBAMTU2OTMzNzIwMzc4NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-3fc97533e8b893c73127c0905ae9c17e-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4MDY5MztBUzo4MDY2NzI4NTEyOTIxNjBAMTU2OTMzNzIwMzc4NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ketan_Bhardwaj2?enrichId=rgreq-3fc97533e8b893c73127c0905ae9c17e-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4MDY5MztBUzo4MDY2NzI4NTEyOTIxNjBAMTU2OTMzNzIwMzc4NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ketan_Bhardwaj2?enrichId=rgreq-3fc97533e8b893c73127c0905ae9c17e-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4MDY5MztBUzo4MDY2NzI4NTEyOTIxNjBAMTU2OTMzNzIwMzc4NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Georgia_Institute_of_Technology?enrichId=rgreq-3fc97533e8b893c73127c0905ae9c17e-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4MDY5MztBUzo4MDY2NzI4NTEyOTIxNjBAMTU2OTMzNzIwMzc4NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ketan_Bhardwaj2?enrichId=rgreq-3fc97533e8b893c73127c0905ae9c17e-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4MDY5MztBUzo4MDY2NzI4NTEyOTIxNjBAMTU2OTMzNzIwMzc4NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ada_Gavrilovska?enrichId=rgreq-3fc97533e8b893c73127c0905ae9c17e-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4MDY5MztBUzo4MDY2NzI4NTEyOTIxNjBAMTU2OTMzNzIwMzc4NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ada_Gavrilovska?enrichId=rgreq-3fc97533e8b893c73127c0905ae9c17e-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4MDY5MztBUzo4MDY2NzI4NTEyOTIxNjBAMTU2OTMzNzIwMzc4NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Georgia_Institute_of_Technology?enrichId=rgreq-3fc97533e8b893c73127c0905ae9c17e-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4MDY5MztBUzo4MDY2NzI4NTEyOTIxNjBAMTU2OTMzNzIwMzc4NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ada_Gavrilovska?enrichId=rgreq-3fc97533e8b893c73127c0905ae9c17e-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4MDY5MztBUzo4MDY2NzI4NTEyOTIxNjBAMTU2OTMzNzIwMzc4NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ketan_Bhardwaj2?enrichId=rgreq-3fc97533e8b893c73127c0905ae9c17e-XXX&enrichSource=Y292ZXJQYWdlOzMzNTU4MDY5MztBUzo4MDY2NzI4NTEyOTIxNjBAMTU2OTMzNzIwMzc4NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

From Back-of-the-envelope to Informed Estimation of Edge Computing Benefits in
Minutes Using Castnet

Harshit Daga, Hobin Yoon, Ketan Bhardwaj, Harshit Gupta and Ada Gavrilovska
College of Computing, Georgia Institute of Technology, Atlanta, GA

{harshitdaga, hobinyoon, ketanbj, harshitg}@gatech.edu, ada@cc.gatech.edu

Abstract—Multi-access Edge Computing (MEC) is emerging as
the next evolution in computing infrastructure. However, broad
adoption of edge computing solutions is still lagging behind.
We posit that a significant factor contributing to this trend is
related to the challenges in evaluating the trade-offs offered by
edge computing and answering a simple question: Will the edge
investments be offset with commensurate gains in performance
metrics such as improved application responsiveness or lower
backhaul bandwidth costs?

Existing simulation tools, developed for cloud computing and
networking research, require a large amount of effort to be
applied to the edge computing space. Their native abstractions
and interfaces pose limitations in how such frameworks can be
extended to allow for characterization and analysis of diverse
edge computing use cases. Moreover, as we demonstrate, they
can be slow, taking days, to provide insights. To address this
gap, we develop Castnet – a fast, extensible, and easy-to-use
framework for evaluating the benefits of MEC for different edge
deployment models, configuration and functions. We demonstrate
that Castnet leads to significant gains in the time-to-insight, while
achieving the same fidelity in the results as existing tools. We
illustrate the utility of Castnet using two scenarios: investigation
of the impact of edge storage capacity for edge-based content
caches, and the impact of edge location for an edge-based
intrusion detection service.

Index Terms—Edge Computing, Edge Cloud, Edge Simulators.

I. INTRODUCTION

In the next decade, the tremendous increase in the number of

Internet connected devices [1] will lead to unforeseen amounts

of data to be traversing the network [2]. Cisco projects that by

2020 there will be 50 billion devices connected to the Internet

and it is estimated that more than 500 zettabytes of data will

be generated by such devices, as compared to 135 zettabytes

in 2014 [2]. Multi-access Edge Computing (MEC) [3], by

providing compute and storage capabilities at the edge of

the network, is posed to make it possible to handle that

deluge. The expectation is that by leveraging computational

infrastructure near the data sources, MEC can reduce both,

delays in the data processing time, and the demand on the

backhaul network. However currently, the lack of existing edge

computing deployments, makes it difficult to systematically

study and reason about the benefits, tradeoffs and opportunities

enabled by it.

One way to address this gap is through use of realistic

emulated testbeds such as SmartSantander [4] and FIT IoT-

LAB [5] which provide a heterogeneous environment to

conduct experiments under real world conditions. However,

their utility in evaluating MEC configurations is bound by the

characteristics of the physical testbed, limiting the flexibility

to investigate MEC environments with arbitrary configurations

and scales. Other efforts take a simulator-based approach

to construct full scale models in a controlled environment

which otherwise would be either very expensive or infeasible.

One approach is to use network simulators such as ns-3 [6].

However, this requires a significant effort in modeling the

storage and compute aspect of an edge environment. Another

approach is to adopt existing simulation frameworks such as

CloudSim [7], SimGrid [8] and iCanCloud [9], which are de-

velop for cloud computing systems. However, the differences

in the MEC architecture over a traditional cloud architecture

make it hard to use the existing cloud simulators to represent

mobile edge computing environments. More recently, iFogSim

[10], an extension of the CloudSim framework, proposed to

address the gap in simulation platforms for edge computing.

Although iFogSim provides modelling support for an edge

infrastructure, its design and interfaces make it challenging

to configure and evaluate diverse edge computing scenarios,

resulting in considerable effort and time required to obtain

experimental insights.

Thus, there is a need for a fast, extensible, and easy-to-use

tool which can be of practical use for modeling and evaluation

of the tradeoffs afforded by edge computing-based solutions

in different scenarios.

Technically, the shortcomings of existing simulators stem

from the level of abstraction they operate on. For instance,

iFogSim abstracts compute and network with cycle accurate

fidelity at the expense of increased time to produce answers.

ns-3 operates at the network level and lacks native abstractions

to describe application-level functionality which is to be

carried out along the network paths. The level of abstraction

mandates their design decisions. For instance, iFogSim has

to be designed using a single event queue, owing to its

requirements on fidelity to each abstracted component, which

makes it inefficient for larger scale simulations. Similarly,

ensuring fidelity to network artifacts makes it difficult to

implement high level application behavior in ns-3. We posit

that for the task at hand, i.e., gauging benefits of deploying

edge functions, both abstraction levels are not suitable.

In this paper, we present Castnet, an extendable,

lightweight, fast and easy to use edge simulation framework.

The high level of abstraction lets Castnet supports all of

the relevant entities in an edge computing scenarios – dif-

ferent edge infrastructure deployment models, different edge

infrastructure characteristics (latency, compute and storage)

165

2019 IEEE International Conference on Fog Computing (ICFC)

978-1-7281-3236-5/19/$31.00 ©2019 IEEE
DOI 10.1109/ICFC.2019.00028

User Cellular
tower

Aggregation
point CDN Data

center

0.055 8.5 84

Latency
(ms)

�

MEC

�

Fig. 1: Mobile network latency breakdown.

and arbitrary logic in the edge applications. Castnet delivers

better flexibility through component-based design, i.e., each

simulated entity becomes self-contained and has fewer depen-

dencies on others, making the overall analysis performed by

Castnet efficient and scalable when compared to existing edge

simulators [6], [10].

Further, Castnet’s modular design and easy-to-specify in-

terface, make it easy to use and highly customizable, to suit

the needs of different user groups. For instance, Castnet can

be easily used to estimate tradeoffs and benefits in scenarios

where a developer is evaluating a new caching algorithm for

their existing edge deployment, an edge infrastructure provider

is making capacity planning decisions, or a edge equipment

vendor is advertising their products to a new customer.

In summary this paper contributes the following:

1. Castnet – an open-source1, comprehensive and extensible

edge simulation framework for exploring the trade-offs and

opportunities in utilizing the emerging MEC with minimal

effort. It provides abstractions to extend and model MEC

components that could easily be extended to represent

concrete edge infrastructure and functions, based on the

requirements.

2. Castnet is evaluated with different types of workloads

derived from realistic use case scenarios. The evaluations

demonstrate that Castnet is lightweight, scalable and is

faster than existing solutions. For instance, for a simulation

with 15-40 requests/s served per edge node, ns-3 took up-

to 44% more time compared to Castnet while iFogSim was

unable to complete the simulation even after a long time.

Castnet also reduces the effort, in terms of lines of code

needed to configure an experiment, by 84% when compared

to iFog and ns-3.

3. We demonstrate that Castnet can be used for different

types of workloads and scales, even with a typical desktop

class machine, something that cannot be accomplished with

existing tools. This advances the current ability to evaluate

the benefits edge computing, which is important for driving

its adoption.

II. BACKGROUND

Figure 1 depicts a generic MEC architecture where the edge

nodes can be used to host applications (edge functions [11])

on behalf of existing web services, with the goal of providing

1github.gatech.edu/kernel/castnet

performance benefits. These edge functions may incorporate

different classes of functionality:

• Acceleration: With a goal of improving the perceived

latency performance by splitting or compressing the data

sent over the network.

• Aggregation: With a goal of reducing bandwidth usage

by filtering the data generated from connected devices by

removing the collection, pre-processing and/or filtering of

redundant data before sending to the cloud.

• Caching: With a goal of reducing user perceived latency

and bandwidth usage by hosting caching servers or stream-

ing services that could benefit web services like web pages

requests or video delivery [2].

MEC, by taking advantage of its close proximity to end

users has the potential to provide the above services with

reduced latency and backhaul data traffic. However, questions

regarding the concrete benefits that an edge function can ex-

perience when deployed at a specific edge location, and when

considering specific workload parameters, remain unanswered.

To gain quantitative insights into such questions, we need

tool(s) that can be easily extended to characterize the edge

function and its deployment scenarios, and that can lead to

quick answers with adequate accuracy.

Testbeds are one of the solutions that provide a platform

to conduct experiments in a realistic environment. There

are numerous such existing testbeds; some examples include

SmartSantander [4] and FIT IoT-LAB [5]. The SmartSantander

testbed consists of 20,000 sensors deployed in a city, and

provides access to the sensor data through a fixed set of

APIs supported by their IoT nodes. The FIT IoT-LAB testbed

provides bare metal access to all the nodes. It provides access

to different smart sensors and hardware capabilities deployed

across France. Full access to the nodes helps in reprogramming

the nodes and in conducting any desired experiments. [12]

provides a detailed survey of available experimental facilities

for IoT research.

Although testbeds such as these represent valuable ex-

perimental infrastructure, the insights they can provide are

limited by the concrete deployment scenarios which can be

practically realized on their physical resources. In contrast,

simulation frameworks offer flexibility in exploring a broader

set of scenarios, and in obtaining insights in relatively shorter

amount of time and with less effort in terms of creating and

managing experiments.

CloudSim [7] is one of the simulators that is widely used

in research. Designed by Buyya et al., the simulator is widely

used in data center research on resource management, VM

migration, etc. Other such simulators include SimGrid [8], a

simulation platform for grid and distributed system, iCanCloud

[9], a simulation tool for large scale experiments which can

run parallel simulations over a cluster, GreenCloud [13], an

extension to a network simulator ns-2, which focuses on

obtaining energy consumed by different components of the

cloud infrastructure. These tools provide the modeling and

simulation support for cloud or distributed server systems.

However, they do not natively offer support to model MEC

166

��������
	
��

�

���
���
�
	
��

����
�

����������
�

������

�
����
���

��
��������������
��������

	

���

 ��
��
��

��
���
�����

�������
�!
�����
�
�
������

"���

��
��

��
���
��������#���

$
�����
%&�'$�'

������(
)
�����* +"(,,-
)
�����*���������(���
&���
����#(

.
�(-���

+����
�������
�
/-
����

0����
(
���(
�-
����
*�
�(-���

1

+����
�������

��������
�����
���

2
�
�����

3

�(������4
������4(������5
������5(%����

������(
06���4����47(8���5����5�
���9����9:
6���5����57(8���;����;:
1

"���
<
��

	

���

��� ���

Fig. 2: Castnet overview and internals of a request response cycle inside the simulation.

infrastructure or resources management policies, where an

edge can serve as a network, storage or a compute element

in the architecture.

iFogSim [10] is an extension of the CloudSim framework

built to provide support for experiments designed for MEC. It

can be used to investigate the impact of different resource

management strategies on application latency or on device

energy usage, for configurable topologies of IoT devices, edge

node elements and the cloud. iFogSim inherits the internal

simulation engine from CloudSim, which is based on a single

event queue. The computational requirements of the simula-

tions are tied to the complexity of the queue manipulation

operations, and can pose limitations on the types of scenarios

which can be practically investigated within a given resource

envelop. In addition, configuring experiments with iFogSim

requires understanding of the intrinsic details of the framework

and significant programming effort.

ns-3 [6], a network simulator, is another framework which

can be used to simulate MEC infrastructure. However, unlike

iFogSim, ns-3 does not provide native support for representing

edge functions beyond native network-level functionality.

Summarizing, the existing simulators are limited in the types

of edge configurations, workloads, or applications which they

can be used to evaluated. Thus, there is a need for an edge

simulator that is fast, simple and easy to use for exploring

different MEC scenarios.

III. CASTNET

Castnet fills this gap by providing an extensible tool that

allows for quick modeling and analyses of the trade-offs

of MEC deployment scenarios. Castnet is aimed at edge

service and infrastructure providers. Its goal is to provide

for rapid estimation of the performance benefits associated

with different edge applications, infrastructure configurations,

and workload characteristics. Castnet achieves this goal by

incorporating a scalable simulation engine, providing for quick

insights even as the complexity of the evaluated scenarios

increases, and by offering modularized interfaces which reduce

the development effort needed to specify different scenario

configurations.

Internally, Castnet’s simulation engine represents a discrete

event simulator where each node in the edge topology is

modeled with its own request and forward queue. This design

choice is in contrast to the iFogSim design which uses a single

shared event queue, to be accessed and manipulated by the

events generated by all the nodes in the system. In iFogSim,

during a simulation run, various events are recorded across

the system and added to the shared queue. The performance

of the simulator is directly proportional to the complexity

of the queue operations at a given time t, which depend on

the size and volume of the generated events. Thus, as shown

later in the evaluation section, modeling more complex edge

topologies and workload increases the event density, and in

turn, the complexity of the underlying queue manipulations,

thereby limiting the performance and the scalability of the tool.

In contrast, the use of independent queues for each entity in

Castnet reduces the queue sizes and the cost of the queue

accesses and manipulations, resulting in improved time-to-

answer.
Externally, Castnet explicitly exposes a number of abstrac-

tions inherent for describing an edge deployment scenario

– the edge infrastructure topology, the computational ele-

ments (servers) and the properties of their interconnection

links (network), the placement strategy for the edge function

being evaluated, and the workload. By explicitly exposing

these abstractions, Castnet provides the desired flexibility

in specifying and evaluating different MEC scenarios while

maintaining simple and intuitive interfaces. In addition, the

configurations specified in these modules determine the flow

of requests through the edge infrastructure, and guide the

simulation engine when evaluating the computational elements

and connections along the requests’ data paths in order to

characterize the end-to-end performance.
Finally, Castnet includes a workload generator used to

specify the request pattern seen by edge locations in an

evaluated scenario, along with several popular request patterns.
The main components of Castnet are shown in Figure 2 and

described in more detail in the remainder of this section.

A. Abstraction Model
Each tier in the MEC architecture can vary in scale, distri-

bution, and positioning. Further, each node within a tier can

run discrete applications and can vary in compute, storage

and network capacity. To define and simulate the relevant

entities, Castnet exposes an infrastructure model that uses

configuration parameters to determine the location, resource

availability and application to be deployed at each node

(also called an entity). The edge functions are defined using

167

Abstraction Handlers Description

Infrastructure
init() read and store the infrastructure properties.

get() provides the entity properties.

Placement
init() creates network links for the topology defined in the config file and creates an entity

map with list of server location.

get_server_list() returns a list containing the server locations for the given entity category.

Network
set_bandwidth() sets the uplink and the downlink bandwidth for the given node.

set_latency() sets the uplink and the downlink latency for the given node.

get_time_taken() returns the time taken by given the payload to travel the network.

Server

create() instantiates the resource node with basic configuration information such as server
location, allocated compute and storage.

init() initializing the additional configuration information required by the node. For instance,
an edge node implementing caching can include an external configuration such as cache
size and caching policy.

process_ request/response() handlers to server the incoming and outgoing request respectively

pre_process_ request/response() provides additional hook to perform additional processing before the request or response
is been processed.

Workload
load() read or load all the requests from the file.

play() starts the simulation process and submits the request to the user model if the time stamp
of the request is greater or equal to the current simulation time, else it waits.

TABLE I: Describes the important handlers exposed for different abstractions in the Castnet framework.

the APIs provided in the default server class. Next, Castnet

uses a placement model to abstract the connections between

different nodes in the system hierarchy. The placement model

specifies the data path of requests (and responses) through

the multiple tiers of the infrastructure. The network model
abstraction provides an easy way to model different bandwidth

capacity and the link delays for each network hop based on

the experiment requirements and conditions. Finally, workload
model provides the access pattern to be simulated. Each of

these models are provided as an input to the simulator, and

are used as explained in III-C.

B. Workload

In order to permit evaluations using request patterns with

different properties, Castnet includes a configurable work-

load generator. Our goal is not to generate an exact request

model [14], [15] for an application or set of applications, but

to provide a tool that can help in generating a wide range

of workload characteristics for MEC following a distribution

pattern.

A web service traffic can vary based on the location and

time of the day. The request-response sizes and the redundancy

in the request content are other variable factors that define

the workload. In addition, we studied the request distribution

patterns of different web applications which can benefit from

edge, and identified two other important dimensions which

characterize their request pattern (see Table II). The first

concerns the frequency of the requests: dense workloads

are request-intensive, whereas sparse workloads exhibit fewer

requests arriving at the service for a given time t. The second

concerns the time variability of the request pattern: determinis-

tic patterns exhibit regular request distributions, whereas non-

deterministic patterns exhibit bursty behaviors. Castnet allows

for workloads to be described using all of these parameters.

C. Operation

A Castnet simulation starts by specifying a configuration

of the simulation parameters. Castnet provides users with a

Category Example Characteristic

Sparse
Deterministic

Production line [16], In-
ventory tracking, Environ-
ment monitoring [17]

regular, low request
traffic due to small
scale deployment

Dense
Deterministic

IoT camera sensor regular, high request
traffic due to large
scale deployment

Sparse Non-
deterministic

Parking tracking, Light-
ning control [18] [19]

irregular, low request
traffic

Dense Non-
deterministic

Viral video [20] irregular, high request
traffic

TABLE II: Workload categories and their real world use case.

hierarchical and flexible configuration interface. Figure 2(a)

and Listing 1 provide an overview of configurations required

by the framework in order to run an experiment, while Table I

presents the APIs provided by the framework. The remainder

of this section describes the life cycle of a request during its

operation.

Castnet plays the given workload in a serial manner, i.e.,

each request is loaded in the order of its timestamp. The

request goes through a series of actions for each time interval t
until the response is submitted to the client device. The request

originates from the client which, through the scheduler, pushes

it to the request queue of the connected web edge server entity.

Starting from the lowest tier of the architecture (closest to

the client device) and going up to the cloud (data center), the

scheduler scans through the request queue of each entity, picks

up the elements with the processing time equal to or less than

the current timestamp, and submits it to the respective servers.

The serial execution helps in distributing the limited resources

of a server, such as compute capacity or network bandwidth,

among the requests by making it aware of all the requests that

are required to be processed at the given time.

The servers process these requests through their application

logic, following which the request destination and its new

scheduling time is determined. The new scheduling time

is generated as a summation of the time taken to process

the request by the web server logic, latency between the

destination and current server, and the time required to transfer

168

the payload. The processing time at the server is a function of

the compute capacity (i.e., MIPS) required by the request and

the compute resources remaining at the server (defined in the

infrastructure configuration), while the transfer time taken over

the wire is a function of payload and the bandwidth between

the entity and the destination location.

If the edge function generates an upstream event (e.g., the

same, or a new request is forwarded to the next hop), the event

is added to the request queue of the next server (uplink) for

further processing. For instance, in case of a cache miss at

the edge the request is forwarded to the cloud. A response

generated by the edge function (e.g., in case of a cache

hit), is added to the forwarding queue of the current server

(downlink), and it would eventually be sent in the direction of

the client. When the request reaches the client it is logged into

a result file. Each log element includes end-to-end break-down

of the time spent at each entity in the request path.

D. Limitations

There are limitations on what Castnet can be used for.

The edge functions partition the application logic between

edge and the cloud [11]. Castnet does not have the capability

to automatically perform partitioning, but only provides a

mechanism to define edge functions. Further, the accuracy of

Castnet relies on the accuracy of the implemented abstractions.

For instance, the modules currently used in Castnet do not

take into consideration infrastructure contention effects, node

failures, or look-up time. Though the accuracy of the results

provided by Castnet can be improved in the future through

more sophisticated models and extensions of the current de-

sign, at present its accuracy is bounded by the accuracy of the

underlying component models.

E. Implementation Details

Castnet is written in approximately 3000 lines of C/C++

code, and uses external libraries such as boost [21] for

performance and nlohmann json [22] for parsing JSON.

The synthetic workload is generated using a custom access

pattern generator which is implemented in Python. It makes

extensive use of NumPy libraries to generate appropriate mul-

tivariate request pattern using temporal, spatial and redundancy

distribution models. The generated workload has a generic

structure as shown in Figure 3. Each line in the workload

is generated as a JSON line and the total number of lines

represents the total requests in a workload.

��������	
����	���
 �������	����	
�����
 ���	
��	���
 ����	
��	���
 ����	
��	���

 !��������!	"	!�#$%&'%()�*%�$##+,�!	�	!-������.����!	"	&##	�!��/!	"	&'%	�!����!	"	#	�!��0�!	"	&##1

Fig. 3: Structure of a generated synthetic access characteristics. Each
line in the generated workload represents a line

IV. VALIDATION

To validate Castnet, we use iFogSim and ns-3, as examples

of already verified research simulators. We use the following

Fig. 4: Experimental setup used in Castnet validation.

Fig. 5: Client response time trend for forwarding proxy server at the
edge.

two relevant metrics to establish the reliability of the results

obtained from Castnet:

1. the response time trends for given edge nodes to validate

the latency output of Castnet; and

2. the data transferred between the edge and cloud nodes

over the simulation time period to validate the bandwidth

consumption output of Castnet.

Workload. The workload used for these experiments con-

sists of approximately 15k requests following a Gaussian

distribution, analogous to one of the most common request

pattern distribution pattern in a real world scenario [23], [24],

with the simulation running over a span of 1 second. The focus

of this exercise is not to quantify the merits but to compare

the trends between different simulators and to validate Castnet.

We ran two sets of validation experiments.

A. Experiment: Edge function as a simple proxy

Setup. We used the two-tier architecture with three edge

nodes and one backend server as shown in Figure 4 where

an edge node receives the request from the client and acts

as a proxy server, forwarding it to the backend for further

processing. The use of edge as a proxy server is the mini-

mal functionality needed for an edge function. We use this

experiment as baseline validation for the Castnet simulator.

Results. Figure 5 shows the time taken to serve each request

in all three tools. When compared to the existing simulators,

Castnet provides similar trend. However, ns-3 being a network

simulator, does not include a compute model to account for

169

(a) (b) (c)

(d) (e) (f)

Fig. 6: Time taken by the application to serve the request and the data transferred between the edge and cloud server as the cache capacity
on the edge server increases. The 6(a) and 6(d) depicts the case with no cache at edge, 6(b) and 6(e) represent the scenario when edge cache
can hold 50% of the unique elements in the cache and finally, 6(c) and 6(f) have the cache capacity to hold all the unique elements in the
workload.

any forwarding delay. This explains the difference in the

absolute values between Castnet and ns-3. The oscillations

observed by iFogSim are due to modeling network congestion

effects. Currently Castnet uses a simple network model which

does not take into account network congestion and hence

provides similar response time for each of the requests.

B. Experiment: Edge function a content cache

To gain further confidence in the evaluations produced by

Castnet, we ran a more complex scenario involving caching

at the edge as a second validation experiment. The reason to

choose caching is that in a real world scenario, it is the first

intuitive use of edge nodes [25].

Setup. We again use the two tier architecture from the

previous experiment and implement a caching edge function.

In this case, the request made by the client is first served by the

edge node where the edge application looks if the requested

data is present it its cache. A cache hit results in the request to

be served by the edge server, hence providing a lower response

time and reducing the backhaul bandwidth usage. In case of

a cache miss, the request is forwarded and served by the

backend server. We implemented the same caching function

and integrated it in all three simulation frameworks. We report

on the effort required to do this in the following section.

Experiments. We conduct three experiments to understand

the impact of caching at the edge, where each run involves a

configuration with different storage capacity at the edge node.

In the first experiment we do not configure any cache at the

edge. 6(a) shows the expected latency values for the requests

as they are served from the cloud. Next, the cache capacity is

increased to 50% of the total unique elements present in the

request workload. 6(b) and 6(e) depict the anticipated trend

of the response time for all the requests over the simulation

period and the amount of data transferred between the edge

and the cloud server, respectively. For the final run, the cache

capacity is increased to hold 100% of the total unique elements

present in the request pattern. The early requests require more

time as they are not cached at the edge, however, as the edge

cache warms up, we observe a lower response time and no

backhaul data transfer. 6(c) and 6(f) shows a similar trend

across all the three simulators. Lastly, Table III shows that

there is not much variation in the minimum, maximum and

average time taken by the three simulators to serve the request.

Time taken (ms) iFogSim ns-3 Castnet
Minimum 5.01 5.34 5.00

Maximum 112.02 110.9 95.05

Average 17.80 16.32 13.63

TABLE III: Time taken by different simulators to serve the request
when cache is placed on the edge server.

V. EVALUATION

We next present results from the experimental evaluation of

Castnet, comparing it with the iFogSim and ns-3 simulators.

We seek to answer the following questions:

• How much effort is needed to use Castnet vs. the other

available tools?

170

Deterministic Non-deterministic

Sparse Dense Sparse Dense

Request range served
by per server per sec

1 20 3-8 15-40

Total requests 1.5 M 1.5 M 1.4 M 1.6 M

TABLE IV: The workload distribution used in performance testing
where the non-deterministic workload uses Gaussian distribution. (M
= million)

• How fast is Castnet in getting to an insight vs. the other

available tools for a given edge deployment configuration

and a workload pattern?

• How does Castnet behave when used for different edge

deployment scales and dense workload patterns vs. the other

available tools?

A. Simulation Setup and Workload

All experiments are conducted on a quad-core Intel(R)

Xeon(R) CPU X3430 @ 2.40GHz machine with 16 GB of

RAM, i.e., a desktop class machine. We chose to use a desk-

top class machine intentionally, to highlight the lightweight

nature of our tool. Due to lack of publicly available large-

scale workloads, we use synthetic workloads generated by

the Castnet workload generator. The workloads are chosen to

represent different workloads for experimenting with up to 500

edge nodes, as shown in Table IV. Unless otherwise noted, we

use the two-tier architecture with three edge and one backend

server, shown in Figure 3.

B. Effort-to-Use

To demonstrate the ease of use of Castnet in developing

and evaluating the trade offs for various edge functions, we

developed caching at edge (discussed in IV) for all the three

simulators. This required us to use the abstractions offered by

each tools to represent the same scenario. Castnet and iFogSim

consist of application level models such as data generation,

fog devices, infrastructure and resource monitoring model.

ns-3 is a network simulator and provides abstraction models

to support network communication such as protocol stacks,

peripheral cards and topology helpers. Ease of use can be

subjective so we use lines of code (LOC) that need to be

written using each tool as the metric for comparison. Table V

shows the LOC needed to evaluate the caching edge function

with each tool. We break down the experiment construction by

the various models provided by the framework – infrastructure

and placement, network topology, edge function logic, and

helper functions. Castnet reduces the required LOC by 84%

and 74% as compared iFogSim and ns-3, respectively. Further,

we report that once written, it is much easier to change

parameters in Castnet vs. the other tools, since it requires only

changing values as opposed to changing code. In summary,
Castnet can be used with minimal effort from its users to gain
insights quickly.

C. Time-to-Insight

We compare the time-to-insight, or the time to complete

a simulation and obtain answers, for Castnet, iFogSim and

Simulator iFogSim ns-3 Castnet
Infrastructure 400 345 66

Topology 160 105 10

Application 312 174 70

Miscellaneous 327 90 42

Total 1199 714 188

TABLE V: Average count of lines of code required to implement an
edge application on different simulators.

Fig. 7: Comparison of simulation time for an edge forwarding proxy
application under different workload distribution. The ∞ denotes
simulation taking a long time, which may even exceed beyond a
day.

Fig. 8: Intuitive graphical representation of different workload cate-
gories.

ns-3. We perform the experiments with each of the workload

patterns illustrated in Figure 8, with parameters specified in

Table IV.

Castnet outperforms iFogSim and ns-3 in all scenarios.

Even with increase in the request rate served by each edge

node, Castnet produces answers within ∼25 minutes, whereas

iFogSim was unable to complete the simulation even after a

long time, exceeding even beyond a day. For instance, for

the deterministic dense distribution request model iFogSim

was able to process only 60k out of 1.5M total request in

a span of 12 hours, in contrast to Castnet, which was able

to complete the entire simulation in 26.3 minutes. We were

able to attribute the slow performance of iFogSim to its single

event queue-based architecture, and the increased complexity

171

Fig. 9: Time required to complete the simulation with increase in
number of edge node, keeping the total number of requests served by
each node constant. iFogSim is not presented due to the unreasonably
long completion time, which exceeds beyond a day, to finish the
simulation for the given scale and workload.

of the resulting queue manipulation operations. Although ns-

3 was able to complete the simulation with reasonable time

(still 17.2-40.4% more than Castnet), it is still infeasible to use

as an edge simulator without substantial modifications. This is

because as a network simulator it does not provide appropriate

abstractions required to incorporate into the simulation edge

application logic and to account for its use of computational

resources. In summary, Castnet reduces the time-to-insights
compared to the state-of-the-art available tools, to order for
minutes for a realistic deployment and workload pattern.

D. Scalability

To gauge the scalability of Castnet, we increase the number

of edge nodes from 10, 100 to 500, and evaluate caching

at edge, using the dense deterministic workload pattern, and

experiments where 5 requests are served by each server per

second, for a total of 1000 seconds. Figure 9 compares

simulation time between Castnet and ns-3 only. We were

unable to use iFogSim because it requires an unreasonably

long time; we let it run for 24 hours without it being able to

complete the simulation for the above mentioned workload.

Castnet required 0.6, 8.5 and 41.5 minutes, respectively, to

complete each simulation, compared to ns-3 whose completion

time is 17.31% to 44.83% longer. In summary, Castnet scales
well with increasing number of edge deployments and is better
than the state-of-the-art available tools.

VI. USAGE SCENARIOS

We present two concrete use cases to illustrate how Castnet

can be used, and to highlight the extensibility of the frame-

work. The first use case provides a more detailed description

of the caching scenario used extensively in the earlier parts of

the paper. The second one is based on an intrusion detection

and prevention system [26].

A. Caching at edge (extension)

The experiment uses the two-tier architecture model used

earlier. The infrastructure configuration of nodes and their

placement is defined in the configuration file using infrastruc-

ture and placement attributes. The experiment uses workload

consisting of total of 40k requests in a time period of 1 second,

following a Gaussian distribution. Castnet’s default reader

supports JSON format however, the play() API exposed

through the workload abstraction can be overridden to support

other workload formats as well.

The first experiment performed consists of equal cache size

at each edge location, capable of caching 150 unique requests.

10(a) shows the time taken by the requests served by different

the edge locations. The trend obtained from Castnet shows

that the existing size of the cache is suitable for edge node 2,

however, there is a need to increase the cache capacity at edge

nodes 1 and 3. To quickly evaluate few other infrastructure

configurations, the infrastructure override option present in the

configuration file, as shown in Listing 1, provides an easy way

to test different cache capacities for edge nodes 1 and 3. 10(c)

displays the reduced latency for the requests by providing the

override values shown in Listing 2. Additionally, one might

want to evaluate a scenario keeping minimum cache at the

edge nodes along with a common cache at the central office to

increase the overall performance. This changes the topology to

a three-tier architecture model with edge nodes, central office

and backend server. This change in topology requires only

a change in the infrastructure attribute. In doing so, 10(b)

shows the reduced latency for the requests, as estimated by

Castnet. Thus, using the trends obtained from Castnet the

content provider can quickly evaluate various infrastructure

options and different topologies to determine the choice which

can improve the service performance. As future work, we aim

to provide an insight on the expected amount of compute and

storage resources based on the request pattern served by the

node.

INFRASTRUCTURE:
USER:
LOCATION: workload.json
...

CELL_TOWER:
DEFAULT_MIPS: 2000
DEFAULT_BANDWIDTH:
UPLINK: 100
DOWNLINK: 100

DEFAULT_LATENCY: 5
CATEGORY: EDGE_CACHE
CACHE:
CACHE_TYPE: LRU
CACHE_CAPACITY: 150

...
INFRASTRUCTURE_OVERRIDE: infra_override.json
...

Listing 1: An example configuration file snippet

{ "TYPE" : "CELL_TOWER",
"LOCATION" : "33.68,-84.50",
"CACHE_CAPACITY" : 260 }

{ "TYPE" : "CELL_TOWER",
"LOCATION" : "34.68,-84.29",
"CACHE_CAPACITY" : 450 }

Listing 2: An infrastructure override file snippet

172

(a) (b) (c)

Fig. 10: The latency for the requests with change in the cache capacity at edge based on the trend obtained from previous experiments.

Fig. 11: The data transfer between the edge of the network and the
data center when intrusion detection and prevention is done at the
cloud, edge of the network without and with data sharing between
the edges respectively.

B. Intrusion detection and prevention

Intrusion detection and prevention systems (IDPS) monitor

a network in real time for malicious activity, access by

unauthorized person or policy violations. These systems are

classified into two categories: signature based detection, which

uses patterns such as known instruction sequences or byte

sequences in network traffic, and anomaly based detection,

where the activity is classified based on a heuristics model

or rules, rather than patterns or signatures, and the system

attempts to detect if the request falls out of normal system

operation.

We perform an experiment using Castnet which helps in

understanding the benefits of deploying at an edge an intrusion

detection system with anomaly-based detection. We evaluate

two use-cases, one where the information between edge nodes

are not shared and second where malicious IPs recorded at

one edge is shared with the other nodes. For the purpose of

our experiment, our IDPS model marks a request from an IP

address as malicious if it gets more than 5 requests within a

predefined amount of time (1 second). All future requests from

the blocked IP addresses are then dropped automatically. List-

ing 3 demonstrates the ease of adding a custom edge function

in Castnet by using the pre_process_request() handler

exposed through the server abstraction.

A DDoS attack typically floods the service network with lots

of requests and temporarily or indefinitely makes the server

resources unavailable to its intended users. The deployment of

IDPS at the edge could be an effective tool in handling such

distributed attacks. It can contain the impact of such attacks to

specific areas, ensuring a smooth experience to the rest of the

users [26]. The experimental results obtained from Castnet for

a workload of 150k request following a Gaussian distribution

spread over an hour help in understanding the impact of

moving such a model from the cloud to the edge of the

network. Figure 11 illustrates a reduction in the backhaul data

transfer by 31.2% when IDPS is moved to the edge. Further,

Table VI demonstrates that data sharing among the edge helps

in detecting malicious users more effectively, resulting in an

overall 42% reduction in the backhaul data transfer for the

given workload.

bool pre_process_request(DataEntry *data) {
...
//pre process the data and check if it is a valid request
if (is_blocked(data->get_id()) ||

!is_valid_request(data->get_id())) {
blocked_id.insert(data->get_id());
data->set_compute_state(DROPPED);
return false;

}
return true;

}
bool is_blocked(size_t data_id) {
return (blocked_id.find(data_id) !=

blocked_id.end());
}
bool is_valid_request(size_t data_id) {
bool result = true;
auto it = current_visit_count.find(data_id);

//able to find the id and check if count is more than
threshold drop the packet

if (it != current_visit_count.end()) {
current_visit_count[data_id] += 1;
if (it->second > threshold_limit) {
result = false;

}
} else {
current_visit_count[data_id] = 1;

}
return result;

}

Listing 3: Castnet IDPS code file snippet

173

Data center Edge Edge (with data sharing)
Cloud Edge-1 Edge-2 Edge-3 Cloud Edge-1 Edge-2 Edge-3 Cloud

Total requests 150000 51783 49228 48989 103172 51783 49228 48989 87002
Dropped requests 63002 16669 15313 14846 14 22150 20663 20185 4
Dropped requests % 42.0% 32.1% 31.1% 30.3% 0.01% 42.7% 41.9% 41.9% 0.004%

TABLE VI: The total number of requests served and dropped by each node with the change in deployment of IDPS from cloud to the edge.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented Castnet, an open source sim-

ulation framework which allows for rapid evaluations of the

trade-offs in MEC scenarios. The design of Castnet addresses

the performance bottlenecks of existing simulators for MEC,

thereby allowing for fast time-to-insight. In addition, it pro-

vides users with interfaces which permit easy exploration of

different configurations of the MEC infrastructure, workload,

and application deployment strategies, so as to understand

the impact that changes in any of these dimensions can

have on end-to-end performance or resource requirements.

Castnet’s modular design provides ample opportunities for

future enhancements, such as through integration with more

accurate network simulation models.

REFERENCES

[1] Coetzee, Louis and Eksteen, Johan, “The Internet of Things-promise for
the future? An introduction,” 2011.

[2] Cisco VNI, “Cisco Visual Networking Index: Forecast and Methodology,
2016–2021,” 2017.

[3] ETSI, “Multi-access Edge Computing,” 2018,
http://www.etsi.org/technologies-clusters/technologies/multi-access-
edge-computing.

[4] S. Srdjan, E. Theodoridis et al., “SmartSantander: IoT experimentation
over a smart city testbed,” Computer Networks, vol. 61, 2014.

[5] G. Adjih, Cedric and Baccelli, Emmanuel and Fleury, Eric and Harter,
Gaetan and Mitton, Nathalie and Noel, Thomas and Pissard-Gibollet,
Roger and Saint-Marcel, Frederic and Schreiner, J. Vandaele et al., “FIT
IoT-LAB: A large scale open experimental IoT testbed,” 2015.

[6] Riley, George F and Henderson, Thomas R, “The ns-3 network simula-
tor,” Modeling and tools for network simulation, 2010.

[7] Calheiros, Rodrigo N and Ranjan, Rajiv and Beloglazov, Anton and De
Rose, César AF and Buyya, Rajkumar, “CloudSim: a toolkit for model-
ing and simulation of cloud computing environments and evaluation of
resource provisioning algorithms,” Software: Practice and experience,
vol. 41, no. 1, 2011.

[8] Casanova, Henri, “Simgrid: A toolkit for the simulation of application
scheduling,” 2001.

[9] N. M, “iCanCloud: A flexible and scalable cloud infrastructure simula-
tor,” 2012.

[10] Gupta, Harshit and Vahid Dastjerdi, Amir and Ghosh, Soumya K and
Buyya, Rajkumar, “iFogSim: A toolkit for modeling and simulation of
resource management techniques in the Internet of Things, Edge and Fog
computing environments,” Software: Practice and Experience, vol. 47,
no. 9, 2017.

[11] Ketan Bhardwaj and Ming-Wei Shih and Pragya Agarwal and Ada
Gavrilovska and Taesoo Kim and Karsten Schwan, “Fast, Scalable and
Secure Onloading of Edge Functions Using AirBox,” in In Proceed-
ings of the 1st IEEE/ACM Symposium on Edge Computing (SEC’16),
Washington, DC, 2016.

[12] Gluhak, Alexander and Krco, Srdjan and Nati, Michele and Pfisterer,
Dennis and Mitton, Nathalie and Razafindralambo, Tahiry, “A survey
on facilities for experimental internet of things research,” IEEE Com-
munications Magazine, vol. 49, no. 11, 2011.

[13] Kliazovich, Dzmitry and Bouvry, Pascal and Khan, Samee Ullah,
“GreenCloud: a packet-level simulator of energy-aware cloud computing
data centers,” The Journal of Supercomputing, vol. 62, no. 3, 2012.

[14] Hashemian, Raoufehsadat and Krishnamurthy, Diwakar and Arlitt, Mar-
tin, “Web workload generation challenges–an empirical investigation,”
Software: Practice and Experience, vol. 42, no. 5, 2012.

[15] Barford, Paul and Crovella, Mark, “Generating representative web
workloads for network and server performance evaluation,” in ACM
SIGMETRICS Performance Evaluation Review, vol. 26, no. 1. ACM,
1998.

[16] Pang, Zhibo and Chen, Qiang and Han, Weili and Zheng, Lirong, “Value-
centric Design of the Internet-of-things Solution for Food Supply Chain:
Value Creation, Sensor Portfolio and Information Fusion,” Information
Systems Frontiers, vol. 17, no. 2, 2015.

[17] Xu, Xiaoya and Zhong, Miao and Wan, Jiafu and Yi, Minglun and Gao,
Tiancheng, “Health Monitoring and Management for Manufacturing
Workers in Adverse Working Conditions,” J. Med. Syst., 2016.

[18] Ghose, Avik and Biswas, Provat and Bhaumik, Chirabrata and Sharma,
Monika and Pal, Arpan and Jha, Abhinav, “Road condition monitoring
and alert application: Using in-vehicle smartphone as internet-connected
sensor,” in Pervasive Computing and Communications Workshops (PER-
COM Workshops), 2012 IEEE International Conference on. IEEE,
2012.

[19] Bravo, Yesnier and Ferrer, Javier and Luque, Gabriel and Alba, Enrique,
“Smart Mobility by Optimizing the Traffic Lights: A New Tool for
Traffic Control Centers,” in Proceedings of the First International
Conference on Smart Cities - Volume 9704, ser. Smart-CT 2016. Berlin,
Heidelberg: Springer-Verlag, 2016, pp. 147–156.

[20] Broxton, Tom and Interian, Yannet and Vaver, Jon and Wattenhofer,
Mirjam, “Catching a viral video,” Journal of Intelligent Information
Systems, vol. 40, no. 2, 2013.

[21] Schling, Boris, The Boost C++ Libraries, 2011.
[22] Niels Lohmann, “JSON for Modern C++,”

https://github.com/nlohmann/json.
[23] Laterman, Michel and Arlitt, Martin and Williamson, Carey, “A campus-

level view of Netflix and Twitch: Characterization and performance
implications,” in Performance Evaluation of Computer and Telecommu-
nication Systems (SPECTS), 2017 International Symposium on. IEEE,
2017.

[24] Atikoglu, Berk and Xu, Yuehai and Frachtenberg, Eitan and Jiang, Song
and Paleczny, Mike, “Workload Analysis of a Large-scale Key-value
Store,” in Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE
Joint International Conference on Measurement and Modeling of Com-
puter Systems, ser. SIGMETRICS ’12. ACM, 2012, pp. 53–64.

[25] Zhu, Jiang and Chan, Douglas S and Prabhu, Mythili Suryanarayana
and Natarajan, Preethi and Hu, Hao and Bonomi, Flavio, “Improving
web sites performance using edge servers in fog computing architec-
ture,” in Service Oriented System Engineering (SOSE), 2013 IEEE 7th
International Symposium on. IEEE, 2013.

[26] Ketan Bhardwaj and Joaquin Chung Miranda and Ada Gavrilovska,
“Towards IoT-DDoS Prevention Using Edge Computing,” in USENIX
Workshop on Hot Topics in Edge Computing (HotEdge’18), Boston, MA,
2018.

174

View publication statsView publication stats

https://www.researchgate.net/publication/335580693

