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Summary. With total app installs touching 100 Billion in 2015, the increasing num-
ber of active devices that support apps are posed to result in 200 billion downloads
by 2017. Data center based App stores offering users convenient app access, how-
ever, cause congestion in the last mile of the Internet, despite use of content delivery
networks (CDNs) or ISP-based caching. This paper explores the new paradigm of
eBoxes, situated in the ’edge cloud’ tier beyond the last mile, which can be used to
alleviate this congestion. With redesigned app caches — termed AppSachet — such
edge cloud based distributed caching can achieve a hit ratio of up to 83%, demon-
strated on real-world Internet traffic. The redesign leverages proposed new caching
policies, termed p-LRU and c-LRU, specifically targeted at eBoxes’ limited storage
and for the traffic caused by app installs and updates. A cost benefit analysis shows
that the additional cost required to deploy AppSachet on eBoxes can be recovered
within the first three months of operation.
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1.1 Introduction

The number of active smart phones worldwide is posed to cross 3 billion
by 2018, and additional increases in mobile devices stem from wearable and
embedded devices, like smart watches and glasses, devices supporting smart
vehicles, etc. Coupled with that is a continuing explosion in the number of
apps available to end users, with roughly 100 billion app downloads reported
in 2015, set to reach a staggering 200 billion by 2017. App installs and more
so, app updates, therefore, place measurable pressure on the Internet infras-
tructure used for their delivery, currently relying on Internet Service Provider
(ISP) links to reach remote datacenter-based app stores or the Content De-
livery Networks (CDNs) they use. *.

Specifically, the issue is congestion in the last mile of the Internet, which
is well known to be a bottleneck for delivered service quality [7]. For apps,

! Data Source: http://mobithinking.com/
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CDNs cannot mitigate this bottleneck because they operate behind ISPs and
cannot consolidate app requests on their behalf. At the same time, ISP-based
caching is difficult if apps and updates are flagged as non-cachable content
due to their pay-per-download nature, issues related to intellectual property
protection, etc. Our previous work [11] showed the feasibility of using devices
operating at the ‘edge cloud’ tier beyond the last mile of the Internet, to deliver
apps/updates. Examples of such devices — termed eBoxes — include small
cells[9, 10], WiFi routers [4, 5, 8], or cloudlet servers [20], shown useful in recent
research for supporting new edge services [16, 18, 20, 12]. In that work, we
also developed novel app streaming technology, which, without any disruption
to how apps are currently developed and used, permits users to install apps
or app updates directly from eBoxes with 2x faster speed, while also reducing
last mile congestion by up to 70%. Such work, however, focused on the client-
facing eBox capabilities, and its obtained benefits relied on age-based (i.e.,
LRU-based) eBox-resident resource management mechanisms. However, that
approach leads to comparatively inefficient use of limited eBox resources (e.g.,
storage capacity), limiting eBox benefits. In comparison, this paper seeks to
answer the following questions:

How to best cache apps and/or updates — AppSachets — on eBoxes?
How to efficiently use the eBox’s limited resources (i.e., storage capacity)
to maximize hit ratio or minimize caching cost for Internet traffic due to
apps and their updates?

e How to articulate cost vs. benefit of AppSachet deployment on eBoxes?

This paper presents AppSachets — a system for distributed app delivery from
the edge cloud. Based on our analysis of real world Internet traffic due to
Android apps and their updates, we highlight the cacheability characteristics
of app traffic. Based on those characterisitcs, we propose two new caching
policies implemented as part of AppSachet: (i) p-LRU which takes into ac-
count local app popularity and (ii) ¢-LRU which takes into account the cost of
caching apps on eBoxes. We present an end-to-end system design that caters
to end client devices using AppSachets and fits in the existing Android app
ecosystem, without requiring any changes from app developers or any changes
visible to end users. Further, we present a cost model for eBox based AppSa-
chets operation inspired by the pricing model of CDNs. Overall, the technical
contributions of this paper can be summarized as follows:

1. Cacheability of app traffic: We establish cacheability (§1.6.2) in app
traffic using real world measurements of Android app install and updates
(8§1.2). We highlight the long tail in app access and updates, which also
exhibits the peculiar characteristic that the popular apps in the long tail
change on an hourly basis.

2. Efficient app cache: We show experimentally that the proposed p-LRU
cache and ¢-LRU cache outperform other popular cache policies in terms
of hit ratio (§1.6.3). While p-LRU maximizes hit ratio — 83%, ¢-LRU
minimizes the cost associated with caching apps on eBoxes.
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3. Cost-benefit analysis for AppSachets: We show that the cost of de-
ploying AppSachets on eBoxes can be fully recovered by app stores within
the first 3 months (§1.6.5) of its operation. We estimate the additional cost
of deploying AppSachets in terms of the cost of storage required(§1.6.4),
while benefit is estimated based on the pricing of CDNs.

1.2 Internet Traffic due to app delivery

To assess the impact of app-related traffic on the Internet and assess the im-
provement opportunities that can be provided via a solution like AppSachet,
we collected data about all users at Georgia Institute of Technology over an
extensive, representative time period (from May 19, 2014 to Aug 21, 2014).
We next describe the methodology of data collection and the findings these
measurements that are most relevant to the design of AppSachet.

1.2.1 Data collection methodology

Android app installs or updates are not directly identifiable in the traffic
traces available to us. Instead, we observed that whenever a device initiates
an install or update of an app from the Google Play store, this leads to a
HTTP 301 response code from the store, which points to the location of the
app within Google’s CDN or server. This 301 response contains a location
URL that points to the domain “play.google.com”, and contains the URL
path element “/market/”. The URL also contains in its parameters the name
and the version number of the app being installed /updated. The version in-
formation is either a single version number if installing a new app or if an
app update results in removal of old version and installation of a newer one,
or a colon separated list of two version numbers, i.e., the current and new
versions. This information is sufficient for determining the overall set of IP
addresses for which play.google.com resolves, as many portions of Google’s
overall infrastructure (including app distribution) are served via their CDNs.

Prior to obtaining the traces, we systematically resolved the IP for
play.google.com over a multi-week period and recorded all resolved IP ad-
dresses. We configure our collection server with this IP information, to collect
all packets that have any of these derived IPs in the source address section
of the IP header and that utilize the TCP source port 80 (HTTP). After
collecting all such traffic, we then used tshark to perform TCP packet re-
assembly, filtering out all traffic that does not fit the parameters of Google
Play HTTP 301 responses. The resulting set of response codes represent all
detectable Google Play app installs and updates for that two week period
within our organization’s network. While traffic collection is ongoing, we used
softflowd to generate netflow information for the network. At the conclusion of
the data collection process, we use nfdump to read in, aggregate, and produce
total bandwidth utilization for the time period of collection. The resulting
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per app per day per hour |Total
max 90% |max 90 % |max 90 %
Installs 755 10 1377 420 217 11 9536
Updates (raw) 1288 19 4626 1540 |443 44 31338
Updates (versioned) |895 20 1377 420 443 44 31338

Table 1.1. Summary of measured traffic due to app intalls and updates.

10— 100y
0.8 IS 8o [ .7
W 0.6 L 60
8 0.4 Weiahted s O a0l -- All apps
-- Weighted size — Popular apps
0.27 | App size 20
0.0

0 10 20 30 40 50 60 0 10 20 30 40 50 60 70
Size (MB) Interval (days)

Fig. 1.1. Showing CDF of the (i) Size of the apps at the time data was collected;
(ii) caching benefit i.e., number of days between successive app installs and updates
observed in the measurements.

measurements report a total of 2 Terabytes of 301 requests pcaps for this
period from the Google Play Store. Unfortunately, updates and installs over
encrypted connections (e.g., HTTPS) cannot be detected in this fashion and
are not included in the data presented because the information to detect an
app install or update requires the contents of the HTTP 301 response.

1.2.2 Observations

Table 1.1 summarizes our app traffic measurements. The results are further
divided to show the number on app installs or updates observed per app, num-
ber of installs and updates observed per day, and finally, number of apps and
updates seen during a particular hour of a day. Figure 1.1.(i) shows the distri-
bution of app sizes and the distribution of weighted app sizes where weights
for an app is derived from its access frequency seen in our measurements.
Figure 1.1(ii) shows the distribution of app access with respect to interval at
which apps and/or their updates are accessed shown for all apps and popular
apps separately. We derive an app’s popularity by ranking apps on their access
frequency. It is clear that all popular app updates are finished within 10 days
of the first roll out suggesting that the app updates occur in cycle of 10 days.
We were not able to find an exact reason for this cycle, but intuitively, it is
likely either due to app store’s scheduling of app updates or a period arising
out of different developers pushing out updates for their apps. In any case, this
suggests there is a significant period for eBoxes to absorb updates. Further,
the difference in max and 90th%ile shown in Table 1.1, clearly highlights the
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bursty nature of app traffic in which app updates outnumber app installs by a
factor of 3. The above observations bolsters our hypothesis about the benefits
of caching app traffic on eBoxes. However, leveraging this redundancy in app
traffic, to reduce congestion in the last mile, requires careful design of the app
cache and caching algorithms. Regarding which we derive the following two
hypothesis:

1. The gap between popular apps and all apps seen in Figure 1.1.(ii) leads
us to hypothesize that a caching scheme that explicitly considers app
popularity in its operation can provide the best cache hit ratio.

2. The difference in weighted app size and app size seen in Figure 1.1.(i) leads
us to hypothesize that a caching scheme based on (a) cost derived from
storage and time an app resides on an eBox and (b) benefit derived from
reduction in bytes transferred, can provide good hit ratio while limiting
caching costs and hence, pave way for a cost model for edge cloud services.

In addition to the above mentioned technical challenges, AppSachet also re-
quires changes in the way android devices handle app updates. We discuss the
design of AppSachet system that addresses all those concerns next.

1.3 App Sachet System Design

AppSachet acts as source of the latest apps and their updates to connected end
client devices in similar ways as existing app stores and is placed in the app
eco-system as shown in Figure 1.2. AppSachet sees all requests made for apps
and/or their updates to app-stores. Its goal is to leverage redundancy in app
traffic and provide benefits to end-users and reductions in last-mile bandwidth
use, while operating efficiently within limited eBox resources. AppSachet op-
eration starts as a simple LRU cache of web responses (from the app stores)
which contain the actual binaries of apps and/or updates requested by end
clients connected to the AppSachet enabled eBox. If an end user’s request
cannot be fulfilled by AppSachet i.e., a cache miss is observed then, it proxies
the request to remote app stores and saves the response in its local storage.
To ensure high hit ratio, AppSachet ranks the seen apps after a pre-definded
bootstrapp time, and based on that ranking segments its own cache into two
parts. The segment created are either based on app popularity (i.e., in case of
p-LRU cache) or cost of caching (in case of c-LRU cache) or simple LRU. App-
Sachet syncs or pre-fetches popular or cost effective apps and their updates
from remote app stores. Thereafter, the popular or most cost effective apps are
updated proactively and pre-fetched every hour. When an end client device
that supports AppSachet connects to that eBox, the device starts by sharing
information about installed apps on-device to which an eBox response in form
of apps and/or updates available at the eBox, depending on user-preferences.

For completeness sake, we outline a simpler version of our vision for how
AppSachet is integrated in the Android app ecosystem, by focusing only on
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and their placement in app ecosystem.

interactions related to app installs and updates. These mechanisms are use-
ful even in the context of the existing app download/install/upgrade model,
but their benefits can be further enhanced through systems support for app-
streaming, developed in our previous work [11]. AppSachet achieves its goals
via the following four components:

1. AppSachet Cache: An eBox resident module that houses a cache con-
taining apps, updates, and anonymized app-profiles on its local storage.

2. AppSachet Server: An eBox resident server that services end client
devices’ request for apps and/or updates, and collects anonymized app-
profiles from the connected devices.

3. AppSachet Sync: An eBox resident module pro-actively fetching apps,
handling update notifications from app stores and notifying app stores
about the delivered apps and/or updates.

4. AppSache Client is a module embedded in the Android app framework
that enables handling of app installs and/or updates from an AppSachet
server.

1.3.1 AppSachet Cache

The AppSachet cache is an eBox-resident module that maintains an indexed
repository of app and update binaries fetched from app stores. It houses ag-
gregate app usage information — referred to as app-profile — from all connected
clients, and a list of delivered apps and/or updates mapped to particular user,
used for required app-store notifications. Although the policy used for app
cache management can be as simple as an age-based LRU policy, we demon-
strate significant gains from targeting the cache management policy to the
characteristic of the app traffic. In response, we define two policies — p-LRU
and ¢-LRU — described in greater detail in §1.4. The updates of the app cache
rely on AppSachet’s Sync service.

In addition to apps and their updates, AppSachet also maintains per-app
App Profiles. An App Profile is simply a relational structure containing the
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state collected from end user devices on connection. It includes the follow-
ing user specific persistent information from device: (i) a list of apps, (ii)
their versions and (iii) usage patterns of installed on end user device. It also
contains session specific device configuration, e.g., current IP address of the
device needed to deliver an app or update, and the current App Sachet user
preferences indicating how user wants his device to interact with AppSachet
enabled eBox. For instance, the preferences can indicate whether a user wants
to update all available app updates or to disable updating specific app from
eBoxes, of is a user wants to see new contextual apps available for installation
from eBox, etc. An app-profile is exchanged during the bootstrapping when a
device first connects to an AppSachet-enabled eBox.

App-profiles are also kept on eBoxes in another cache instance. The ratio-
nale behind keeping a cache vs. a persistent copy of app profiles is first based
on the limited amount of storage on eBoxes, and the fact that app-profiles are
synced with app-stores anyway. Second, considering the predictability of hu-
man movement, i.e., we often go the same places at particular times, e.g. office,
coffee shop, etc., creates opportunities for applying proactive and predictive
caching algorithms.

Note, however, that sharing this information about a device poses a po-
tential privacy threat; it is avoided by sharing only anonymized app profiles
with eBoxes. The anonymization of app profiles is designed to be carried out
on the device, in the App usage monitor, vs. on the eBox, to prevent privacy
concerns. Another concerns is mismatch in app version installed on device
and the one known by backend app stores due to eBox based updates. For the
current prototype, it is a non issue because of the way eBox based AppSachet
fetches apps and their updates on behalf of an end user effectively syncing the
current version of app on device and known by app stores. But we posit that a
delegation of authorization from end user to eBox could be used in real-world
deployments.

1.3.2 AppSachet Server

AppSache server residing on an eBox carries out interaction with a device.
It is responsible for bootstrapping device-eBox interaction on connection by
presenting a valid certificate which established that eBox as as valid provider
of apps and updates. Another choice is to have remote app stores involved
during the bootstrapping process but that leads to longer bootstrapp process
as the device and eBox have to reach out to app stores, which then can issue
a common token which can be used to verify identity of an eBox. The server
interacts with the cache of apps and shared app profiles, and updates and
considers user preferences, e.g., to create a tailored response for the device.

Actual App Delivery from an eBox is facilitated by Android Debug Bridge
(ADB) over Wi-Fi to connect to the device and carry out actual app installs
and updates when requested by a device resident AppSachet client, an app
at a time. The decision to not batch multiple app updates from eBox to end
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client device is to ensure correctness of updates on a device, and also not to
overwhelm the end user device’s network with large number of updates.

1.3.3 AppSachet Sync

App-Sachet’s Sync service is responsible interacting with existing app-stores
on behalf of end clients. Its interaction involves (i) fetching apps and/or up-
dates not cached on an eBox and (ii) periodically checking and pre-fetching
updates for apps based on p-LRU or ¢-LRU policy. It supports a pull-based
mechanism for update distribution for which AppSachet on eBox registers a
push notification handler, i.e., update handler, listening to push notifica-
tions from the app store for apps present in its app cache. When a notification
arrives, the AppSachet sync service fetches the updates.

App stores transmit app as full apks to end clients devices but updates are
transmitted either (i) as full apks if there exists is a wide gap in version of app
installed on device vs. app version that is currently available app store or (ii) as
incremental updates [22] which are binary diff of previously installed app apk
and the current version of apk submitted by developer at app store. AppSachet
supports incremental updates to end clients and also handles incremental
updates for its own cache. To ensure correctness of incremental updates, app
cache follows a 2 phase commit approach i.e., it commits an update to the app
cache only when there are no current users installing the app or its update
to avoid misalignment of app versions, but once committed, the update is
immediately available to eBox connected devices.

A push-based approach to app cache updates, allowing app stores to dy-
namically push apps or their updates to a device, could leverage global con-
text, e.g., trending apps, important updates, etc. However, given that our
current implementation is limited by the existing unoffical Google Play API,
AppSachets are restricted to a pull-based approach explicitly requesting apps
and updates from the store.

The Sync component is also responsible for aggregating and propagating
to the app store notifications about delivery of an app or an update. These
notifications are sent asynchronously to app stores to avoid causing slow-
downs in AppSachet-end user device interaction but still ensuring consistency
in the versions of apps installed on end user device and what is known to
remote app-stores. The choice of lazy and asynchronous reporting to remote
app stores by eBoxes ensures that devices are not burdened to communicate
with remote app stores. It also avoids making remote interactions between
eBoxes and app stores a bottleneck while eBox updates are ongoing. How-
ever, this may be problematic for apps that require payments. We posit that
to support paid apps on AppSachets app stores, either this communication
would have to be made synchronous or the eBox must be enabled to process
payments. We believe there are additional challenges related to authorization
and authentication of eBoxes, which we plan to explore in our future work.
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AppSachet relies on app store-resident functionality to provide the afore-
mentioned callbacks or eBox-initiated sync operations, and leverages app pro-
files and other information gleaned from eBox usage patterns to guide the
distribution of app updates across eBoxes, or to otherwise allow app stores to
benefit from the presence of eBoxes in the end-to-end app ecosystem. Even
though this paper has not yet explored challenges concerning the efficient
operation of an eBox-App Store interface, we believe that with ~100 apps
installed on a average device [3, 2] and an update cycle of 10 days, there are
significant opportunities to reduce considerable overhead from app stores. By
using eBox based app stores, congestion is reduced by (i) providing flexibility
in scheduling app store interactions and updates, and (ii) by distributing the
app and app update delivery load across a number of eBoxes, which then can
handle per device installs/updates.

1.3.4 AppSachet Client

The AppSachet client resides deep in the Android’s app framework on the
end user device. It is responsible for starting the bootstrapping process when
a device first connects to an AppSachet enabled eBox. Mechanisms like Wi-F'i
beacons or a central registry based service discovery etc. can be used to kick-
off bootstrapping. However, our current AppSachet client prototype does this
by listening to wpa supplicant connection notifications and simply querying
a AppSachet server running on pre-defined IP:Port combination. A similar
approach is deployed on most Wi-Fi routers that provide the control panel of
that router over a predefined address, e.g., 192.168.1.0 etc.

On connection, it establishes an eBox’s integrity as a valid supplier of apps
and/or updates by requesting a CA issued certificate from eBox. On successful
verification, the device resident AppSachet client shares an anonymized app
profile with eBox. After successful completion of the bootstrapping, the client
component is also responsible for requesting and acknowledging individual
apps and/or updates from eBox by choosing from those available in list shared
by an eBox as app-profile.

The AppSachet client also includes a App Usage Monitor interfaces
with Android’s package manager to get the list of installed apps and uses
native hooks to app usage APIs [1] to create anonymous app profiles, stored
in a separate file on the device’s file system. It is run lazily in the background
when the device is locked by the end user. The decision to invoke the app usage
monitor lazily ensures that (i) mining relevant information doesn’t impact user
experience when the device is being actively used and (ii) utilizes the period
between user locking the device and system’s decision to put device in a deep
sleep state to minimize its its impact on device’s battery usage. The app-profile
is anonymized by passing it through a filter to ensure that information shared
with eBox is clear of any personal information. In the current prototype, this
simply removes keywords provided by users in their preference, but better
anonymization techniques could be deployed for improved privacy guarantees.
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Fig. 1.3. Showing the operation of AppSachet on eBoxes.

1.4 AppSachet Cache Policy Design

We present the two novel cache policies for managing the cache of apps and
app updates on AppSachet eBoxes. Policies are specifically defined based on
opportunities observed from the app-traffic characteristics captured in our
measurements. The two policies — p-LRU and c-LRU - are described next,
and the overall description of the cache management operations with either
policy follows the same operating flow illustrated in Figure 1.3.

1.4.1 Popularity-aware Caching: p-LRU

P-LRU cache is designed to operate based on app popularity, observed as an
important characteristics of app traffic. p-LRU divides the available storage
space for caching in two parts: (i) LRU based and (ii) popularity based. The
size of each segment is decided based on popularity metric which is defined as
percent of storage space allocated to popular apps on an eBox. p-LRU cache
is similar to a segmented LRU (SLRU) [19] in the way it keeps two separate
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segments of cache, but differs in the eviction strategies in the LRU-vs. the
popularity based segment. The p-LRU cache works as follows:

During p-LRU bootstapp period, e.g., the first 24 hours, p-LRU acts as
simple LRU. After that, apps are ranked according to the apps that were
accessed in the past 24 hours based on the number of times they were accessed
or popularity metric. For instance, if we have a cache of size 1 GB, and we see
that 40% of apps are being accessed repeatedly, we set popularity metric at
40%. This will result in reserving 40% storage space, i.e., 400 MB, for storing
popular apps and 60%, i.e., 600 MB, for storing recently used apps.

The popular apps and their updates are then pre-fetched until the popular
segment is full. If the app is present in both LRU and popular segment, it is
kept in the popular segment, so that LRU can accommodate more apps. Note
that there are many apps that although not popular, not caching them would
result in a considerable reduction in hit ratio, also highlighted by the gap
in all apps and popular apps in Figure 1.4(ii). Since, there are considerable
number of apps that are often not popular but not caching them would result
in a considerable reduction in hit ratio also highlighted by the gap in all apps
and popular apps in Figure 1.4(ii). Once p-LRU is bootstrapped, app ranking
is repeated every hour and popular apps are pre-fetched for that hour.

1.4.2 Cost-aware Caching: c-LRU

Similar to p-LRU cache, c-LRU cache divides the available storage space
for caching in two parts: (i) LRU based and (ii) cost of caching based. It uses
a cost index to quantify the cost of caching an app on eBox. Intuitively, the
cost of caching can be derived from the following metrics: (i) The number of
times it is downloaded when compared to all the apps downloaded from that
eBox or the download ratio; (ii) the time for which a particular app is kept
on eBox’s storage compared to its first download or utilization ratio; (iii) the
time an app has already spent in the cache without actually being requested
by end users or recency ratio; and (iv) the size of the app that needs to be
stored. e.g., if any particular app whose size is 50 MB and is accessed 10
times and we have two other apps whose sizes are 20MB and 30MB, and are
accessed 5 and 8 times respectively in the same interval, then we should give
preference to caching the two smaller apps than one large app. One exception
to this rule is that c-LRU must handle updates and installs separately because
updates are always smaller than installs and this would lead to installs never
being cached on eBox. We started with giving equal weights to each metric,
and the value of each is normalized i.e., varies from 0 to 1. The app with the
lowest cost caclulated this way is considered the most suitable one for caching
at an ebox. After experimenting with different combinations of weights and
metrics, we zeroed to the below mentioned definition of cost index of an app
stored on eBox:
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Cost index = [DR « (1/Appsize) + UR + RR)]™", where,
Download ratio (DR) = number of downloads of that app / total number
of downloads
Utilization ratio (UR) = hours spent in cache / hours since first download
Recency ratio (RR) = 1/hours since last download

The lower cost index results in lower cost associated with storing and hence,
higher benefit, because the app may be accessed too frequently or uses very
little space or a combination of both. The ¢-LRU cache works as follows:
during c-LRU bootstrapp process, i.e., the first 24 hours, c-LRU acts as a
simple LRU. After that, apps are ranked according to the cost index of apps
accessed in the past 24 hours. The segmentation, pre-fetching and eviction in
¢-LRU work similarly to p-LRU except the use of cost index vs. popularity.
The cost function described above tries to maximize the utilization of
eBox resources. However, the model permits for additional cost functions,
including ones that incorporate consideration of different value generated from
different apps. The ability to attach a value to an app in case of AppSachet
or generally a service running on an eBox can pave the way to creating a
quantifiable economic model for the upcoming ’edge cloud’ infrastructure, a
concern of utmost importance regarding edge cloud deployment, which hasn’t
been addressed in any of the recent edge cloud research [16, 18, 20, 12].

1.5 AppSachet Implementation

The implementation of AppSachet uses either available Android platform com-
ponents or open source technologies. Specifically, (i) the eBox-resident ele-
ments are implemented using the node.js and python API on top of an Open-
WRT router, (ii) the device-side AppSachet client elements are implemented
as a patch for Android, and (iii) the additional elements of the eBox-app store
interface are implemented using the unofficial HTTP API of the Google Play
Store. With our limitations to evaluate eBox-AppStore interface owing to it
requiring changing app-store’s internals and its interface, we present detailed
evaluations of the other components of AppSachet mechanisms next.

1.6 Evaluation

1.6.1 Experimental testbed

App traffic mesurements are obtained from a network tap that has the ca-
pability of logging all traffic flowing in and out of our institution. We used
offline analysis to filter the data after logging. The AppSachet is deployed on
an eBox emulated with a Core2Duo machine housing apps in its local storage
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Fig. 1.4. For the measured app traffic showing (i) the number of times each app is
accessed in the complete dataset; (ii) temporal caching characteristics of app traffic
workload by dividing observed traffic in 6 small periods; (iii) number of popular
apps vs. other apps accessed from the cache per hour;

and connected to a Linksys wrt 1900ac router via a Gigabit port. We generate
a representative app traffic workload for our experiments using captured app
traffic. The AppSachet client is prototyped using a Nexus 5 phone running
Android (CyanogenMod 11.2 ~ Android KitKat).

1.6.2 Cacheability of app traffic

Figure 1.4(i) shows the number of times a particular app or its update in
accessed from the measured app traffic. The most popular app was accessed
1403 times and then access frequency decreases exponentially. Specifically, the
100th app was accessed only 68 times, showing a clear long-tail distribution
of apps and their updates. To gain insights into finer temporal cache charac-
teristics of app traffic, we divided the complete dataset into 6 equal smaller
periods — where each line in Figure 1.4(ii) d-i corresponds to a different period
— and found that the caching characteristics persist for small periods as well
as for the overall traffic trace.

Going a step further, we analyse the observed app traffic on a per-hour ba-
sis to capture local popularity of apps on an eBox based cache. Figure 1.4(iii)
shows that for every hour, 40%-60% of apps are accessed from what we call
the local popular app cache. We notice that every hour, the local popular-
ity of apps on an eBox changes, requiring hourly updates to keep the app
cache clear of outdated apps, also seen from the pattern in the Figure 1.4(iii).
These results establish that traffic due to apps and their updates is suitable for
caching on an hourly basis and provided justification for our rationale behind
the design of the p-LRU and c-LRU caching policies.

1.6.3 p-LRU and c-LRU Cache Performance

We compared the proposed p-LRU and c¢-LRU with a number of popular
cache policies, i.e., LRU, Random and Belady’s optimal eviction policy. The
experimental results, summarized in Figure 1.5(i) and Table 1.2 are obtained
using eBoxes with up to 2.5GB of cache storage.
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Fig. 1.5. For the measured app traffic showing (i) the comparison of caching poli-
cies; (ii) p-LRU cache performance with different size of eBox based cache; (iii) the
average cost index observed (i.e., by all the apps stored on eBox at a time) when
using p-LRU and ¢-LRU caching policy while varying cache size.

It is clear that p-LRU outperforms all other policies and is closest to the
optimal cache closely followed by ¢-LRU policy. Figure 1.5(ii) shows the overall
performance of p-LRU cache for varying sizes of app cache which shows that
the best ratio is obtained when the cache size for popularity metric is between
40%-60% which drops drastically after 80%. This also shows why one segment
must be assigned as a LRU cache, i.e., LRU also plays a very important role
in maintaining a high cache ratio whereas the popularity metric or cost index
ensures that the popular apps or apps with high cost index are always cached,
even on their first access. We conclude that efficient use of the capabilities
of upcoming edge cloud platforms (e.g., for caching) would require defining
new application specific metrics (e.g., popularity, cost) and/or implement new
mechanisms (e.g., p-LRU, ¢-LRU).

Cache Size 1 GB 1.5 GB 2 GB 2.5 GB
Oracle 0.8386 0.8558 0.8647 0.8688
Cache Policies|p-LRU 0.7837 0.8105 0.8247 0.8352
c-LRU 0.7782 0.8078 0.824 0.8328
LRU 0.7665 0.7965 0.8149 0.8274
Random 0.6266 0.671 0.6994 0.714

Table 1.2. For the measured app traffic, showing comparisons of cache policies with
varying cache sizes.

1.6.4 Storage Requirements on eBox

Figure 1.5(ii) shows the variation of cache hit ratio of the p-LRU cache with
increasing cache size. Figure 1.5 shows that using a p-LRU cache on an eBox
with a capacity of 2.5 GB results in the highest hit ratio; this is also closest to
the optimal Belady’s algorithm shown as Oracle. We conclude that with 2.5
GB of additional storage at eBoxes and a p-LRU cache, AppSachet achieves
a 83% hit ratio. Figure 1.5.(iii) shows the average cost index observed, i.e.,
average of cost indexes of all apps stored on the eBox, updated hourly, while
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running through the complete workload and using p-LRU and c¢-LRU. As
apparent, c-LRU beats p-LRU consistently in terms of lower cost index and
hence, lower cost of caching resulting in higher benefits, while still slightly
sacrificing hit ratio as seen from Table 1.2 This highlight a trade off in cache
performance vs. cost particularly for eBoxes with less storage due to cost
constraints. Generally, for edge services (e.g., AppSachet) deployed on edge
cloud platforms with resource constraints (e.g., storage capacity), designing
mechanisms (e.g., c-LRU policy) must consider other factors (e.g., cost) vs.
Just performance (e.g., hit ratio).

1.6.5 Cost benefit analysis of deploying eBox based AppSachets

Without real world deployments of eBoxes and in the absence of any real cost
models for eBox revenue, we base our cost-benefit analysis on the retail cost
of SSD storage and the benefit of the latest pricing information about content
delivery networks prices. Simply put, the benefit from an AppSachet on an
eBox is directly proportional to the reduction in volume of traffic served by
an eBox. Consider the following:

1. There is a wide range on prices offered by CDNs|6], e.g., typically $0.01
per GB to $0.05 per GB depending on the volume of traffic.

2. Additional storage cost of 2.5 GB flash storage varies from $3-$20 based
on its quality. Assuming that we also add 2GB DDR3 RAM as well to the
eBox, which costs anywhere from $10-$20, this would result in a maximum
increase of $40 in eBox cost.

3. Based on the size of app installs/updates in §1.2, the total amount of
bytes served by an app store are ~2.6TB. With a 83% hit ratio shown to
be achieved by p-LRU cache would serve ~2TB from eBoxes.

Conservatively, using $0.01 per GB, an eBox can save ($0.01 x 2000 = $20)
in three months, i.e., an eBox would be able to recover the additional cost of
storage within 3 months of its deployment. Even if we consider the additional
RAM as a cost increase in eBoxes, it will be recovered in the first 6 months
of eBox deployment. From this, we want to highlight the value proposition of
edge cloud based services (e.g., AppSachet) in terms of reduced operational
costs for cloud based services.

1.7 Discussion and Future work

This paper leaves a number of open questions on the device side, about
eBox deployment models, privacy, and required system software changes. Ones
which we plan to undertake in the future are discussed below:

eBox Deployment Model. Given that realworld deployments of eBoxes
don’t exist as yet, there are open questions about their ownership — individ-
uals, businesses or public infrastructure? Security and Trust aspects of apps
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from AppSachet on those eBoxes? Another open area is DRM of the app
cache on eBox. We posit that authentication and authorization methods can
be deployed on eBoxes, theoretically but those authorization and authentica-
tion assume a human user which is authenticated or authorizes which is not
the case AppSachet operating on eBox. We believe that this is an interesting
problem which plan to pursue in future.

Privacy Concerns. Privacy concerns arising out of sharing app profiles and
methods to anonymize app profiles leaves out an open question — First, is it
possible to fingerprint users based on app users and if so, what obfuscation
methods can be applied to avoid those concerns. However, it is important to
note that sharing app profiles is not invasive than use current app usage API
in Android [1] (which AppSachet also uses) which lets developers to track app
usage. However, this aspect certainly needs a detailed evaluation.

System software on devices and eBoxes. Without any standard defini-
tion of am eBox, their deployment mechanism and consequently new func-
tionalities, e.g., app caching etc., provide an wide open space for research. In
our future work, we are exploring additional functionality that can further
improve the app ecosystem and their automatic provisioning eBoxes.
Device side evaluation. We also carried out experiments to gauge the ben-
efit of AppSachets on end client devices. However, we did not observe any
significant benefits or any new finding other than what is already reported in
our previous work [11] so we omitted those results from this paper.

1.8 Related Work

Previous work on characterizing Internet traffic workload has mainly focussed
on video e.g., youtube access patterns [13, 23, 14, 21, 17] etc, and web but,
there has been no work done in collecting the android app access patterns. Our
paper is the first of its kind to capture and analyse the download behaviour
of android apps. Using dynamic caching for prefetching content, Gandhi et
al [17] suggested that k-means clustering used more intervals while reducing
error rate compared to dynamic programming. However, based on our android
app access pattern, k-means clustering gave a cache-hit ratio of 75%, which is
lower than the cache-hit ratio of the proposed p-LRU algorithm. Zink et al [23]
observed a similar pattern for youtube videos and proposed a caching policy
based on LRU and popularity of a movie. The results showed an improvement
in the cache-hit ratio. However, their algorithm depended on a global list of
popular movies. Access to a global list may or may not be there. Also, it might
happen that the global popularity list might differ from local lists [23], where
they proved that there is no strong correlation is observed between global and
local popularity and video clips of local interest have a high local popularity.
The p-LRU algorithm addresses these issues, as it generates the popularity
list by learning the access patterns locally.
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Prior efforts have considered support app execution via edge-cloud plat-
forms [20, 16, 18, 12] to leverage resource-rich execution environment to par-
tially or fully offload app execution from resource constrained devices. But
none of them considered use of edge cloud platforms for app delivery which is
the focus of AppSachets approach. Recent work to reduce mobile app update
traffic proposes micro app updates[15, 22] which would complement AppSa-
chets.

1.9 Conclusions

AppSachet is a distributed app delivery system for the Android ecosystem
that shows that deploying proposed app caches (p-LRU, ¢-LRU) on eBoxes in
the ‘edge cloud’ tier can recover the already modest additional costs within
3 months of its deployment. The design of AppSachet is based on extensive
experimental measurements of app traffic and keeping in mind practical de-
ployment concerns, i.e., not requiring changes to apps by developers and/or
changes in how end users employ these apps. More generally, we conclude that
that while moving conventional services to the edge cloud can have benefits
in terms of latency and bandwidth but designing services for edge cloud plat-
forms requires more than just running existing backend cloud services in the
edge cloud. There remains interesting tradeoffs to be explored and new mech-
anisms to be developed leading to efficient use of future edge clouds providing
a fertile ground for systems research.
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