AppFlux: Taming App Delivery via Streaming

Ketan Bhardwaj, Pragya Agrawal, Ada Gavrilowska, Karsten Schwan, Adam Allred
Georgia Institute of Technology

Abstract

The number of apps downloaded for smart devices has
surpassed 80 billion, with trends suggesting continued
substantial increases. The resulting volume of app in-
stalls and updates puts pressure on the existing app-
delivery infrastructure due to interactions of end user de-
vices with app stores via the Internet that involve app
stores’ data center, content delivery network’s (CDNs)
points of presence and the Internet Service Provider
(ISP) pipes. This paper presents ‘AppFlux’ — a novel
app streaming approach to app delivery which reduces
the load app delivery poses on the app infrastructure, and
relieves users from having to deal with unnecessary up-
dates potentially saving bytes on their costly data plan.
By leveraging the emerging ‘edge cloud’ tier of the Inter-
net, the AppFlux approach provides ‘just-in-time’ deliv-
ery of apps and their updates while (i) reducing the traffic
due to app installs and updates seen in the last mile of In-
ternet by up to 70%, (ii) facilitating twice as fast app de-
livery compared to CDNs and (iii) App streaming can po-
tentially lead to 20% improvements in the app load times
on devices. With its implementation for the Android app
ecosystem, AppFlux achieves this in a completely invis-
ible manner i.e., without requiring any changes by app
developers or any explicit actions by end users.

1 Introduction

The number of active smart phones worldwide has sur-
passed 1 billion, and is forecast to cross the 3 billion
mark by 2018. In addition, tablet sales are expected to
reach 300 million by 2016, and wearable devices like
smart watches, health monitoring devices, etc., are all
showing signs of rapid growth. Coupled with these
tremendous increases in the number of active devices
is an explosion in the apps available to end users, with
roughly 80 billion app downloads reported for 2013, set

to reach a staggering 200 billion by 2017 [ﬂ

App installs and more so, app updates, which our stud-
ies have found to exceed installs by more than a factor of
3x (see Figure i)), affect users both directly, by poten-
tially consuming costly bytes in their data plans and indi-
rectly, by congesting the last mile of the Internet known
to be a bottleneck for delivered service quality [10]]. The
current app delivery model, where apps are delivered di-
rectly from app stores, ignores such issues, which sug-
gests that a conservative approach to rolling out app up-
dates would lessen burdens on end users. Unfortunately,
the fast paced nature of today’s app market mandates
frequent app updates to retain users, by offering new
features, changing app aesthetics, enhancing usability,
dealing with bugs, improving security and performance.
The consequences are undesirable increases in data plan
costs for end users and increased congestion in the last
mile, even in the presence of Content Delivery Networks
(CDNSs) to ease pressure on back haul bandwidth.

The AppFlux approach presented in this paper and im-
plemented for the Android app ecosystem is an addi-
tional path for app delivery. It offers an alternative way
to handling the delivery of apps and their updates via app
streaming. AppFlux offers novel system support in An-
droid for streaming apps, which can eliminate the need
for explicit installs and enable just-in-time delivery of
apps and usage based app updates. AppFlux exploits an
ongoing evolution (§2)) in how mobile end devices access
and interact with the Internet, via the emerging ‘edge
cloud’ tier situated near end-users, beyond the conven-
tional ‘the last mile’. Mobile devices are increasingly
posed to interact with ‘nearby’ rapidly accessible ma-
chines stationed in local environments in place of and/or
in addition to interacting directly with the remote cloud.
Examples of such machines or ‘edge boxes’, referred to
as eBoxes in the remainder of this paper, include small
cells, WiFi routers, or cloudlet servers [29], that could

Data Source: http://mobithinking.com/

User requests
apps from App
Stores

Apps submitted
by developers

Sy DS
SWE o

X g o A} L4 »
¥ - = o
Apps and . N
updates (.> < 4
delivery to I

AppFlux
users (:

]

Apps and their
updates stored
and streamed

from eBoxes

Apps and their
updates pushed
to eBoxes

= 10 > + . <<q 4G-LTE-UL

5 ooe 4G-LTE-DL

E e | vvy 802.11n SISO

= 100 b b iodeid e 802,110 MIMO

o 802.11ac SISO

& o, 0 +++ 802.11ac MIMO
- v ¢ 802.11ad (60Hz)
£ 10° o 444 eMMC - Rand. Read
o « 111 eMMC - Seq. Read
© eoe UFS - Rand. read
a eee UFS - Seq. read

7 L i i i i i i i i
10" 080910111213141516
Year

Figure 1: (i) showing app ecosystem with AppFlux; (ii) showing comparison of projected data rates between cellular,
WLAN technologies and flash memories available for mobile devices. Sources: (a) ISSCC Trends 2013 (b) JEDEC

Mobile Memory Technology Road map 2013.

be located in homes or neighborhoods, stores, malls, of-
fices, etc. Their viability is evident from new hardware
developments at leading companies [16, [17]] and deploy-
ment plans for WiFi routers and/or small cells designed
for shared access by larger numbers of end devices by
service providers [4}[5/[13]], and in recent research explor-
ing opportunities for new edge services [24} 28}, 29, [22].

AppFlux uses eBoxes to cache apps and app updates
on behalf of end users to reduce last mile traffic volume
by leveraging (i) their better connectivity to app stores
and end user devices, and (ii) the redundancy inherent in
app traffic. Gains are derived from the fact that on the
eBox, an app can be updated frequently, without requir-
ing any action from a mobile device. At the same time,
with a nearby eBox, the device always sees the newest
version of the app, but triggers an install on mobile de-
vice only when the app is actually being run, rather than
when updates are being pushed out by app stores. Hence,
end devices or users are not burdened by update han-
dling.

AppFlux complements the current app delivery model,
as shown in Figure [I[i), in ways that can remain invis-
ible to end users and app developers. AppFlux relies
on eBoxes to interact with remote clouds, to obtain and
cache app updates when appropriate, and to then ‘stream’
the newest versions of apps to devices, whenever the apps
are run. If no eBox is available, the device simply runs
the current app version obtained earlier and stored on its
local storage. If an explicit update is requested, it hap-
pens in the same manner as existing app updates. By
thus replicating app updates on eBoxes, we limit update
frequencies to those based on app usage rather than app
presence on devices, resulting in improvements visible to
end users depending on eBox availability.

AppFlux’s implementation for Android is new, but the
concept of application streaming has seen acceptance
and use in other contexts [6) (11} 14} [19} 18], discussed
further in §[13] AppFlux operation within the Android
ecosystem is shown in Figure Eki), which at one end,
supports battery operated and resource constrained end
client devices, and at the other end, is powered by cloud
based app stores with practically unlimited compute and
storage capabilities. In this ecosystem, eBoxes are posi-
tioned between these two ends, with superior connectiv-
ity to data-centers than that seen by end devices. eBoxes
are not constrained by power, but have limited resources
compared to app stores’ data-centers.

AppFlux exploits the emerging ‘edge cloud’ tier in in-
frastructure and targets a highly active large scale mobile
app ecosystem. This demands new system attributes and
mechanisms not obvious in prevalent client/server archi-
tectures to be a practically viable solution as follows:
Invisiblity. A practically deploy-able solution targeting a
large scale ecosystem like that of mobile apps must be in-
visible from its partners (i.e., app developers) and its cus-
tomers (i.e., app users). For AppFlux, the app streaming
mechanisms are confined to mobile OSes (i.e., Android),
thus not requiring changes in apps, i.e, maintaining the
existing interfaces/APIs and the functionality OSes ex-
pose to apps and users.

Sync Agnosticism. Existing approaches to app delivery
are on-demand (for installs) or require explicit synchro-
nization (for updates) between devices and app stores,
causing inconvenience to users. To address this, AppFlux
operates transparently, in the background, without re-
quiring any explicit actions on end user devices.

Operation Duality. Leveraging new infrastructure ele-
ments like eBoxes while continuing support for existing
app store based mechanisms for app delivery, requires

that lower layers of the systems software stack recognize
the two operating models, and choose necessary actions
accordingly. With AppFlux, client-side systems software
(e.g., Dalvik) maintains dual stacks that support existing
(from local storage) and AppFlux-enabled (via network)
methods for access to necessary app components (e.g.,
classes, assets, etc.).

Prognostic mechanisms. Conventionally, mechanisms
for loading applications, particularly on mobile devices,
are not considered in critical path of performance be-
cause the executable assumed to be resident on local stor-
age can be loaded with negligible overhead compared to
application execution. This assumption does not hold
when accessing application components over the net-
work. A concrete example implemented in this paper is
repackaging app classes based on their signatures to fit
TCP payload lengths, prompting a prognostic approach
to app loading.

Overall, the technical contributions of this paper are:

1. Novel app streaming: Design (§5) and implementa-
tion (§6) of app streaming for the Android app ecosys-
tem showcasing a concrete realization of AppFlux and
its ability to improve app delivery by reducing pressure
on the app delivery infrastructure.

2. Unique app traffic characteristics: We measured
Android app installs and updates at the network tap of
our organization for 3 months period (§3). We believe
that this measurement is first of its kind and potentially
the only one given that all the app traffic has moved to
https since then.

3. Trends in app anatomy: We analyzed popular apps
(4) spanning over a period of one year, i.e., approxi-
mately 5,000 apps which include top 100 free apps in
each category from the Google Play Store to capture the
trends in app evolution.

Our analysis of app traffic measurements suggests that
AppFlux can reduce traffic in the last mile by up to 70%
(§9) and result in 2x faster app delivery compared to con-
ventinal CDNs (§I0). We envision eBoxes usage in com-
bination with CDNs can potentially provide lower laten-
cies in future app access. Concerning app performance,
for Android apps, we show that by using WiFi specif-
ically 802.11ac for app class and static asset loading,
AppFlux can obtain up to 20% improvements in loading
app components (§IT)), compared to when running the
app from the device’s local storage that hold even in case
of multiple concurrent clients (§12). The extent of these
improvements are subject to the quality of the wireless
connection and/or the affordability of cellular technolo-
gies. AppFlux derives its advantages from the following
facts established as part of this research:

1. For a modern device and a WiFi accessible eBox, we
show app streaming is not only to be feasible, but po-
tentially faster than when loading apps from the device’s

local storage, subject to wireless connectivity (4} §T1).
2. Traffic measurements conducted at our site indicate
that a typical app is updated multiple times over a small
window of time (§3] §9).

3. Micro-benchmarks show that an eBox can concur-
rently serve many devices, even under the low cost con-
straints expected for such systems (§12).

2 Motivation

In this section, we discuss technology trends and use
cases that motivated this work. Specifically, how these
trends support the AppFlux idea and the novel usecases
it potentially enables.

2.1 Technology supporting AppFlux

Increasingly Fast Wireless Networks

Figure [I[ii) shows the theoretical data rates of cellular
and wlan (802.11x) vs. flash memory. Evident from the
graph is that flash memory technology can be an order
of magnitude slower than the wireless network. This in-
dicates a strong potential performance benefit from ac-
cessing app code via the network vs. a device’s local
flash device. While such ideal numbers cannot be taken
at face value, given practical issues in achieving those
data rates, measurements performed in less dynamic en-
vironments [21] along with new adaptive methods for
wireless communications [32,130], however, demonstrate
that such practical issues can be overcome. Our hypoth-
esis is that performance benefits will likely be derived
from streaming apps via the wireless network vs. from
on-device storage.

Processing and Storage at eBoxes

Increasingly powerful platforms are being deployed in
network elements like wireless routers, small cells, etc.,
due to reduced costs of compute resources. This im-
plies the likely availability of spare cycles in eBoxes
constructed from such devices, leading to spare capac-
ity for tasks like app streaming proposed in this paper.
EBox storage benefits from similar technology trends:
(i) reduced cost of storage capacity and (ii) ubiquitous
presence of file system support built into devices like
routers [18, [17]. These trends make it straightforward
to adapt these elements to implement app caching in
eBoxes, and for each eBox to efficiently perform tasks
like app streaming for a reasonable number of clients.

Predictable Patterns in App Usage

Mobile app usage is known to be clustered with respect
to time and location. For example, email apps are often
used at work locations in the morning, whereas games
are more often used at home in the evening. Other user
habits also contribute to making app use predictable,

highlighted by the trigger-follower feature in [40], and
validated using actual user data published in [36]. Fur-
ther, previous work [39]] on characterizing app usage sug-
gests the presence of a long tail in app usage on smart
phones: this bolsters the case for app streaming, since
it means that many of the apps installed on a device are
not used frequently, yet, in the current ecosystem, they
are updated nonetheless, hence burdening end users and
their devices. These facts suggest that app streaming can
rely on location clustering and app usage prediction to
pre-populate distributed eBox caches with apps. More
importantly, the predictability in app usage can be used
to warm up eBox’s in-memory cache with appropriate
apps so as to mitigate the effect of slower storage and
limited memory on eBoxes.

Mobile app delivery pain points

When end user requests an app from an app store, the
path app traverses include the following elements of In-
ternet fabric to reach end client device:

1. App store or back end data center which houses
apps uploaded by app developers respond either by
sending the app package directly or a more com-
monly redirect clients to their content delivery net-
works. Similarly, the update notifications are de-
livered by app stores to devices via push notifica-
tions that trigger end user devices to request the app
updates which get delivered in same way as app
installs. This can happen automatically or involve
users* approval based on end user preferences.

2. When clients request apps or their updates, the app
packages are delivered from CDN cache which is
either privately owned (e.g., Google CDN) or stan-
dalone (e.g., Akamai in case of iOS apps) from their
geographically distributed points of presence.

3. The app packages from CDNs are transmitted over
an internet typically operated by internet service
provider (ISP) or Telecommunication companies
via their network pipes. It is important to note that
each request for any app or its update results in sep-
arate traffic flow in ISP pipes. This is first part of
what is often referred as ‘the last mile’.

4. The second part of the last mile is the wireless con-
nection (Wi-Fi or 4G) to which device is connected.
The app or its update travels over wireless (Wi-Fi or
4G) connection to reach end client devices where it
is stored and consumed by the end user.

Important to note here is that traditional CDNs cannot
mitigate redundancy of traffic in the last mile simply be-
cause they operate on its edge facing ISPs as opposed
to eBoxes which operate on the client side. In addition,

the ISPs often opt to run their own CDNs to exploit re-
dundancy in traffic passing through their pipes. Since,
the apps and their updates are normally flagged as non-
cachable content using HTTP headers, cookies etc., due
to pay-per-download nature and issues related to intel-
lectual property protection, these ISP CDNs are unable
to mitigate the app traffic in the last mile. The pain point
in the app delivery is the congestion in the last mile of
internet. eBoxes operating past ISP near end users can
potentially effectively leverage redundancy in traffic due
to apps and updates.

2.2 Novel Usecases

One of the key contributions of this paper is the real-
ization and evaluation of app streaming for mobile de-
vices operating in the so called ‘last mile’ of the Inter-
net. Also, important about app streaming, however, is its
enablement of entirely new app functionality for mobile
devices, described next.

1. MTaaS Device Cloud Enabler: With the push to-
wards reducing the time to market for apps, to guarantee
quality apps to end users, app testing prior to shipping
has shifted from individual devices to device clouds, like
those offered by companies like Apppurify etc., offering
mobile testing-as-a-service. With app streaming enabled
devices, it is straightforward to dynamically provision
devices and/or virtual instances of Mobile OSes at a finer
time granularity and without requiring app installation
for each app. Using eBox-initiated app streaming and ex-
ecution on connected devices, coupled with eBox-level
observations of app behavior, AppFlux can potentially
reduce the complexity and cost of device cloud setup and
maintenance. In fact, a very similar approach is used to
carry out experiments for evaluating AppFlux presented
in this paper.

2. Corporate App Stores: One view of an eBox is as
a local extension (or branch) of an app store. Another
view of eBoxes, however, constrains their generality in
terms of what apps are supported and how they are run,
to suit the goals of specific organizations. An enterprise-
level eBox, for instance, could provide end users with
rapid access to ‘corporate apps’, tested for sufficient lev-
els of security, offering features not available for public
apps, designed to efficiently exploit certain device fea-
tures (given that those devices may have been provided
by the corporation), etc. and the access to apps can be
limited to office location only. Such functionality can be
supported with eBox-level user groups.

3. Improved App Revenue: By judiciously removing cer-
tain app components from the device and instead, keep-
ing them on eBoxes, app streaming can help combat
app cloning/repackaging and the consequent reduction in

3500

130000 | wm Installs oel
5 c
225000+ o
€ =
220000+ O
15000 os
2 I, .. Installs
§1°°°°' — Updates
5000+ 0% 200 400 600 800 7000
downloads per app

Total

c 038 :~'.‘ c 0.8

2 / S

(&)]

@ o4 : : ; ; @© o4

— —

w,| |- Installs w - Installs
- Updates — Updates

o 1000 2000 3000 4000 D’OO 500 1000 1500 2000 2500

downloads per day # downloads per hour

Figure 2: Android app traffic measurements over the period from May 19, 2014 to Aug 21, 2014 (excluding two
weeks in July - a total of 11 weeks): (i) showing the total number of observed and unique app installs and updates ;(ii)
CDF showing distribution of app installs and updates observed per unique app (iii) CDF showing distribution of app
updates and installs for each day; (iv) CDF showing distribution of app installs and updates per day; (iii) CDF showing
distribution of app installs and updates at a particular hour during a day.

revenue obtained by app developers [25]. Furthe,r lever-
aging the context of an eBox, e.g., its geographical loca-
tion and the app usage profiles collected by app stream-
ing, affords opportunities to capture end user attention
for new apps and their unique capabilities, thus aiding
app discovery. We plan to explore this and similar ideas
in the future.

Next, we present the details about the method used to
carry out app traffic data, our observations and analy-
sis of the collected data followed by the analysis of app
anatomy that motivated AppFlux design.

3 Traffic due to app delivery

We have collected data about all users in our institution
i.e., Georgia Institute of Technology, over an extensive,
representative time period (from May 19, 2014 to Aug
21, 2014). The data is obtained from a network tap also
used for security research, and is filtered to determine
whether traffic was due to the installation or updates of
apps from the Google Play store and includes apps and/or
updates accessed by entire population including students,
faculty and staff at our institution during the collection
period.

Data Collection

App installs or updates are not directly identifiable in the
traffic traces available to us. Instead, we observe that
whenever a device initiates an install or update of an app
from the Google Play store, this leads to a HTTP 301
response code from the store, which points to the loca-
tion of the app within Google’s CDN or server. This 301
response contains a location URL that points to the do-
main “play.google.com”, and contains the URL path el-
ement “/market/”. The URL also contains in its param-
eters the name and the version number of the app be-
ing installed/updated. The version information is either
a single version number if installing a new app or if an
app update results in removal of old version and instal-
lation of a newer one, or a colon separated list of two

version numbers, i.e., the current and new versions. This
information is sufficient for determining the overall set
of IP addresses for which play.google.com resolves, as
many portions of Google’s overall infrastructure (includ-
ing app distribution) are served via their CDNS.

Prior to obtaining traces, we systematically resolved
the IP for play.google.com over a multi-week period and
recorded all resolved IP addresses. We configure our
collection server with this IP information, to collect all
packets that have any of these derived IPs in the source
address section of the IP header and that utilize the TCP
source port 80 (HTTP). After collecting all such traffic,
we then use tshark to perform TCP packet reassembly,
filtering out all traffic that does not fit the parameters of
Google Play HTTP 301 responses. The resultant set of
response codes represent all detectable Google Play app
installs and updates for that two week period within our
organization’s network. While traffic collection is on-
going, we use softflowd to generate netflow information
for the network. At the conclusion of the data collec-
tion process, we use nfdump to read in, aggregate, and
produce total bandwidth utilization for the time period
of collection. The resulting measurements report a to-
tal of 2 Terabytes of 301 requests pcaps for this period
from the Google Play Store. Unfortunately, updates and
installs over encrypted connections (e.g., HTTPS) can-
not be detected in this fashion and are not included in the
data presented because the necessary information to de-
tect an app install or update requires the contents of the
HTTP 301 response code.

Observations

1. App updates dwarf the number of app installs. Fig-
ure (i) shows that the total number of app updates is ap-
proximately three times the number of app installs. Fig-
ures [2[iii) and[3{i) show the distribution of app traffic ag-
gregated on a per day basis. Figures [2{iv) and [3(ii) show
the distribution aggregated on a particular hour during
the day. One might find it surprising that the number
of installs also increases on the same days when updates

-- Installs
— Updates

4000

3000F

2000

app installs/updates

2500

vvvvvvvvvvvvvvvvvv

mm Installs

vvvvv

]

Q mm Updates

mZOOO*

e}

o

2

l)1500*

©

0

E 1000

o

[oX

(M 500F

H*

0 O ANMTUNONONIOANMTNONRODOO—ANM
0OO00000O00O0O0O At AdA—FAd AN NNN
I T I IIIIIIIIIIIIIIIIIIIIT
Hour of day (24 hour format)

Figure 3: Android app traffic measurements over the period from May 19, 2014 to Aug 21, 2014 (excluding two weeks
in July - a total of 11 weeks): (i) showing number of app installs and updates observed per day; (ii) showing number

of app installs and updates observed during hours of a day.

are transmitted. This is due to the way we distinguish
between updates and installs in the traffic traces added
to actual installs. Also, we note that in some instances,
updates are also transmitted as full apps, if the diff be-
tween the updated and installed app versions is large. In
any case, it is clear that app updates introduce significant
traffic flowing in the last mile for apps resident (previ-
ously installed) on devices, regardless of whether those
apps are actually being used or not. The long tail in the
number of unique app updates and installs seen in Fig-
ure2{ii) (clipped on the x axis to highlight the lines) sug-
gests a small eBox-resident app cache would suffice to
provide significant savings in last mile traffic.

2. Bursty and cyclic nature of app updates. Looking
at the temporal patterns in the collected app traffic data,
Figure [3]i) shows the app traffic observed per day. App
updates show a bursty nature with respect to days with
burst period of 10 days. This suggests in a significant pe-
riod for eBoxes to absorb updates. Variations in the ab-
solute heights of the peaks can be attributed to the varia-
tion in the number of devices present in our organization
(from May 19th through August 15th) and the arrival of
students in the fall (from August 15th). App traffic in a
particular hour during a 24 hour period is shown in Fig-
ure[3[ii). The diurnal traffic pattern suggests that even if
updated apps have already been pushed to the app store
by developers, actual updates coincide and are centered
around the Internet rush hour (7-9PM) [9]. An updated
app resident on an eBox can alleviate this pressure at
peak times. The CDF of the number of app updates and
installs per day in Figure[2](ii) highlights the long tail dis-
tribution of app traffic with respect to days, i.e., there are
a few days with heavy updates, but the majority of days
are without any updates. Also, shown in Figure [2[(iii) is
the CDF of app traffic per hour of day, to provide a com-

plete picture of the data collected as part of this work.
An interesting element is that app updates are distributed
throughout the hours of a day which seems contradictory
to results in [B3|(ii). But this is a result of the cumulative
effect caused by combining hourly distributions during
peak and non-peak days. AppFlux can alleviate pressure
on peak hours and at the same time, reduce the interrup-
tions seen by end user on their devices due to absorption
of updates by the eBox which will be seen only if the app
is actually used.

4 App Anatomy

The design goals of AppFlux are (i) to provide end users
with fresh app versions without the need for explicit or
unnecessary updates, (ii) to ensure that no degradation is
observed due to app streaming, while also (iii) laying the
basis for efficient and scalable app caching on eBoxes.

We first determine the viability of app streaming for
Android devices, by inspecting the top 100 Android apps
in each category available in the Google Play Store, for
a total of 4,969 apps. This inspection identifies app con-
stituents, but also aims to quantify their evolution over a
year and finally, the impact of this evolution on the app
update process and on app performance. We also mea-
sure the time spent in loading classes and assets com-
pared to the app’s total execution time, to gauge the im-
pact of streaming on app loading performance.

Previous efforts geared towards application streaming
for end consumers have been thwarted limiting their use
by enterprise customers only, e.g., Windows application
virtualization [[L1}, [14]]. This was attributed to the inabil-
ity of the end user applications to achieve 100% compli-
ance due to their run-time dependence on non-Windows
(or third party) services. By design, Android apps are

=4
@
o

o

=4
>
o

o
Y
o

Fraction
Fraction

~Aug 2014

~ Aug 2014
~July 2013 . July 2013

o

023

o
o

C
O .4 “arsc file (Aug 2014) ‘ D f y
g arsc file (July 2013) A Class
— asset folder (Aug 2014) N
e 0.4] asset folder (July 2013) PP' loading
™ — res folder (Aug 2014) runtime l—l
02 res folder (July 2013) init I

e

e

App startup

N\

— native libs (Aug 2014)

native libs (July 2013) State loading

0.0

10000 20000 30000 40000 50000 60000 2000 4000 6000 8000 10!

App size (KB) Class size (KB)

00

2000 4000 6000 8000 10000 12000 14000

static asset size (KB)

Figure 4: App anatomy analysis for the Top 100 apps in each category available in the Google Play Store in July 2013 and August
2014: (i) showing CDF of total app sizes (apk file size); (ii) showing CDF of uncompressed class sizes in apps; (iii) showing CDF of
other static assets (asset folder, res folder, arsc file, native libraries); (iv)Showing app execution phases concerning app streaming.

standalone entities, running as separate (uid, gid) pairs,
and rely solely on Android platform features for their im-
plementation. So, for Android, if functionality other than
what is available on an Android platform is needed by an
app (e.g., specific API libraries, etc.), it is packaged in
the app itself, and inter app communication is explicit
(via API or supported Intent functionality). Therefore,
run-time dependency is not an issue for Android apps.

Classes, Static Assets — Main App Constituents

Figure [i) shows the cumulative distribution function
(CDF) of the total compressed size of downloaded apps,
i.e., apks. It clearly show that app size is increasing over
time, up to (but not exceeding) the SOMB limit imposed
by Google. However, Google also provides two expan-
sion files (2GB each) that can be used by developers
to provide any additional resources required by an app.
We conservatively analyze only apks and their compo-
nents, despite the fact that any update on either expan-
sion file also triggers an app update. Figures [fii) and
(iii) show the CDF of the apps uncompressed class size,
and that of apps’ other static assets. Figure [ii) shows
that app class size has increased for all the apps, hint-
ing at increased app complexity, a trend expected to con-
tinue as more complex functionalities are introduced by
newer apps. We limit the max value of the x axis in Fig-
ure [4{iii) to clearly highlight that the sizes of other static
app components do not vary much, with only slight in-
creases. This does not mean that these components do
not change, but rather, those changes are not visible as
changes in component sizes (e.g., changes in Ul images
or icons, etc.). It is also clear that app anatomy varies
significantly. AppFlux should not only consider app exe-
cutable, but should handle streaming of static app assets
as well. This also highlights an important point about
why mechanisms like on-demand class loading or JAVA
reflection do not suffice for mobile app streaming.

Class and Asset Loading Affects App Performance

For purposes of app streaming, an app’s execution can be
divided into four phases, as depicted in Figure f[iv): (i)
initialization of the application run-time, provided by the
OS on the device (e.g., Dalvik for Android); (ii) load-

ing the app executable from local storage (i.e., the in-
ternal eMMC or the external sdcard); (iii) loading app
state either from the network or from local storage; and
(iv) actual app execution based on user inputs and other
loaded app assets (e.g., background images, A/V, etc.).
In addition to system delays seen during app launch (e.g.,
Dalvik VM launch, loading system classes etc.), there
are also app-specific contributions to delay during app
execution. From AppFlux’s perspective, these delays
are of interest only insofar as the loading of app-specific
classes via app streaming contributes to these delays. For
our analysis, we used class prefixes in class URIs (e.g.,
com.android used for App framework’s internal classes,
com.google.android for Google’s app classes like Maps,
commands.monkey for Monkey runner classes, etc.) to
filter app-only classes, which are typically part of app
updates, and to extract performance metrics pertaining
to app components present in apk files. Measurements
in Figures [7(i) and (ii) in § [T1] highlight an important
fact: class loading and static asset loading are impor-
tant factors in app execution performance. The outcome
of these evaluations is a practical upper bound on poten-
tial performance improvements due to reduced class load
times: if load times are reduced to zero, performance can
be improved by up to 50%.

Summarizing, given higher access bandwidth of WiFi
than flash memory and class/asset loading being an im-
portant factor in app performance, app streaming can po-
tentially improve app performance.

5 AppFlux Design

AppFlux encompasses the eBox-remote app store inter-
faces needed to obtain updates. The outcomes of eBox
interactions with a remote cloud or app-store is that
eBoxes locally cache those apps that are more likely to be
used by nearby mobile devices. AppFlux complements
existing mechanisms for “on device” app installs and/or
updates with instant eBox-based, just-in-time streaming
of app executable, whenever apps are run. A desirable
side-effect of running an app from the nearby eBox is

a consequent update to the app resident on the device,
but as this is done asynchronously with the app’s exe-
cution, end users do not directly perceive such an up-
date, nor do they experience the delays of update actions
(they will see the battery power consumed by such up-
dates, however). AppFlux operates by relying on device-
resident functionality to transparently intercept requests
for app components like classes, static assets like images,
XML, etc., and then redirect such requests to network-
accessible eBoxes or to the device’s local storage. The
latter is so that non-eBox enhanced devices operate just
like today’s devices, relying on updated apps stored lo-
cally. Devices enhanced with app streaming, however,
can use apps stored in the accessible eBox, with the de-
sirable outcome being that users will use the newest app
version currently available on the eBox. In case of dis-
connection while streaming an app, there are two cases
that arise: (i) subsequent usage of the app requires only
the already fetched app components in which case user
would not see any interruption and (ii) subsequent usage
requests an app component which hasn’t been streamed
yet. In that case, user will see an interruption and would
have to restart the app.

The realization of AppFlux developed in our work ad-
dresses the technical challenges enumerated earlier, with
a design that splits the app eco-system into two compo-
nents: (1) a front end end user device — eBox interface,
and (2) a back end component interfacing the eBox with
a remote cloud or app store. As shown in Figure [5] the
main elements of AppFlux are (i) the AppFlux Client
— embedded in app framework of mobile OSes, (ii) the
AppFlux Server — providing on-demand streaming of app
components, and (iii) a Device Cell Link (DCL) — that
comprises a protocol for bootstrapping and app usage re-
porting which then, drives the prognostic adaptation in
app streaming. For completeness, (iv) we also sketch
the expected interactions between eBoxes and the remote
cloud, such as populating app caches in eBoxes (push-
or pull-based) and app-profile consolidation, but defer to
future work topics like caching policies, governing poli-
cies about how app executable, static assets, and associ-
ated app state are managed — jointly termed Code State
Cache (CSC).

The implementation of AppFlux uses either available
Android platform components or open source technolo-
gies. Specifically, (i) the device-side AppFlux client el-
ements are implemented as a patch for Android (specifi-
cally, modification and/or enhancements in cutils, dalvik,
androidfw, and init.rc), and (ii) the eBox-resident ele-
ments are implemented using the node.js TCP socket
API. (iii) Additional elements of the eBox-app store in-
terface can be implemented using HTTP API exposed by
app stores like Google Play.

6 AppFlux Client

The AppFlux front-end component provides the device-
eBox interface and is designed as a split module, one half
residing deep inside the mobile OS and the other resident
on an eBox, as shown in Figure [5{i).

Operation Duality enabling Connection Manager. The
connection manager is responsible for communication
setup when an end device first connects to a streaming-
enabled eBox. This entails (i) exchange of a list of in-
stalled apps, their versions and signatures, and (ii) ex-
changing the streaming server’s configuration, i.e., port
number, IP address, and apps available on the eBox. In
the current prototype, a file in the Android file system,
i.e., /data/AppFlux/app-list, is used to store a list of apps
available on the currently connected eBox. On-device
population of this information is implemented as a patch
in Android’s cutils exposing a wpa-supplicant listener
that raises a new Wi-fi connection notification which then
triggers AppFlux’s bootstrap process.

Prognosis Enabling App Signature. App streaming
maintains a concise representation of each app, termed
app signature. It is a list of the app’s executable com-
ponents and/or assets that are loaded during its execution
on the end client device. The device-resident app sig-
nature module is responsible for maintaining these sig-
natures for all device-accessible apps. In Android, this
is achieved by keeping a list of classes and/or static as-
sets to be loaded during app execution. The signature is
stored as an app-specific file in the Android file system,
specifically, in the configuration folder for app streaming
on the device, i.e., /data/AppFlux/app-name/signature.
App signatures are shared with eBoxes via the connec-
tion manager when the device first connects to an app
streaming-enabled eBox. This is used by eBox to adapt
the streaming content to include components that would
be needed by that app by a particular user.

Operation Duality and Sync Agnosticism in App Proxy.
In a streaming-enabled device, the app proxy is respon-
sible for intercepting executable and/or static asset re-
quests (at the app run-time layer) and redirecting them
to the network or to local storage, the latter based on
connectivity information in the connection manager that
actively monitors the device’s connectivity to an eBox.
Such interception makes it possible for app streaming
to be transparent to app developers, i.e., no changes are
required to existing apps. The app proxy also interacts
with the app-signature module, to store and/or retrieve
history-based app signatures. In our Android prototype,
the app proxy is implemented as a module in the Dalvik
VM (for app classes) and the androidfw module (for
static assets). In Android, when an app requests a class
via JNI, it is loaded from the classes.dex file or from dex-
optimized classes cached in an app specific directory.

Handles |

S e bootstrap S .
Jﬁ@@ﬁ o | on &

connection.

Connection
Manager

reporter

update
handler

App
streaming
Server

Code State Cache
(csc)

On
demand

streaming
of apps.

Connection Streaming
|Device | |eBox | |Device |
Connection ! ! request by name I'
! ack\' Prep. for
bootstrap 4—/45 streaming

re-load

request confi app parts

Add available | ' o
appsto || apps : :Egcution g||FLRdate required | usage
available! ! update if
list + app version, ——fjoutdated on
! signatures . device Update
i~ ack : | app-
!bitmap for Prepare for | i profile:
iupdates for 7~ streaming ' duration,
linstalled apps i i i app- .

Figure 5: AppFlux Design: (i) AppFlux device-eBox interface; (ii) DCL protocols for connection and app streaming.

When a static asset is requested, it can be loaded from the
multiple locations, i.e., res folder, arsc file, asset folder,
icon directory, etc., present in the app’s apk installed on
the device after passing through an unzip data stream.
A URI and/or buffer mode can be used for loading
static assets. The app-proxy spans Dalvik and the An-
droidfw library, and forwards request to the app stream-
ing client or uses existing loading mechanisms to load
from local storage. App-proxy provides URIs for classes,
e.g., com.adobe.reader.classname, which are identical to
those specified to the class loader by its JAVA framework
or app’s locale, vendor information and asset’s name, to
allow eBox to correctly select and stream required as-
sets, as explained in the next sections. With this design
and implementation, since there are no changes in the in-
terfaces used by apps, even for static asset loading, app
streaming operates without requiring app changes and in-
visible to end clients. The app proxy is also responsible
for handling update triggers from eBoxes. On the trigger,
it uses existing interfaces (i.e., Android’s package man-
ager) to trigger app update on device from an eBox. The
incremental updates when delivered from app stores are
consolidated at eBox for streaming but are delivered as
incremental updates only to devices which are handled
in the same way as they are handled by existing devices.

Invisible App streaming Client. The app streaming
client is simply a TCP socket client that accepts requests
from the app proxy and then handles app streaming re-
sponses from the server on the eBox. It is embedded in
dalvik and the androidfw library to cover all app com-
ponents. TCP sockets are used (vs. HTTP) to minimize
connection and packet overheads during streaming. The
implementation modifies Android’s cutils to expose APIs
to dalvik and androidfw library that allow it to request
classes or static assets from eBox.

7 AppFlux Server

Sync Agnosticism enabling App streaming Server. The
app streaming server resides on an eBox, listening to re-
quests from end client devices for app executable and
static assets, on a port number exchanged during con-
nection setup. It is implemented as a node.js-based
TCP socket server, and interfaces with an in-memory
cache for classes and static assets — part of the code-
state cache (CSC). It translates class names to directory
entries, which in turn are pre-populated based on eBox-
app store interactions, where apps are de-compiled on the
eBox into the same directory structure as the source. The
loading of static assets is more complex, because (i) there
are more locations to search for an asset including the as-
set folder, the .arsc file, the icon directory, xml files, etc.,
(ii) the same asset may refer to a different file depending
on locale information, and (iii) some apps may choose to
load assets in a raw buffer and parse individual assets for
performance reasons. This leads to some additional com-
putational overhead imposed on the eBox’ app streaming
server — rather than the end client device — to maintain an
index and to search and load static assets. An important
server action is to compare the app version on the device
to the one resident in its own repository. If the app on the
device must be updated, the server also issues an update
request, but only after the user stops streaming the app.
This triggers the app proxy to perform a background up-
date on the device-resident app.

Prognostic Code State Cache (CSC). The CSC is an
eBox-resident in-memory app repository. It can be pop-
ulated using policies that govern (i) preparation for app
streaming, e.g., by pre-fetching in memory those apps
that will be used soon based on user behavior, (ii) app
refresh on the eBox, and (iii) app replacement to con-
serve limited eBox resources. We have not yet explored

this functionality in detail, but submit that its likeness to
how CDNs operate [[1] strongly suggests the feasibility
of its realization. In the Android prototype, for all (uid,
app) pairs, there exist executable and static assets in the
CSC (e.g., app background images, embedded A-V con-
tent in apps, etc.). In order to minimize memory usage
on the user’s device and the number of requests to app
streaming server on the eBox during streaming app exe-
cution, we have explored multiple approaches for storing
executable on the eBox. We first used existing single
classes.dex file and streamed it at the start of an app, but
that needlessly stresses device memory and increases de-
lay, as classes.dex typically span multiple initial packets.
Second, we de-compiled apps and create dex file for each
class that can be streamed as requests arrive. This is good
for device memory but bad for the number of requests
to the eBox. We therefore, maintain multiple dex files
for a single app, each including a subset of classes from
classes.dex, where the size of each dex file depends on
the TCP/IP payload limit, i.e., 65536 bytes, and the or-
der in which these dex files are delivered is derived from
the app signature. This requires pre-processing of app
classes on the eBox (which remains transparent to app
developers). Currently, CSC population is performed
manually, using the dex2jar [[7] and dx tool from Android
SDK to extract and repackage dex files which we plan
to automate using inotify callbacks on app repository on
eBox’s file system.

Invisibility enabling Device Cell Link (DCL). The pur-
pose of the DCL protocol is (i) to realize seamless access
to app executable and static assets on the eBox, and (ii) to
reliably stream app executable components. In Android,
DCL operates by referring to classes by their qualified
names, as seen on the device, using hooks implemented
in the Dalvik VM as it gets launched before any loading
request is issued by an app. Reliability in streaming is
obtained by implementing DCL on top of TCP/IP sock-
ets (vs. using UDP). Operationally, as also shown in Fig-
ure[5]ii), a connection phase, is followed by a streaming
phase in which app classes, assets are streamed to the
device running the app.

8 AppFlux eBox-App Store Interface

The AppFlux back-end components span the eBox and
the remote cloud hosting app-store functionality (e.g.,
Google Play Store). As stated earlier, its realization can
leverage CDN functionality, but we have not yet explored
challenges concerning its efficient operation. The key
components in eBox-App Store interactions needed for
AppFlux include the following.

An eBox-resident app profile reporter, shown in Fig-
ure[5[i), is responsible for creating and maintaining app-
profiles for the users employing its app streaming ser-

10

vices. An app-profile is a relational structure contain-
ing user identifier (uid), device identifier, app id, and
app usage-related information maintained per user on an
eBox. Beyond using such profile data for optimizing
eBox operation and improving end user experiences for
app streaming, of additional interest may be to sync such
profile data with app stores.

To support a push-based mechanism for update distri-
bution, AppFlux requires an eBox-resident update han-
dler, operating much like asynchronous callbacks trig-
gered by the remote app-store on relevant app updates.
An update is committed only when there are no current
users for this app, to avoid misalignment of app versions,
but once committed, the update is immediately available
to eBox users. The implementation maintains a uid bit-
map for each app that specifies whether an app is being
used by a certain user.

In addition, AppFlux relies on app store-resident func-
tionality to provide the aforementioned callbacks or
eBox-initiated syn operations, to leverage AppFlux’s app
profiles and other information gleaned from eBox usage
patterns to guide the disitribution of app updates across
eBoxes, or to otherwise allow app stores to benefit from
the presence of AppFlux enabled eBoxes in the end-to-
end app ecosystem.

As stated earlier, this paper focuses on understanding
app streaming costs and opportunities from the perspec-
tive of end clients. We leave additional detail and evalu-
ation of eBox components for future work.

9 Traffic Reduction in the Last Mile

Figure [6[i) shows the estimated reduction in traffic if the
app installs and updates are cached at the eBox for 1 to
15 days. Our analysis of Internet traffic shows the use of
eBoxes to result in potentially saving up to 75% of the
last mile traffic due to app updates and up to 42% of traf-
fic from app installs. We see such huge benefits because
when two or more devices near the same eBox update
or install the same app, this leads to duplicate requests
from all those devices to go to Google Play Store via the
Internet. Those apps are then delivered directly or by
Google’s CDN, but in both cases this leads to repeated
delivery of the same apps binaries to different devices in
the last mile which holds true for app updates as well.
With an eBox, redundant last-mile traffic is eliminated
by re-using the single update or install already present
on the eBox. This clearly shows that an eBox-based app
cache can significantly reduce traffic in the last mile of
the Internet.

10 _
W0 45
- |- Updates <40 . Installs =70
S~ .. Installs 35 — Updates)
~ (@) p 60
0 — c 30 - Total >”50
o 25 S
C 100 eeeeeaeeees 4 20 a c 40,
S ESNIORTRE L © 13 S 30
© o 10 -, 1S 20
o o D 3 —110
> 5 10 15 20 25 30 : % Yol
53 4 5 6 7 6 61011121314 15 < A 102030405060708090
Age on eBox (days) Capacity(GB) days

Figure 6: (i) Traffic reduction in the last mile due to apps and their updates with the age of app on eBox i.e., app
is stored on the eBox for those many days after it has been seen for the first time; (ii) Average response latency in
fetching an app with changing eBox storage capacity: On a cache hit, app is fetched from an eBox else from a remote
cloud based app store of different capacity; (iii) Latency variation with age of apps/updates as number of days with

10GB of LRU cache at eBox.

10 Faster App Delivery

We analyze the impact of eBoxes on app delivery by con-
sidering eBoxes as a ‘nearby’ addition to existing CDNs.
We simulate an eBox and a single nearby CDN POP
(point of presence) using the open sourced Globule CDN
implementation [35] deployed on our OpenStack-based
cloud infrastructure. Our setup represents the best case
for any CDN node because it is present within the same
ISP (i.e., Georgia Tech’s network) compared to CDN
which are situated near ISP’s nodes. We use captured
app traffic traces to generate a representative app traffic
workload. Figure [f]iii) shows an achieved cache hit rate
of 93% with 10GBs of eBox storage. The left part of the
figure shows the cold start of the eBox cache, where sub-
sequent requests to the same app result in cache hits and
Figure[6{ii) shows the average download latency from an
eBox with a 10GB of cache. In case of hit, the app is
fetched from an eBox and an app is fetched from a re-
mote cloud based apps store in case of a miss. The app
install and update times can be significantly reduced in
case of cache hit as can be seen from red and green dots
in Figure [6]iii). From Figure [f]ii), we can see that the
average install and update times can be reduced by a fac-
tor of 2x, i.e., from 40.29 to 19.362 secs., when the eBox
cache size varies from 2GB to 30GB. From these results,
we see that a 0GB cache can absorb most redundancy in
the last mile due to app traffic. Important points to note
here are (i) AppFlux does not compete with the CDN, but
complements its operations. (ii) We must consider rela-
tive improvements in bandwidth and latency measured as
opposed to the absolute values measured in our simulated
experiments. An eBox based cache with reasonable stor-
age, i.e., 10GB, can provide up to 2x faster app delivery
than CDNZ.

11

11 Streaming Improves App Performance

Experiments are run on a Nexus 5 phone with Android
(CyanogenMod 11.2 ~ Android KitKat). The eBox is
emulated with a Core2Duo machine housing apps in its
local storage and connected to a Linksys wrt 1900ac
router via a Gigabit port. A local wireless LAN using
only the SGHz frequency band (with up to 1.3 Gbps
capacity) provides 802.11ac WiFi connections for app
streaming. The phone is placed near the router for exper-
iments, with only two entities connected on this network
during experiments, i.e., the phone and the eBox. Inter-
actions between the eBox and the app store are emulated
by downloading 4,969 apps from the Google Play Store
using its unofficial Python API. Figure[7]depicts the time
spent in loading app components during execution. The
data shown is the median of five measurements, resulting
from a total execution time of 10 secs. after app startup,
for the Top 100 free apps in each category available from
the Google Play Store. Apps are run using the Monkey
runner available as part of the Android app ecosystem for
app start up, with a fixed numbers of random events (20
UI events with a spacing of 500 ms) mimicking a real
use of an app by an end user. We exclude the first run
when device-specific optimization is applied by the ex-
isting Android dexopt tool, for apps installed for the first
time.

Figures[7|i) and (ii) show the CDF of the time spent in
loading app-specific classes and assets, respectively. As
seen in Figure [7i), load times for app-specific classes
vary from a few milliseconds to slightly more than 2
seconds, for the 99th percentile of apps. Similarly, Fig-
ure [7](ii) shows the time taken to load app-specific static
assets varying from a few milliseconds to 2 seconds for
the 99th percentile of 10 secs. The measurements in
Figure [7|iii) suggest that the time taken to load system
classes, for the 99th percentile, is around 5 secs. These

measurements support our assumption in § {4 about the
impact of app loading on app performance. This also
suggests that these (surprising) results are primarily due
to (i) Android’s dex file format, which packs all app
classes into a single file to reduce the app’s storage foot-
print, (ii) Android’s class look-up method, which uses a
hashmap and utilizes a memory mapped dex file to load
classes, and (iii) finally, the effective flash memory ac-
cess bandwidth available to the class loader. The conse-
quent technical approach chosen for app streaming ad-
dresses these issues by (i) eliminating the need for com-
pression in the dex file format, by keeping uncompressed
app classes and static assets in the memory-rich eBoxes,
thus trading storage capacity in eBoxes for performance,
(ii) shifting class lookup overheads to eBoxes, by modi-
fying the existing Dalvik class loading mechanisms, and
(iii) leveraging the improved access bandwidths of fu-
ture WiFi networks, as highlighted in Section 2| A pos-
itive additional side effect of improving app class load-
ing is a reduction in system class load times, shown in
Figure [7iii), also bolstering app performance. Using
streaming apps and under ideal network conditions, app
loading performance can be improved by up to 20%.

12 App Streaming Server - Multi-tenancy

For eBox micro-benchmarks, we use a powerful (Intel
core i7, 16 GB DDR3 RAM) and 802.11ac capable lap-
top to simulate concurrent clients connected on the same
network link. To show that a single eBox can simultane-
ously serve a modest number of end user clients, with no
or little degradation in app streaming performance, we
measure the variation in latency of app streaming with
different numbers of concurrent eBox clients, averaged
over a fixed number of requests per client (set to 20 per
client — because most apps end up fetching 20 chunks
of components, including classes and assets). The con-
current client load are simulated Node.js processes, and
the bandwidth achieved is limited to 270 Mbps, the lat-
ter because of a limitation in the laptop’s Wifi adapter
that supports a maximum of 8x40 Mbps simultaneous
connections on SGHz. Conservatively using full dex file
response payloads for every request (the actual AppFlux
implementation does not have such large responses), Fig-
ure [/| (iv) shows that our current (un-optimized) eBox
implementation can handle 100 concurrent clients with
reasonable latency. Beyond that number, we observe the
bottleneck to shift from network to storage I/O on the
eBox, which leads to degradation in response time, as
shown in the figure. This suggests the need for careful
eBox implementation and optimization for client multi-
tenancy, which we plan to undertake in the future. Nev-
ertheless, the micro-benchmark highlights that even with
an un-optimized implementation, an eBox can handle

12

app streaming for a reasonable number of clients, thus
establishing the viability of eBox-based app streaming.

13 Related Work

Application Streaming. Prior work on app streaming
includes (i) ‘thin’ desktop clients [|6, [11} 14} |19]] stream-
ing pixels to low cost front end displays. (ii) Numecent’s
cloud paging [[15] streams memory pages to end clients.
(iii) Instart logic’s [8]] webapp streaming exploits the or-
der of relevance of app components using a browser-
resident nano-visor to optimize web app delivery. A re-
cent offering by Amazon performs mobile app streaming
using a wrapper SDK. AppFlux differs from such efforts
because (i) it focuses on mobile apps vs. desktop appli-
cations, and (ii) it exploits the emerging eBox tier.
Mobile app analysis. Earlier work has analyzed mobile
apps from various perspectives, e.g., quality [27]], unsafe
exposure [26], security [41], privacy [38]], etc. We pro-
vide a performance-centric analysis of mobile app struc-
tures relevant to enabling app streaming.

Mobile app architectures. There are three prevalent app
architectures: (i) Native Apps, (ii)) Web Apps, and (iii)
Hybrid Apps. We propose an alternate approach that can
reap the benefits of both native apps and web apps, by
streaming native code to end client devices.

Online application update. Dynamic software up-
dates [37, 133, 31]] leading to reference management
tools [20] have been explored for enterprise IT teams,
with a focus on managing system updates for large or-
ganizations [3} [12]. But no such tools/technique exist to
benefit end users of mobile devices and apps. AppFlux
addresses this gap. Recent work to reduce mobile app
update traffic proposes micro app updates [23]] which
would complement AppFlux.

14 Discussion and Future work

This paper leaves a number of open questions on device
side, eBox’s deployment model, privacy and required
system software changes. Ones which we plan to un-
dertake in future are discussed below:

Energy consumption on devices. With almost all apps
requiring network access (98.9% in the apps we used for
evaluation) and hence, turning on the network connec-
tion, We posit that app streaming can potentially piggy-
back the tail energy [34], causing minimal affect on over-
all energy consumption which requires detailed evalua-
tion.

Cellular network. An important question that is left
open in this paper is whether AppFlux is relevant for cel-
lular technologies because all of the experiments are run
using Wi-Fi. We posit that similar opportunities exist in

)

0.8 0.8] / 0.8 2 0.|
c [/ C / [—c=1
-_g 08 2 o6l F _g 06 3 O —c=10
© o 15} i © —es
@© 04 ® 04 f ® 04 / % 04 —©=50
o A — A — ~ A — — ¢c=100
o, — Streaming wo — Streaming o - Streaming| C e=200

.. Installed .. Installed .. Installed) IS
0950 100 150 200 250 300 350 400 0% 50" 100 150 200 250 300 350 400 0% 700 200 300 400 500 600 700 B0 O =% & @ oo 0 1o
Time(ms) Time (ms) Time(ms) Latency(s)

Figure 7: App loading performance comparison (streaming vs. installed) (i)showing CDF of time taken to load app
specific classes (ii) showing CDF of time taken to load static assets of app (iii) showing CDF of time taken to load
system classes. (iv)showing CDFs of latency in total response time per request varying with number of concurrent

clients (c).

future cellular technologies using small cells as eBoxes.
However, we could not experiment with small cells be-
cause of lack of open small cell platforms that we could
use carry out experiments as most commercially avail-
able small cells are closed platforms (sold by cellular
providers) making it close to impossible to insert app
streaming functionality on them. Subject to availability
of open cellular platforms, we are exploring ways to in-
clude evaluation of eBox functionality on cellular tech-
nologies.

Deployment Model. Given that eBoxes deployment
doesn’t exist as yet, there are open questions like who
will own the eBoxes — individuals, businesses or will
they be part of public infrastructure ? How to securely
run app streaming servers on those eBoxes ? How can
an end user trust an app from a particular eBox ? An-
other aspect is mechanisms to manage and ensure DRM
of the app repository on eBox. We posit that with exist-
ing authentication and authorization methods deployed
on eBoxes, this can be addressed theoretically. But it
leaves out one concern that is not addressed in existing
methods i.e., current authorization and authentication as-
sume a human user which is authenticated or authorizes
which is not the case for eBox. We believe that this is an
interesting problem which plan to study in details.
Privacy Concerns. Sharing app signature with an eBox
may raise privacy concerns as it effectively represents
how an app is being used by a particular user. We argue
that this would not be more invasive than current sup-
port available in apps. Specifically, with recent rollout
of app usage API in android[2] which allows developers
to track app usage, it seems that sharing app signature
is more obfuscated than what is guranteed in latest ver-
sion of android. However, this aspect certainly needs a
detailed evaluation.

System software on devices and eBoxes.. Further, we
plan to push in two directions: (i) Current design of ex-
ecutable file format is driven by the assumption that ex-
ecutables are stored in the local storage of devices but
for streaming apps, these assumptions do not hold. We
are pursuing exploration of the effects of app layout e.g.

13

dex for android app classes, elf for native code, etc. for
streaming apps and (ii) There is no standard way of de-
ploying eBox based functionality e.g., app caching and
streaming etc. In our future work, we are considering ex-
ploring additional functionality that can further improve
the app ecosystem and also ways to automatically provi-
sion those on eBoxes.

15 Conclusions

AppFlux is an app streaming service for the Android
ecosystem. Its use relieves end users from having to ex-
plicitly update their numerous on-device apps, yet en-
sures their ability to always run the newest app versions.
AppFlux’s implementation leverages the growing ‘edge
tier’ of the Internet, by relying on edge boxes — eBoxes —
that can stream apps to end clients wishing to run them,
cache the newest versions of popular apps, and interact
with remote app stores.

The design of AppFlux is based on extensive ex-
perimental measurements of app traffic and analysis of
app anatomy. These measurements document the band-
width consumed by such app traffic, and they show that
AppFlux can reduce traffic volume by up to 70% with
2x improvement in their delivery latency over CDNs.
Appflux achieves this without compromising app perfor-
mance or requiring changes to apps by developers and/or
changes in how end users employ these apps.

Acknowledgement

This work is partially supported through grants Intel,
VMware, and NSF CNS1148600.

References

[1] Akamai technologies @ http://www.akamai.com/.
[2] Android app usage api @ https://goo.gl/39dqlu.

[3] Apple enterprise management tool
https://www.apple.com/ipad/business/it/management.html.

[4]

[5]
[6]

[7]
[8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

Att small cell deployment plans @
http://www.att.com/common/about_us/pdf/small_cell.pdf.

Att wifi hotspot locations @ https://www.att.com/maps/wifihtml.

Citrix xenapp @ http://www.citrix.com/products/xenapp/how-it-
works/application-virtualization.html.

Dex2jar tool @ https://code.google.com/p/dex2jar/.

Instart logic web
http://instartlogic.com/.

application streaming @

Internet rush hour @ http://goo.gl/yknna5.

Level 3 cdn reports last mile as new bottleneck @
http://blog.level3.com/open-internet/heads-isps-win-tails-you-
lose/.

Microsoft appv @ http://www.microsoft.com/en-
us/windows/enterprise/products-and-technologies/mdop/app-
V.aspx.

Microsoft system center @ http://technet.microsoft.com/en-
us/library/cc180239.aspx.

Mobile world congress - small cells @
http://www.mobileworldlive.com/operators-eye-greater-small-
cell-deployment.

Novell application virtualization @

http://www.novell.com/products/zenworks/applicationvirtualization.

Numecent cloud paging @ http://goo.gl/k34n4d.
Qualcomm small cells @ http://goo.gl/e6vv7I1.

Qualcomm smart gateways @
https://www.qualcomm.com/media/documents/files/smart-
gateway-analyst-presentation.pdf.

Reducing cost of storage @ http://www.zdnet.com/storage-in-
2014-an-overview-7000024712/.

Symantec workspace streaming @
http://www.symantec.com/workspace-streaming.

Wikipedia - reference management tools @ http://goo.gl/c7pbha.

ALIL Q. I., AND AL-WATTAR, A. Z. S. Bandwidth-delay mea-
surements of a wireless internet service providing (wisp) system.
Int. Arab J. e-Technol. 1, 1 (2009), 83-89.

BHARDWAJ, K., SREEPATHY, S., GAVRILOVSKA, A., AND
SCHWAN, K. Ecc: Edge cloud composites. In Proceedings of
the 2014 2Nd IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering (Washington, DC, USA,
2014), MOBILECLOUD 14, IEEE Computer Society, pp. 38—
47.

CHEUNG, A., RAVINDRANATH, L., WU, E., MADDEN, S.,
AND BALAKRISHNAN, H. Mobile applications need targeted
micro-updates.

DIiXON, C., MAHAJAN, R., AGARWAL, S., BRUSH, A., LEE,
B., SAROIU, S., AND BAHL, P. An operating system for the
home. In NSDI (April 2012), USENIX.

GIBLER, C., STEVENS, R., CRUSSELL, J., CHEN, H., ZANG,
H., AND CHOI, H. Adrob: examining the landscape and impact
of android application plagiarism. In Proceeding of the 11th an-
nual international conference on Mobile systems, applications,
and services (New York, NY, USA, 2013), MobiSys ’13, ACM,
pp. 431-444.

GRACE, M. C., ZHOU, W., JIANG, X., AND SADEGHI, A.-R.
Unsafe exposure analysis of mobile in-app advertisements. In
Proceedings of the Fifth ACM Conference on Security and Pri-
vacy in Wireless and Mobile Networks (New York, NY, USA,
2012), WISEC "12, ACM, pp. 101-112.

14

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

IVAN, 1., AND ZAMFIROIU, A. Quality analysis of mobile appli-
cations.

JANG, M., SCHWAN, K., BHARDWAJ, K., GAVRILOVSKA, A.,
AND AVASTHI, A. Personal clouds: Sharing and integrating net-
worked resources to enhance end user experiences. In INFO-
COM, 2014 Proceedings IEEE (April 2014), pp. 2220-2228.

KoukouMmibpis, E., LYMBEROPOULOS, D., STRAUSS, K.,
Liu, J., AND BURGER, D. Pocket cloudlets. ACM SIGPLAN
Notices 47, 4 (June 2012), 171.

Liu, H., AND EL ZARKI, M. An adaptive delay and synchro-
nization control scheme for wi-fi based audio/video conferencing.
Wireless Networks 12, 4 (2006), 511-522.

Lyu, J., KM, Y., KiMm, Y., AND LEE, I. A procedure-
based dynamic software update. In Dependable Systems and
Networks, 2001. DSN 2001. International Conference on (July
2001), pp. 271-280.

MULLER, C., LEDERER, S., AND TIMMERER, C. An evalua-
tion of dynamic adaptive streaming over http in vehicular envi-
ronments. In Proceedings of the 4th Workshop on Mobile Video
(New York, NY, USA, 2012), MoVid "12, ACM, pp. 37-42.

NEAMTIU, 1., HICKS, M., STOYLE, G., AND ORIOL, M. Prac-
tical dynamic software updating for c. In Proceedings of the 2006
ACM SIGPLAN Conference on Programming Language Design
and Implementation (New York, NY, USA, 2006), PLDI 06,
ACM, pp. 72-83.

PATHAK, A., HU, Y. C., AND ZHANG, M. Where is the energy
spent inside my app?: Fine grained energy accounting on smart-
phones with eprof. In Proceedings of the 7th ACM European
Conference on Computer Systems (New York, NY, USA, 2012),
EuroSys "12, ACM, pp. 29-42.

PIERRE, G., AND STEEN, M. V. Globule: A platform for self-
replicating web documents. In Proceedings of the 6th Interna-
tional Conference on Protocols for Multimedia Systems (London,
UK, UK, 2001), PROMS 2001, Springer-Verlag, pp. 1-11.

SHEPARD, C., RAHMATI, A., TOSSELL, C., ZHONG, L., AND
KORTUM, P. Livelab: measuring wireless networks and smart-
phone users in the field. SIGMETRICS Perform. Eval. Rev. 38, 3
(Jan. 2011), 15-20.

SUBRAMANIAN, S., HICKS, M., AND MCKINLEY, K. S. Dy—
namic software updates: a VM-centric approach, vol. 44. ACM,
2009.

WETHERALL, D., CHOFFNES, D., GREENSTEIN, B., HAN, S.,
HORNYACK, P., JUNG, J., SCHECHTER, S., AND WANG, X.
Privacy revelations for web and mobile apps. In Proceedings of
the 13th USENIX Conference on Hot Topics in Operating Systems
(Berkeley, CA, USA, 2011), HotOS’13, USENIX Association,
pp. 21-21.

XU, Q., ERMAN, J., GERBER, A., MAO, Z., PANG, J., AND
VENKATARAMAN, S. Identifying diverse usage behaviors of
smartphone apps. In Proceedings of the 2011 ACM SIGCOMM
Conference on Internet Measurement Conference (New York,
NY, USA, 2011), IMC ’11, ACM, pp. 329-344.

YAN, T., CHU, D., GANESAN, D., KANSAL, A., AND LIU,
J. Fast app launching for mobile devices using predictive user
context. In Proceedings of the 10th international conference on
Mobile systems, applications, and services (New York, NY, USA,
2012), MobiSys "12, ACM, pp. 113-126.

ZHoUu, W., ZHOU, Y., GRACE, M., JIANG, X., AND ZOU, S.
Fast, scalable detection of ’piggybacked” mobile applications. In
Proceedings of the Third ACM Conference on Data and Appli-
cation Security and Privacy (New York, NY, USA, 2013), CO-
DASPY ’13, ACM, pp. 185-196.

	Introduction
	Motivation
	Technology supporting AppFlux
	Novel Usecases

	Traffic due to app delivery
	App Anatomy
	AppFlux Design
	AppFlux Client
	AppFlux Server
	AppFlux eBox-App Store Interface
	Traffic Reduction in the Last Mile
	Faster App Delivery
	Streaming Improves App Performance
	App Streaming Server - Multi-tenancy
	Related Work
	Discussion and Future work
	Conclusions

