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Abstract—This paper argues for the utility of back-end
driven onloading to the edge as a way to address bandwidth
use and latency challenges for future device-cloud interactions.
Supporting such edge functions (EFs) requires solutions that
can provide (i) fast and scalable EF provisioning and (ii) strong
guarantees for the integrity of the EF execution and confiden-
tiality of the state stored at the edge. In response to these goals,
we (i) present a detailed design space exploration of the current
technologies that can be leveraged in the design of edge function
platforms (EFPs); (ii) develop a solution to address security
concerns of EFs that leverages emerging hardware support for
OS agnostic trusted execution environments such as Intel SGX
enclaves; and (iii) propose and evaluate AirBox, a platform for
fast, scalable and secure onloading of edge functions.
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I. INTRODUCTION

Edge computing has been shown to improve user experi-
ence by reducing the user perceived access latency to back-
end services, to reduce the cost associated with accessing
those services indirectly by consolidating the use of the
back-haul bandwidth, and to address the resource constraints
of mobile devices.

One direction in research suggests the use of client-driven
cyber-foraging. Examples of this include offloading systems
like MAUI [1], Clone-Cloud [2], Comet [3], that are used
to overcome resource constraints of mobile devices and to
reduce delays in user perceived responses. However, these
approaches are effective only when the response delay is
compute bound. Other proposals, such as NOMAD [4], take
a client driven approach to minimize the user perceived
maximum access latencies. However, there still remains a
challenge to control and/or predict the variable Internet
access latencies.

Another promising direction is backend-driven cyber-
foraging that onloads appropriate benefits (e.g., caching
content, accelerating traffic, etc.) or even some backend
functionality (e.g., buffering notifications, aggregating re-
dundant traffic, etc.) near end-users, with a goal of mini-
mizing user perceived latency. Cloudlet or Edge Clouds is
one such backend-driven approach and has been recently
demonstrated for different services, including AppFlux [5],
that allow end users to instantly access app updates via edge-
cloud-based app streaming at speeds 2x faster compared to
content delivery networks (CDN), or cognitive assistance
application based on Cloudlets [6], that show the feasibility

of moving functionality between cloudlet servers and the
cloud.

We argue that a back-end driven onloading approach is
more pragmatic than client driven offloading. Despite its
promising benefits, client-based offloading is faced with
many difficult technical challenges arising out of the diver-
sity in the end user device space – from supporting numerous
types of devices, their diverse OSes, and numerous apps
running on them, to accurate code profiling, and gauging
optimal offload conditions, which often requires continuous
monitoring of network conditions on resource constrained
end user devices. At the same time, back-end driven ap-
proaches are inherently designed to handle different types
of devices. They also have access to practically unlimited
computational capability at their disposal, powered by the
cloud, to accurately characterize access to their service usage
with respect to users, location, and time, which they can use
to appropriately onload services at edge clouds or cloudlets.

Additionally, backend-driven onloading unlocks the op-
portunity to consolidate bandwidth usage at the edge, by
employing service-specific logic to reduce traffic over the
Internet, e.g., via filtering, compression, or caching in edge
services. This can reduce the cost incurred by end users in
the form of reduced data charges, as well as by backend
services in terms of reduced use of network bandwidth.
For instance, for app updates as a service, AppSachet [7]
demonstrates opportunities to reduce traffic in the last mile
by up to 83% via edge cloud approaches.

Accordingly, we term the onloaded services running on
the Edge Cloud as Edge Functions or EF, and the underlying
software stack as Edge Function Platform or EFP.

However, for backend services to utilize edge clouds, the
EFPs must allow them to dynamically onload their EFs
quickly, and the EFPs must be able to scale onloading
for multiple simultaneous onloading requests. Furthermore,
backend services onloading EFs on an edge cloud must be
assured that their service specific logic included in EFs will
not be leaked, that valuable content their EFs store is not
stolen, and confidential information about their users is not
compromised. Since the edge cloud is by definition deployed
in the wild near end users, backend services cannot trust
EFPs or any other privileged software running in the edge
cloud for these assurance guarantees.

In summary, before EF onloading can deliver on its
promises, an EFP must satisfy the following goals.



Fast and scalable just in time provisioning: Wider
mobility patterns of end users and resource constraints
(storage) on edge clouds obviate the possibility of static
provisioning of all possible EFs in any edge cloud [8]. This
led us to explore approaches to provision edge functions
just in time. Our goal is to identify the system mechanisms
that minimize the time required for EF provisioning and that
scale with multiple concurrent requests.
Ensuring security and user privacy: We posit that in se-
curing EFs, there are only certain critical functionalities that
must be provided – verification of integrity of a provisioned
EF, confidentiality of data stored on an edge cloud, and
handling of user traffic over secure channel. Important to
note here is an implicit limit on how much overhead can be
tolerated, since too much overhead would defeat the purpose
of deploying an EF in the first place. Therefore, securing
the complete EF execution via a complete system lock
down using encryption, elaborate key exchange protocols
or verification schemes, are not desired. Another implicit
requirement arising out of deployment models of edge cloud,
also shown in Table III, is that an EF cannot rely on system
software to meet its security and privacy goals.
Low developer constraints: EF development can benefit
from using a common set of software patterns corresponding
to obvious edge functions such as caching, aggregation, etc.
Still, it is critical that EFPs do not put additional constraints
on developers in creating new EFs, i.e., EFs must not be
based on specific SDKs, APIs or libraries, etc., outside of
the standard system libraries such as libC for Linux and
OS-provided system call interfaces.

In this paper, we describe the design of a software plat-
form – AirBox – that strives to find the sweet spot in meeting
the above goals and to provide support for fast, scalable
and secure EFs. In designing AirBox, we first compared
provisioning performance (speed and scalability) for three
existing system level mechanisms i.e., virtual machines
(cloudlets) vs. OS level containers (docker) vs. user level
sand boxes (embassies), listed in Table I, to conclude that
OS containers can provide the right mechanisms and layer
for EF provisioning. Further, inspired by recent research [9],
[10], [11] which pioneered the use of hardware-level se-
curity support such as Intel SGX [12], [13] to run cloud
applications securely with an untrusted system software, we
propose the use of Intel SGX to provide security and privacy
guarantees to EFs running on edge cloud platforms.
Overall, this paper makes the following contributions:
1. Design space exploration for speed and scalability:

Using two different hardware platforms with distinct
capabilities, we compare the provisioning performance in
terms of (1) speed and scalability of EF provisioning,
(2) invocation speed, and (3) overhead of provisioning
(§II-B).

2. Hardware-assisted EF security. We address EFs’ re-

quirements for verifiable integrity, secure execution, and
confidentiality for the state stored in the edge clouds, even
in the case of physically compromised edge infrastructure,
by leveraging upcoming hardware-level security features
such as SGX for Intel processors [11] (§II-C).

3. Design and implementation of an EFP prototype:
We present the design of AirBox—a secure, lightweight,
and flexible EFP consisting of two modules: AB console
that allows backend service maintainers to deploy and
manage their EFs on edge cloud locations, and AB
provisioner deployed on edge cloud nodes that allows
seamless dynamic provisioning of EFs. In AirBox, we
prescribe the anatomy of secure EFs (§IV), and illustrate
their implementation with a benchmark that represents the
generic functionalities expected from EFs (§V).

Our evaluations show the following benefits:
• AirBox EFs can be provisioned up to 10x faster with

only one user when compared to the state of art [8], [14].
• AirBox provisioning scales well in multi-tenant settings

with negligible overhead due to its use of SGX.
• We discuss in details how correct usage of SGX leads

to EF integrity, their secure execution and data confiden-
tiality with an untrusted EFP.
• We present detailed analysis of the performance over-

heads caused by use of SGX EF execution, using simple
EFs on an OpenSGX [11] platform.

II. DESIGN SPACE EXPLORATION

In our design space exploration, we chose the candidate
technologies based on following three considerations:
• Developer constraints – which refers to the extra effort

required from developers other than for implementing the
EF functionality.
• Provisioning performance – which refers to the time

taken to provision an EF on an edge cloud node when
there are multiple simultaneous provisioning requests.
• Security and Privacy – which refers to ensuring the

integrity of the EF code, confidentiality of the end user
interactions, and confidentiality of state saved on an edge
cloud platform, without relying on the system software
(EFP included) or the physical security of the edge node.
It is important to note that the above list is not a

complete list of considerations. There are other factors that
can be considered for a comprehensive EFP design, such
as dynamic resource management, I/O scheduling [15] and
resource isolation [16]. We intentionally omit these from our
discussion as they have been extensively studied for data
center based systems, and the learning from those studies
can be applied for EFs either directly or with some effort.

Based on the chosen considerations, we ruled out a num-
ber of technological solutions from our exploration. Specif-
ically, we did not carry out evaluations for JAVA virtual
machine-based solutions (e.g., using node.js to implement
EFs), application sandboxes that require explicit use of their
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Technology Provisioning layer Flavor
Virtual Machines Hypervisor Cloudlets [8]
Containers OS Docker [19]
Sandbox Application Embassies [20]

Table I: enlisting the approaches, we evaluated for their suitability for
Edge Function Platform.

specific compiler tool chains (e.g., Google’s NaCl [17]), and
a hypervisor-based unikernel (e.g., Jitsu [18] based on the
Xen miniOS kernel) which confines users to a limited system
interface and, due to lack of full POSIX support, constraints
the libraries which can be used for EF development.

However, we made sure that in carrying out a compre-
hensive experimental exploration, we chose solutions that
operate at different layers of the system software stack.
The technology solutions that we identified as potential
candidates and which we used in our experimental explo-
ration (listed in Table I) include: (i) virtual machines (VM)
synthesis used in Cloudlets, (ii) OS level containers in form
of Docker, and (iii) user level sandbox based on pico-process
abstraction emulating a full POSIX interface.

Each of the technologies have trade-offs. For example,
the use of virtual machines (VMs) put no constraints on
developers but result in large size of VM images to be pro-
visioned. Using application sandboxes avoids OS constraints
but puts more constraints on developers, e.g., to use specific
tool chains, or a limited system call interface to port existing
applications, or results in large binaries due to inclusion of
a libOS to be linked. OS containers put constraints on the
underlying OS that can be used to develop edge functions.
We present our analysis of the chosen considerations next.

A. Developer Constraints

In terms of developer constraints, the use of VMs puts no
constraints on developers in implementing EFs. Developers
can choose the OS, libraries or applications, and package
them as VM images which can be delivered and invoked
without any issues on hypervisor-based EFPs. The use of
OS containers requires developers to implement EFs for a
particular OS, e.g., Linux for Docker, but given the increas-
ing penetration of container technology, most popular OSes
will support containers [21]. Furthermore, most libraries
and/or SDKs are available for all popular OSes, and since
EFs typically will resemble backend services in their imple-
mentation and/or their dependencies on standard application
frameworks (node.js), and software stacks (LAMP stack),
this puts little or no constraints on EF developers. The use
of application sandboxes either requires the use of specific
tool-chains or linking with a platform-level ABI library. For
instance, Embassies [20] require pico-process libOS, linking
with modified versions of standard libraries such as libC,
additional executables for secure execution (e.g., monitor),
and a customized elf loader. Despite these requirements, it
has been shown that full blown desktop applications can also
be run with this approach [22]. It seems that there may be

Type Deployment Configuration
Mini Strategic placed server racks

- (Server class machine)
Intel x86-64, 24 CPUs,
1.6 GHz, 50 GB RAM,
4 NUMA nodes, 2 sock-
ets, 6 cores per socket, 2
threads per core, VT-x, L1
(i+d): 64 KB, L2: 256 KB,
L3: 12 MB

Mico Randomly placed standalone
servers by businesses or indi-
viduals - Desktop class ma-
chine.

Intel x86-64, 4 CPUs, 1.6
GHz, 4 GB RAM, VT-x,
L1 (i+d): 64 KB, L2: 4096
KB

Table II: Deployment models and capabilities of edge clouds infrastructure
including configurations of experimental test bed.

a learning curve, but with appropriate skills, developers can
overcome those hurdles.

However, based on our experience during setting up
our experiments, we argue that there can be rather subtle
assumptions in non-standard solutions. For example, using
Cloudlets as described in [8], we realized that the overlay
VM created for every client has a static port configuration
that needs to be defined as different for all clients even if
they will access the same EF. Also, VM overlays that may be
created at backend servers are sent to client. The client then
has to transfer it to Cloudlet servers, this is a detour we want
to avoid. Backend servers can simply send the EF image to
Cloudlets server as proposed by onloading approach. Using
Embassies took a considerable effort and learning curve in
setting it up. The reason is that EFs as Embassies require a
new elf format, loader, and effort to port standard libraries
to its libOS. In fact, we limited our evaluation to only one
EF or application because we found it very difficult to create
and run the same applications across all these solutions.
However, to be fair the goal of Embassies was not to
support all the applications but to demonstrate the proposed
concepts. In contrast, deploying those applications using
Docker containers was straightforward. It was as simple as
writing a correct docker file to deploy a container containing
EF implementation on an edge cloud node.

B. Provisioning Performance

Concerning provisioning, the use of virtual machines has
been proposed to handle just in time dynamic provisioning of
ofoading-based cyber-foraging, to cleanly handle complexi-
ties due to their inherent dependence on the mobile devices’
operating systems (e.g., Android, iOS, etc.), or the different
mechanisms employed in application partitioning and/or
ofoading, which get updated regularly at higher frequency.
In contrast, we posit that the EFs will resemble back-end
services in their implementation and will exhibit dependen-
cies on standard application frameworks (node.js), software
stacks (LAMP stack), etc. Therefore, for provisioning, we
consider as viable approaches that use higher layers of the
software stack other than OS, such as application sandboxes
and OS containers. we believe by choosing a higher layer
of software stack may help improve provisioning speed. We
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Mechanisms
Requirement Cloudlet Docker Embassies
Provisioning Full VM image Image layering App Image [20], [14]
Invocation VM boot Container startup Run Embassies [23]
Integrity Verification* Manual Central registry cryptographic attestation
Secure Execution* via Hypervisor namespaces, cgroups, SELinux, etc. Not supported
Data confidentiality* Disk partitions Disk volumes encrypted file system [9]
User confidentiality* mcTLS,split TCP mcTLS,split TCP mcTLS,split TCP
Developer Constraint None OS libOS linking, porting

Table III: Mechanisms employed in individual solutions. * Not valid for compromised privileged system software.
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Figure 1: Comparing provisioning time of Docker, Cloudlets, and Embassies without availability of any pre-provisioned base images on
(i) desktop and (ii) server class machines and with cached base images on (iii) desktop and (iv) server class machines.
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Figure 2: During provisioning of Cloudlets, Docker, and Embassies without availability of base images showing CPU consumption on (i)
desktop and (ii) server class machines and memory consumption on (iii) desktop and (iv) server class machines.

present our experimental exploration below.
1) Experimental Setup and Workload:: Table II lists

the hardware platforms we used in our experiments. Our
rationale to choose two different hardware platforms is that
each represents a configuration representative of proposed
views of edge cloud infrastructure. We used a simple EF
application, for which we create instances for all of the
chosen technological solutions. We used a simple image
inverting application that exposes a command line interface
of standard exact image library processing library to perform
any image transformation similar to applying filters on an

image in Instagram app running on Ubuntu 14.04.
2) Experimental Results:: We present the experimental

results as part of our design space exploration below:
Scalable provisioning: Figure 1 (i) and (ii) shows the
time taken to fetch or take appropriate actions (e.g., VM
synthesis, applying layers on Union FS or saving binaries)
to create an EF image that can be booted, with varying
the number of simultaneous provisioning requests. In these
first experiments, the common parts needed for provisioning,
i.e., VM base image for Cloudlets, OS kernel image for
containers, and monitor program images for Embassies are
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not available on the EFP before the start of provisioning.
In addition, the VM base images or the required base

software components may be statically pre-provisioned at
edge cloud nodes. This puts pressure on the Cloudlet server
storage, or additional constraints on developers on what
OS/software components they can use to develop EFs, but it
can reduce the time taken for provisioning. Figure 1 (iii) and
(iv) shows the comparison of provisioning using Docker (no
cached images) with Cloudlets using cached base images,
and with Embassies using cached base software components.
Despite these optimizations, Docker is faster and scales in
a much better manner.

Cloudlets suffer from the complexity of the VM synthesis
step which requires a VM overlay to be created by a client
and then, sent to a Cloudlet server, where binary patching
is performed to create a VM image. The overlay file can be
significant in size and needs to be sent to the Cloudlet server
wasting the limited energy and memory capabilities of the
mobile device. Though alternatives Cloudlet models [8] have
been proposed where the overlays are distributed from the
cloud. Under optimal conditions, with base images cached
locally, Cloudlet provisioning times can approach that of
Docker (Figure 1 (iii) and (iv)), but the higher overheads of
this approach limit scalability, so the Cloudlets approach
falls behind when multiple provisioning operations occur
concurrently.

Embassies suffer from the sheer size of the resulting
executable which we found to be 4 times the size of the same
app without running in Embassies. Earlier work showed the
delay mostly consists of merkle tree based cryptographic
attestation of components of a Embassies app [14]. However,
it is important to note that the cryptographic attestation is
carried out by privileged software which violates security
in our threat model. The figure omits the provisioning mea-
surements for Embassies in case of 5 requests because we
were unable to boot 5 simultaneous instances of Embassies
in our experiments.

Docker addresses the size issue by using a layered image,
made possible by its use of union file system [24], but
lacks the security guarantees of applications provisioned in
Embassies. Earlier measurements have shown that docker
containers can boot faster than VMs [15] also observed in
our experiments because VMs need to boot a copy of OS un-
like containers which are basically processes. Docker solves
the problem of locking of system resources by dynamically
reusing the resources for starting multiple tenants using the
same application. This also leads to more disk space savings
as compared to Cloudlets or Embassies.
Resource utilization in provisioning: We measured the
resource consumption during provisioning process in terms
of CPU load (Figure 2(i)) and memory usage (Figure 2(ii)).
From these results, we see that for all hardware capabilities,
Docker containers outperform the other solutions for all
performance metrics. This provides us with a clear design

choice to use containers for AirBox on performance grounds.
However, there are security concerns for provisioned Docker
containers, as discussed next.

C. Security and Privacy

Concerning security, earlier work provides incomplete
solutions to security concerns faced by an EF. Specifically,
these solutions leave EFs vulnerable to attacks by malicious
privileged software, i.e., OS, EFP, etc. [25], derived from
easy physical access to edge cloud infrastructure.

Out of the box, none of the considered solutions have
built-in mechanisms to fulfill all security requirements posed
by EFs – (i) integrity verification, (ii) execution security
and, (iii) data confidentiality without trusting any privileged
system software such as hypervisor or host OS.

Important to note here is that EFs cannot trust EFPs
and/or privileged system software for their integrity ver-
ification and/or their stored state due to their proposed
deployment models (Table II). Since the edge cloud is
situated in the wild, without any guarantee of physically
secure premise like a data center, EFPs can be compromised
by malicious parties who gain physical access to edge cloud
nodes. This poses severe risks to backend service providers
who, by deploying EFs, may exposing their business logic
embedded in them. We argue that it is crucial to consider a
threat model which covers lago attacks [25] for EFs. This
poses additional concerns about the content stored in edge
clouds as well as user privacy for users using the edge cloud
infrastructure.

There are several available and/or proposed approaches
that can be used to address the above mentioned concerns.
Specifically,
• For OS level containers, Docker provides a trusted cen-

tral registry which can be used for integrity verification,
leverages kernel features (i.e., namespaces) for isolation
among containers, and, can be hardened by enabling
SELinux/AppArmour on the host and defining appropriate
security policies. By exposing an encrypted file system
via VFS, content and/or user privacy can be ensured.
However, it is important to note the weaker isolation
property of OS containers and the larger attack surface
in the form of a shared kernel.
• For full virtualization based systems, integrity verifica-

tion can be based on checking a hash of a VM image with
that provided by a trusted remote registry, implemented as
hypervisor based mechanisms. Earlier work like TrustVi-
sor [26] showed that using a formally verified VMM layer,
which results in a smaller trusted code base, can be used
for securing execution. InkTag [27] proposed the use of
para-verification to verify the execution of EFs even with
untrusted system layer. However, we argue that verifica-
tion may not be practical for EFs as a malicious edge
cloud node might not implement verification actions as
required by Inktag. Since it is not present in a physically
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secure premise, it may not be practical to force it to use
the appropriate host image.
• For application sandboxes such as Embassies [20], iso-

lation semantics similar to data centers can be provided to
unmodified desktop applications by running them as web
apps on end user machines. Embassies are built on top of
the pico-process abstraction [22] that intercept all appli-
cation interactions with system interface (syscalls). This,
combined with integrity verification via cryptographic
attestation, can offer strong security semantics. However,
Embassies also suffer from the large attack surface in form
of shared kernel.
Further, earlier work suggested the use of secure

boot [28], verification via redundant execution [29], trust
relationships [30], use of Trusted Platform Module (TPM)
modules, etc. They provide incomplete solutions for the
security concerns faced by EFs, since EFs are deployed
in the wild where system software can be compromised
or where physical security of the edge cloud cannot be
guaranteed. For example, a TPM based approach can be
vulnerable to attacks based on physical access, where one
could simply take the TPM chip out of platform.
All of the above assume trusted system components i.e.,
host OS, docker engine, or hypervisor. There are no existing
approaches that can provide secure execution without trust-
ing the system. Haven [9] builds on top of the pico-process
abstraction and leverages SGX support proposed in Intel’s
next generation processes to achieve security guarantees for
unmodified application without relying on an untrusted host
OS. Haven’s design suffers from a large attack surface –
all system interactions of an application on Haven pass
through libOS whose interface exposes a limited syscall
interface which is being monitored by the shield module.
We posit that covering all possible system interactions
may be an overkill for EF performance. Another proposed
approach, VC3 [10] reduces the large attack surface and
limits performance overhead by partitioning application into
trusted and untrusted parts. It proposes to use the SGX
support to run only the trusted part and shows a verifiable
execution of map-reduce executions on an untrusted cloud.
Verification based approaches may be used after the fact
but they cannot provide confidentiality of EF state or user
requests and certainly leave EF vulnerable to attacks by
malicious privileged software, i.e., OS, EFP, etc.

D. Summary

We derive following conclusions from the above discussion:
• Performant EF provisioning can be realized by using OS

level containers. Using containers puts minimal developer
constraints and provides fast, scalable provisioning out of
the box. However, an additional mechanism is needed for
verifying the integrity of the EF being provisioned.
• An EF cannot rely on any trusted components controlled

by the system on which it runs. However, it can rely

on a processor built-in feature shielded from system
software, like Intel’s SGX, but it is important to keep
the attack surface minimal and to minimize the associate
performance overheads.

Based on these observations, we built AirBox on top of
Docker while leveraging Intel’s SGX to provide security
guarantees.

III. BACKGROUND

In this section, we briefly summarize the technologies
used in AirBox – the Docker platform along with relevant
details about Intel’s SGX.

Docker is an open platform for developers and sysad-
mins to build, ship, and, run distributed applications. Un-
like traditional virtualization, containerization takes place
at the kernel level. Docker builds on top of these low-
level primitives to offer developers a portable format and
runtime environment. Docker containers are small, have
almost zero memory and CPU overhead, are completely
portable and, are designed from the ground up with an
application-centric design. Docker leverages the following
Linux kernel functionality in its container format: (i) Kernel
namespaces: Docker uses kernel namespaces to provide a
layer of isolation: each aspect of a container runs in its own
name space and does not have access outside it; (ii) Cgroups:
Docker uses the cgroups support in the kernel to allocate
hardware resources to containers and, if required, to set up
limits and constraints; (iii) Union File system: Docker uses
kernel support for union file system to create applications
layers, making docker containers very lightweight and fast in
provisioning. In addition, Docker has built a secure registry
service for base container images and other tools simplifying
management of distributed applications. Docker provides
data volumes and data volume containers to manage data
for containers. For additional details, refer to the Docker
documentation [19].

Intel SGX is a hardware feature to provide and improve
security for applications. SGX offers 4 main features: (i)
Secure ISA extension: It extends the x86-64 ISA to allow
application to instantiate a protected execution environment
called an enclave, while only trusting the processor and
not system software (hypervisor, OS, frameworks, etc.); (ii)
Remote attestation: provides a remote attestation feature,
in which an enclave can verify the integrity of a target
enclave running on another remote SGX-enabled platform;
(iii) Sealing: allows securely saving enclave data in non-
volatile memory for future use, encrypted with a processor-
provided sealing key; and (iv) Memory protection: When
executing in enclave mode, the processor enforces additional
checks on memory access using dedicated hardware support,
ensuring that only code inside the enclave can access its own
enclave region. For details readers are directed to the SGX
specification [12], [13].
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OpenSGX is a software platform that provides necessary
support for SGX application programmers to readily imple-
ment and evaluate their applications that leverage trusted
execution environment (TEE). OpenSGX [11] supports SGX
development by providing: (i) a hardware emulation module,
(ii) operating system emulation, (iii) an enclave loader, (iv)
a user library, (v) debugging support, and (vi) performance
monitoring. We use OpenSGX to prototype and evaluate
the performance overhead of providing secure execution in
AirBox. Next, we describe the design of AirBox provision-
ing and anatomy of a secure AirBox EF.

IV. DESIGN

The lack of real world edge cloud deployments severely
limits our ability to reason about edge functions, without be-
ing affected by the idiosyncrasies of a particular application
being posed as an edge function. Further, it is important to
note that if there are no latency or bandwidth constraints, all
EF services can be provided as the backend services running
in the remote clouds.

Before proceeding to design an edge function platform,
we want to clarify what we consider as an edge function.
Edge Function (EF): Any third party service deployed on
edge clouds that interacts with end client requests on behalf
of a backend service deployed in remote clouds.

Typically, EF is implemented above the network layer, or
layer 4, because it requires or uses the backend service’s
application specific logic to provide benefits in terms of re-
duced latency, bandwidth consolidation, or both. In AirBox,
we focus on two essential elements of EFs, namely secure
provisioning and secure EF anatomy.

A. Secure Provisioning in AirBox

AirBox provides a centralized backend service, which acts
as a central directory of AirBox edge cloud hosts, facilitating
their discovery. It also implements AB Console, a web-
based management system to let admins manage and deploy
services dynamically at remote sites. The actual deployment
invokes the Docker mechanisms on each host, after the
integrity of the image has been verified using SGX. AirBox
can use the Docker container registry service [31], delivery
mechanisms that allow docker daemon to pull containers
from remote clouds for EF provisioning, and mechanisms
implemented in docker engine to handle synthesis of an EF
(i.e., download the EF binary and its dependencies.

AB Console can be installed by backend services or can
be provided as a cloud based service by a third party that
offers edge cloud infrastructure to a number of backend ser-
vices. Choosing the appropriate AirBox node after discovery
is another important concern that needs to be addressed for
AirBox. We leave such details for another paper, and focus
this paper on the mechanisms of secure provisioning.

A backend service can create its own repository of EF
binaries, use already available docker images, or simply

register a docker image containing an EF binary and create
a docker file describing its dependency in standard ways.
There are no additional requirements that AirBox poses on
EF developers. To provision an EF, sysadmins can send
commands through AB Console to the AB Provisioner
modules deployed on edge cloud machines, which in interact
with the local Docker daemon. When an EF container is
booted on the edge cloud platform, the EF container checks
its own integrity using SGX’ remote attestation capability.

Since, an EF can tolerate temporarily being unavailable
for clients, because in the worst case clients can fall back
to remote clouds. We do not consider denial of service
attacks in our threat model. Further, delayed verification of
execution does not suffice for EFs. Instead, apriori security
guarantees are desired for an EF because the edge cloud
infrastructure may be deployed in the wild so it can be easily
possible to spoof a edge cloud node using replay attacks.
Further, edge cloud infrastructure may be deployed in loca-
tions with no physical security and it may be possible for
attacker to gain access to the hardware (say via connecting a
serial port cable). So, it is of utmost importance that that the
EF mustn’t rely even on AB provisioner for its own integrity
check, execution security and data confidentiality.

AirBox EFs can withstand privileged system software
based attacks [25] while executing on an untrusted edge
cloud infrastructure running untrusted system software (hos-
tOS, EFP). Further, since it is impossible to takeout a
subset of instruction set out of a processor, it makes it
impossible to compromised EF even if EFP is compromised.
Achieving that however is non-trivial and can be achieved
by carefully designing EFs and using the AirBox secure
interface described next.

B. AirBox EF Anatomy

There are two main challenges in using SGX to provide
data confidentiality for state stored in edge clouds and secure
traffic confidentiality to ensure end users privacy that can be
violated a result of information leaks from their interaction
with EF. First, using SGX to ensure security/privacy is non-
trivial in an EF because even if an EF’s trusted part is
executing within an enclave, it can be compromised by its
I/O interface or by privileged system software [25] (e.g., if
it relies on system calls that can be logged by the platform).
An EF must not leak sensitive information, such as client
requests or valuable content that needs to be stored on the
edge cloud. Second, running in an SGX enclave leads to
overhead due to limited or indirect (via a trampoline) I/O,
encryption, etc. Therefore, it is important to minimize the
code executing in an enclave for performance reasons.

To address these, EF’s in AirBox consist of an untrusted
and a trusted part, as shown in Figure 3(ii). The untrusted
part handles all the network and storage interactions exposed
to an EF by EFP. We assume that all network interaction
with clients are over a secure channel established by the
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Figure 3: (i) Showing design of AirBox EF provisioning; (ii) Showing overview of secure EF anatomy highlighting the AirBox Open
SGX interface; and (iii) implementation of a caching EF.

TLS protocol. In this manner, we minimize the secure exe-
cution of an EF (from within an enclave), thereby reducing
the overhead and the attack surface. A secure OpenSGX
interface, described next, further addresses the first concern.

C. AirBox Secure Interface

AirBox uses SGX heavily for security and requires EFs
to do so if they need execution security and confidentiality
guarantees. SGX support is implemented as instruction set
extension and relevant hardware support. The OpenSGX
APIs are tied to those hardware capabilities and do not
necessarily match the set of intuitive primitives an EF
developer may want. AirBox provides a limited but broadly
useful and extensible set of higher-level APIs, listed below.
These in turn may use multiple native or emulated SGX
operations. Thus, AirBox simplifies the use of SGX for EFs
and may improve the likelihood that SGX is used correctly
to ensure data confidentiality. The interface provides the
following capabilities:
• Remote Attestation: It allows an EF to verify its

integrity using a SGX enabled remote server, using SGX
remote attestation feature.
airbox_sgx_attest(attest_quote)

• Remote Authentication: It allows an EF to securely
query remote SGX enabled remote server for its private
key used in a TLS session. It also uses SGX remote
attestation feature to fetch the private key securely.
airbox_sgx_authenticate(authenticate_quote)

• Sealed Storage: It allows EF to securely read and write
on an insecure disk using sealing feature of SGX.
airbox_sgx_get(key, key_len)
airbox_sgx_put(key, key_len,*value, *value_len)
airbox_sgx_getkeys(*keys, keys_len)

• EF defined: It allows an EF to run arbitrary SGX code
built using openSGX’s libsgx. Examples include imple-
mentation of a hash map that can be used to implement
a secure customer aggregation logic on an edge cloud.
airbox_sgx_run(<module_name>,<conf>)

Unique about the AirBox secure interface using hardware
functionality is that it enables an EF to keep privileged
software blind to the sensitive operations and/or contents.In
fact, SGX is not intended to be used for securing I/O oper-
ations. AirBox OpenSGX interface allows EF developers to
do exactly that but in a secure fashion. Specifically, AirBox
uses OpenSGX provided libsgx interface to accomplish the
following tasks:

D. Handling secure traffic
For traffic on a secure channel, the untrusted part of

AirBox EF passes to the trusted part the encrypted traffic
using the user’s key established during TLS negotiations.
The trusted part then uses the remote authentication interface
to get the current session’s private key from a remote SGX
enabled backend server, referred to as a session key. Once
EF has access to session key, it uses it to decrypt incoming
requests from clients and responses from backend service.
To ensure the session keys persist across a complete session
with multiple requests on an untrusted platform, the AirBox
EF uses the sealed storage interface to securely store the
session key. This rules out any end user privacy concerns
that may arise from providing secure traffic access to EFs
deployed on EFP, because it disallows any snooping on the
traffic even by the privileged system software.

Existing approaches towards allowing edge cloud access
to requests over secure channel include the use of (i)
homomorphic encryption [32] techniques which have not
reached a point where they can be used practically due to
their computational intensive nature, (ii) passing key out of
bands e.g., mcTLS [33] which would lead to weaker security
and privacy guarantees, and (iii) trusting EFP to allow it to
access all traffic over secure channel i.e., providing it with a
valid root certificate and allowing in to create a split secure
connection which can allow a malicious EF to get full access
to secure traffic. In addition, the EFs have to trust the EFP
when using (ii) and (iii). However, even with AirBox secure
interface, threats arising out of statistical analysis of traffic
or side channel attacks still persist. We posit that existing
differential privacy techniques can be deployed to obfuscate
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EFs themselves but investigation of this aspect remains part
of our future work.

E. EF State Confidentiality
To perform many useful functions, e.g. caching, an EF

will require a secure storage to store the requests and
responses on the edge cloud node. Compromising storage
can nullify all the effort put in securing traffic. We discuss
the how AirBox interface provides secure storage below.

To store data securely on untrusted edge cloud node, an
AirBox EF uses the untrusted part to interact with storage
exposed to it by the EFP. However, before storing anything
on disk, it uses sealed storage interface which gets an
enclave specific encryption key, referred to as sealing key
and encrypts the data it wants to store with it. Then, it passes
the encrypted data to the untrusted code and instructs it to
write the data to a specific location on insecure disk. To read
a file, it instructs the untrusted code to read the encrypted
data and pass it in to the SGX enclave, where it is decrypted
using the sealing key and can be operated on. This rules out
any possibility that content stored on an edge cloud can be
stolen even if the privileged software on edge cloud node is
compromised.

In designing the above two tasks, there are several non-
intuitive design decisions that need to be made. The first
concern is around the shared memory allocated to an EF’s
trusted part or enclave to carry out network and storage
I/O via the untrusted host part. In AirBox, we used the
trampoline-based approach available in OpenSGX with a
maximum buffer size of 5 MB that can be used for I/O for
host-enclave communication. If a larger memory is required,
then the state or content to be shared has to sliced and re-
assembled. This can have performance implications on EF.
The second concern is to ensure that host, if compromised,
cannot access end user requests or content stored by an
AirBox EF. All storage I/O carried out by an EF is designed
as a 2 phase process. In the first phase, host communicates
meta-data e.g., a path of encrypted blob to be read/written to
the storage. The actual I/O e.g., reading/writing the content
to storage is carried out in second phase. In second phase, it
ii ensured that appropriate encryption/decryption is carried
out on the content to ensure functional correctness of an
EF by satisfying the following two conditions: (i) content
served to end clients is always encrypted with the end user’s
session key and (ii) anything saved in the storage is always
encrypted using sealing key before writing it to disk.

V. EF IMPLEMENTATION

AirBox Console is a web front end implemented similarly
to OpenStack Horizon, but simpler and limited in features.
AirBox Provisioner is built as an extension of the Docker
command line interface to include AirBox specific com-
mands (attestation, authentication) and to accept provision-
ing requests from the AB Console. In addition, every secure

EF image is patched with a binary that loads an SGX enclave
to carry out remote attestation on boot up.

The implementation of the AirBox secure interface en-
tails implementing I/O between host and enclave using
the OpenSGX-provided I/O trampoline and implementing
appropriate encryption/decryption AES routines available in
the polarssl library. More importantly, it requires maintain-
ing appropriate ordering of the OpenSGX-provided opera-
tions so as ensure security/privacy guarantees. For instance,
when an end user request arrives over the network, air-
box sgx get() uses the following OpenSGX interfaces. First,
it uses sgx enclave write() and sgx set args() to copy data
and arguments for AirBox specific commands before enter-
ing an enclave. Inside the enclave, it uses sgx enclave read()
and sgx get args() to read the data and commands in
enclave memory. Then, it uses 128 bit AES encryption
routines provided by the polarssl library. Finally, it returns
status and a handle to the value (e.g., stored encrypted file)
pointed by that particular key using sgx set ret val() and
sgx enclave write(). If a match for the key is found during
lookup, the host again sends the encrypted value pointed
by that handle (e.g., the content of that particular file) and
commands using the above mentioned APIs. Inside the en-
clave, the content of the value is decrypted and re-encrypted
appropriately before transferring it to the host using the same
APIs. Finally, the response to a user request is sent. Similar
steps are performed for the other interfaces. This discussion
highlights the fact that using SGX to correctly implement a
secure sequence of operations is non-trivial, so the higher-
level security primitives provided by AirBox can be of great
value to an EF developer.

We implement a suite of typical EFs – the ABC EF
benchmark. The implementation of ABC edge functions
is based on a simple HTTPS proxy that carries out the
following generic operations on web traffic.
Aggregation: An aggregating EF stores multiple requests
and/or data from clients and sends a single request to a
backend while removing redundant information from the
requests. The aggregation function can be supplied by a
backend service or by an end user. For instance, an IoT hub
on edge cloud could aggregate traffic from different sensors
over time while periodically sending information to backend
service, resulting in a reduction in bandwidth usage.
Buffering: A buffering EF stores responses from a backend
service using edge cloud platform’s storage on behalf of
one or more client to pre-fetch, buffers it and delivers the
response in appropriate context. The context can be based on
connecting to a particular edge cloud, e.g., when at home,
office etc. or as feature of the backend service to deliver
digests of push notifications as opposed individual notifica-
tions. This can reduce overheads on a battery operated end
client device due to many push notifications and can improve
delivery performance for the push notification service. For
instance, an end user might authorize a Facebook EF on
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a home edge cloud to fetch and buffer his notification and
deliver them when he is back home, or an app can use a
buffering EF to reduce the push notifications overhead on
backend servers for Chrome and native apps which would
have to keep polling for the appropriate end users’ device
to fetch those push notifications.
Caching: A caching EF stores the responses for client
request and then, uses those to service other clients or same
client with same requests. The caching policy can be service
defined, as done in App Sachets [34], which proposes novel
caching policies tailored for app installs and updates.

These generic EFs can also be useful as basis for future
research in the edge cloud ecosystem by reducing the
burden of implementing elaborate use-cases. We describe the
implementation of a secure edge function using the caching
EF as an example, as shown in Figure 3(iii). When an end
user request is handled at an EF, the untrusted host part
implements a proxy functionality setting up the required
network connections, and passes the encrypted request to
the trusted part running in enclave mode. If a session key
for this request is not available, the EF requests it through the
remote authentication interface and saves it for the current
session from within the enclave. With the key, the EF has
access to the request in plain text, e.g., to a URL which
is used as the hash table or look up key. The value in that
hash table points to a location in the file system partition
assigned to the EF instead of to the actual response. In case
of a miss, the response for this request is saved on disk at
the particular location assigned to the request, but only after
encryption using a SGX sealing key is carried out inside
the enclave. In case of a hit, the traffic is decrypted, the
appropriate encrypted content is read from that path and
passed to the trusted enclave code which decrypts it using
the sealing key and re-encrypts it using a session key, before
responding to the client.

VI. EVALUATION

In this section, we present our experimental result using
the OpenSGX platform. The evaluation uses as benchmarks
the same applications used in evaluating the provisioning
performance in §II-B and the simple ABC benchmark EFs,
developed to evaluate AirBox. Our future work will consider
more elaborate real-world edge functions. Further, since we
are using OpenSGX, which is an emulator platform based
on QEMU, we believe that it would be unwise to show hard
response time measurements or bandwidth saving numbers.
We refer to previous work [35], [34], [36] that shows those
benefits for any applications based on edge cloud and focus
on the effect of using of SGX on provisioning and security.
Specifically, we aim to answer the following questions:
1. How much overhead is caused by the SGX attestation

during provisioning of AirBox EFs, with varying number
of concurrent provisioning requests?

2. How much overhead is caused due to the design of the
secure AirBox EF anatomy?

3. How much overhead is added by SGX overhead for
generic EFs and how does this vary‘ with workload
characteristics?

4. How closely do the SGX overheads observed on
OpenSGX resemble the overheads on real hardware?

A. Provisioning

Figure 4 (i) and (ii) show the time spent in provisioning
and booting EFs using Docker vs. AirBox, respectively. We
carried out the experiments on a server class machine and
a desktop class machine with a hello world application, and
an image inverting application which uses the command
line interface (econvert command) of exact image library
processing library. As clear from the figures, the difference
in AirBox and Docker provisioning is not visible in any
of the cases. Specifically, the difference is on the order of
milliseconds while the attestation requests remains on the
order microseconds. Figure 4 (iii) shows how the time spent
in attestation requests varies with number of simultaneous
requests.

B. Security and Privacy Overhead

To gauge the overhead associated with ensuring security
and end user privacy using Intel SGX, we perform analysis
using the ABC EF benchmark. We also implemented an
automatic EF load generator that exercises an EF booted
on OpenSGX platform. We used a 256 byte request size
and 1KB response size to measure the overhead to carry
out experiments on a desktop class machine. The size of
request and response is important as memory copy and
encryption overhead depends on it. We measured the number
of CPU cycles consumed during operations of the ABC
EFs without using SGX vs. varying level of functionality
carried out in an SGX enclave: (i) while handling secure
network by exchanging session key from within an enclave
to decrypt the end-user request and carry out appropriate EF
functions on request and/or response; and (ii) while handling
secure network and ensuring that before anything is stored
on the file system, it is encrypted inside an enclave using a
sealing key. This also entails re-encrypting the stored state
with a session key before responding to the client. Figure 5
(i) shows the results. To further analyze the overhead, we
looked at the break down of where the instructions are spent.
As evident from Figure 5 (ii), the majority of the overhead
arises out of performing host-to-enclave or enclave-to-host
memory copies. This is a result of the small size of the
request and responses, as opposed to encryption vs. memcpy
overhead. This highlights the importance of design choice to
facilitate memory copy between host and enclave. To verify
it, we measured the number of CPU cycles consumed by
an EF while varying the size of the buffer to be transferred
between host and enclave. The figure 6 (i) shows the CPU
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Figure 5: Showing (i) Airbox overhead in ABC use cases due to the
use of SGX for security and privacy using OpenSGX; (ii) Showing
the break down of the overhead in ABC use cases.

cycles spent with varying size of the memory size to be
communicated between enclave and host using OpenSGX
with different levels of encryption employed by an EF i.e.,
with only network encrypted and with storage and network
both encrypted.

Since OpenSGX is merely an SGX emulator, the mea-
surement may not directly reflect real hardware. To get
better sense of the actual overheads, we carried out a similar
experiment using the Windows SGX SDK. Note that Linux
SGX SDK was not available at the time of the preparation
of this paper. Since Windows is not our target platform,
we only implement the bench marking cases to measure the
performance on real SGX-enabled hardware. The experiment
results are shown in Figure 6 (ii) which shows the time
spent in memory copy operations on real hardware where it
is difficult to measure CPU cycles spent inside an enclave
due to lack of appropriate support/tools1. The overhead of
including only network encryption and both network encryp-
tion and storage encryption are around 0.8 ms and 0.4 ms

1Instructions such as rdtsc cannot be invoked inside the enclave in SGX
revision 1.
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Figure 6: Showing SGX overhead variation with size of data
transfer between host and enclave with no encryption, only network
interaction encryption and with both network and storage encrypted
(i) using OpenSGX and (ii) using Windows SGX SDK.

when the request/response size is up to 200 KB, respectively.
The results demonstrate that there is a negligible overhead
for performing purely a memory copy operation from host
to enclave on the real hardware, implying that majority of
the overhead on real hardware would be associated with
encryption used inside an SGX enclave. More importantly,
evident from the figure is the similar trend with increasing
size memory copy with OpenSGX and Windows SGX SDK
highlighting that a similar performance can be achieved
when deployed using real hardware. However, it is part
of our future work to evaluate the performance of real
applications such as web caching proxy, firewalls, etc., that
utilize the AirBox secure APIs on real SGX hardware.

VII. DISCUSSION: AIRBOX DEPLOYMENT SCENARIOS

In Mobile networks. We envision AirBox to deliver part
of the system level functionalities as described in ETSI’s
framework and reference architecture for Mobile Edge Com-
puting [37]. In their terminology, the AB Provisioner will
be deployed on an edge host providing what is referred
to as virtualization support (via Docker containers). AB
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Console will act as a mobile edge orchestrator either for
mobile network operators or third parties, depending on its
deployment. Further, AirBox augments the static attestation
of edge application (or EF) with SGX based attestation
carried out by the EF itself to remove reliance on sys-
tem level management for its integrity. This is important
to thwart efforts of spoofing an edge function to access
important content (e.g., stealing Netflix videos) combined
with the use of the AirBox secure interface to be exposed
as a SDK to AirBox EF developers. AirBox with appropriate
enhancements to interface with radio access network (RAN)
equipment can be deployed in mobile networks.

In Enterprise. Recent trends suggest deployment of on-
premise virtual customer premise edge (vCPE) equipment to
reduce the number and cost of physical hardware appliances
required for hosting value-added features (EFs). AirBox can
provide necessary support to quickly, securely provision,
and manage those EFs on deployed in enterprise settings.
We posit that vCPE providers can integrate AirBox in a
straight forward manner enabling them to use containers
(with security guarantees) as opposed to current virtual
machines to deliver EFs. This can result in a better price-
performance ratio for their deployed hardware.

VIII. RELATED WORK

Edge Clouds. The emergence of edge cloud infrastructure
is evident in research prototypes such as cloudlets [38] and
eBoxes [35], and industry initiatives such as Microsoft’s
micro DCs [39] and ETSI Mobile Edge Computing [37].
Examples of edge cloud nodes include small cells [40], [41],
WiFi routers [42], [43], or cloudlet servers [38], that could
be located in homes or neighborhoods, stores, malls, offices,
etc. ETSI MEC initiative is a nascent standardization effort
with many industry participants. Although complete MEC
implementations do not yet exist, the industrial push to de-
fine such architectures reflects a strong, shared belief in the
need for edge infrastructure. Inherent to that is the need to
timely consider the full spectrum of technologies that can ad-
dress the requirements. AirBox is the first step towards those
needs prior to the concrete definition of architecture which
can get constrained by choosing a particular technology. The
MEC white paper also enumerates security challenges faced
by EFs, but relies on trusted platforms to address these.
AirBox is a concrete first step towards a solution without
strong assumptions of trust in the distributed platforms.
Edge Provisioning. Use of virtual machines is proposed in
conjunction with VM synthesis [8] capability to provision
edge functions as a VM. This can be resource intensive and
slow, despite optimizations such as caching base images
and making available overlay files from backend. AirBox
solves the same problem in a much more scalable fashion
using Docker’s capabilities. Jitsu [18] is proposed as a
power-efficient and responsive platform for hosting cloud
services in the edge network while preserving the strong

isolation guarantees of a type-1 hypervisor but still relies
on the hypervisor for security guarantees. Further, the Jitsu
kernel based on the mini OS kernel may put additional
porting effort and/or constraints on developers of EFs to
create thin mirage OS based VMs for their EFs, and is
susceptible to unavailability of standard tools to implement
EFs. Paradrop [44] uses LXC containers to provide virtual-
ization with significantly lower overheads which is similar
to AirBox. LXC lack the seamless provisioning support
provided by Docker and simple Docker file interface. In
general, our research validates the idea of using containers
for EFs by considering evaluating it for different capabilities
of edge cloud platforms. Additionally, we analyze the upper
bounds for provisioning activities. However, Paradrop does
not address security aspect of EFs.
Edge Cloud Security has drawn less attention alongside
the fast growth of edge cloud research. Several surveys[45],
[46], [47], [48] have pointed out security and privacy
challenges from various perspectives. For example, how to
ensure the confidentiality, integrity, and availability of the
data in edge cloud; how to prevent edge cloud services
against external attacks (man-in-the-middle attack) and inter-
nal attacks (compromised environment). Possible mitigation
techniques are also proposed for different kinds of threats.
However, there is no existing platform that takes various
security considerations into account. AirBox is proposed
to be a practical edge cloud platform that attempts to
address existing security challenges by integrating the novel
commodity CPU features (Intel SGX).

IX. CONCLUSION

In this paper we explore the design space for edge plat-
forms that can execute functionality onloaded on behalf of
remote, cloud-based services, in order to address the band-
width use and address latency requirements of device-cloud
interactions. Based on detailed analysis of the current design
space, we observe that OS containers can provide a solution
for fast and scalable provisioning of edge functions, with
minimal developer constrains. In order to address problems
related to the lack of trust among of such edge functions
and the underlying platform, we develop a solution that
leverages efficient containerization mechanisms (Docker) as
well as hardware assisted security (Intel SGX), while also
balancing the goals of reduced attack surface and reduced
overheads of using trusted execution. The outcome is AirBox
– a performant and scalable edge function platform that
further provides integrity and security guarantees for edge
function computations and the state they use.
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