
Attribute-Based Partial Geo-Replication System
Hobin Yoon, Ada Gavrilovska, and Karsten Schwan

College of Computing, Georgia Institute of Technology, Atlanta, GA, USA

Abstract—Existing partial geo-replication systems do not al-
ways provide optimal cost or latency, because their replication
decisions are based on statically established data access popular-
ity metrics, regardless of the application types. We demonstrate
that additional reduction in cost and latency can be achieved
by 1) using the right object attributes for making replication
decisions for each type of application, 2) using multi-attribute-
based replications, and 3) combining the popularity-based but
reactive approach with the more random but proactive approach
to data replication. Toward this end, we propose Acorn, an
Attribute-based COntinuous partial geo-ReplicatioN system, and
its prototype implementation based on Apache Cassandra. Exper-
iments with two types of global-scale, data-sharing applications
demonstrate up to 54% and 90% cost overhead reduction over
existing systems or 38% and 91% latency overhead reduction.

I. INTRODUCTION

Many partial geo-replication systems have been recently
introduced, including [1]–[5], to address the cost of geo-
replication, which increases as the volume of data and the
number of datacenters grow. They lower cost by replicating
data only to where it is likely to be consumed, and their
performance depends on the quality of the future data access
predictions, typically based on the history of data accesses.
They use access statistics of a specific data attribute like “user”
for making replication decisions; some systems use the at-
tribute “user” directly [1]–[3], while others use it indirectly [4],
[5]. The latter systems use access statistics of tablets, which
horizontally partition objects by a range of keyspace – most
often by users.

They work well with private data-sharing applications like
social network applications; however, not with public data-
sharing applications such as YouTube and Flickr, where data
is accessed through various channels, not just through users
(friends). Another limitation of existing solutions is that they
do not explore the potential for compound, multi-attribute
metrics to drive their replication actions. Lastly, not all future
accesses can be predicted with the attribute-popularity-based
replication systems; for example, an object with a new attribute
that has never happened before cannot be proactively repli-
cated to datacenters until the first request to those attributes
is made. To address the shortcomings of the existing systems,
we propose Acorn, an Attribute-based COntinuous partial geo-
ReplicatioN system, which achieves lower cost and latency
than existing systems with three design principles; a) Use the
right attribute for each application, b) Use multiple attributes,
and c) Use continuous replications.

This paper makes the following contributions. (1) We de-
scribe Acorn – a partial geo-replication solution for large-
scale, data-sharing applications. Acorn monitors object at-

tribute access popularity for making replication decisions,
using simple design principles that benefit both public and pri-
vate data-sharing applications, thus lowering cost and latency.
(2) We implement Acorn by extending Apache Cassandra [6].
(3) We evaluate Acorn with two types of data-sharing applica-
tions: a public data-sharing application with YouTube access
traces and a private data-sharing application generated from a
Yelp dataset [7]. This demonstrates up to 54.28% and 89.91%
cost overhead reduction over existing, user-based systems or
37.73% and 90.90% latency overhead reduction.

II. ATTRIBUTE-BASED DATA REPLICATION

To explore the design space of geo-replication solutions,
we classify replication models as follows; a) Full replication:
makes replicas to all datacenters. This is what most replicated
systems do, including Cassandra, HBase, and MySQL Cluster.
It has the highest replication cost and the lowest data access
latency. b) No-active replication: stores data only in local data-
centers. When a requested object is not in the local datacenter,
it is fetched from a remote datacenter, and a local replica is
made. Caching systems, including CDN systems, follow this
model. It has the lowest cost and the highest latency. c) Partial
replication: selectively makes remote replicas based on the
access statistics of objects or metadata. d) Partial replication
with future knowledge: replicates data only to where it will
be accessed in the future. It is a theoretic model with both the
lowest cost and the lowest latency.

We use the following three design principles to achieve low-
cost geo-replication and provide low-latency data accesses.
A. Use the right attributes for each type of application.
Different types of applications have different data access
patterns. In private data-sharing applications, such as Facebook
or Snapchat, objects are accessed mostly through friends, thus
making “user” the best attribute to monitor and predict future
accesses. On the other hand, public data-sharing applications,
such as YouTube or Flickr, have diverse sources of accesses.
For example, YouTube has the majority (63%) of its accesses
from non-user-based (non-social) channels, like search and in-
application navigation [8]. For these applications, “topic” is a
better attribute for making replication decisions than “user”.
Figure 1 shows an example of topic’s strong data access
locality both geographically and temporally. Videos with the
topic “Wimbledon” are mostly accessed from North and South
America and Europe from Jan. 1st to June 7th, so they don’t
need to be replicated to Africa, Asia, or Australia.

B. Use multiple attributes. Multi-attribute-based replica-
tions have lower cost under a latency SLO (service level
objective), or lower latency under a cost SLO, compared to

1 2 5 10 15

(a) Geographic locality

 0

 25

 50

 75

 100

Jan Mar
May

Jul Sep
Nov

N
u
m

b
e
r

o
f

a
cc

e
ss

e
s

p
e
r

w
e
e
k

(b) Temporal locality

Fig. 1: (a) Access locations of YouTube videos with the topic “Wimbledon”
from Jan. 1st to June 7th, 2014. It is from our YouTube access dataset, which
is explained in more detail in Section V. The size of each circle represents
the number of accesses. “Wimbledon” becomes globally popular after June
7th, because the event starts at the end of June. (b) The number of accesses
to the same videos per week in 2014.

Latency
SLO

Latency

Cost

S

M

Full

S+R

NA

CostM CostS+R

(a) Cost comparison

LatM

LatS+R

Cost SLO

Latency

Cost

S

M
Full

S+R

NA

(b) Latency comparison

Fig. 2: Cost and latency comparison of single- vs. multi-attribute-based
replications. S, M, S+R, and NA represent single-attribute based replication,
multi-attribute based replication, single-attribute based replication plus extra
random replicas, no-active replication, and full replication, respectively.

single-attribute-based ones, even when additional extra random
replicas are used to remedy any limitations from the predictive
use of the single attribute. Using a data attribute, you can make
a better educated guess as to where a replica should be placed
than placing replicas at random places.1 In the same manner,
using two attributes will most likely give you better replication
decisions than using one attribute and adding extra random
replicas; in Figure 2(a), the multi-attribute replication M has
lower cost than the single-attribute with random replication
solution (S+R). For example, replicating YouTube videos to
Atlanta, Georgia, when either (a) they have the topic “tennis”2

or (b) they are uploaded by the user “John Isner”3, has a
lower cost than replicating them to Atlanta when (a) they
have the topic “tennis” or (c) with an extra 15% probability.
In the same manner, using multiple attributes lowers latency,
as shown in Figure 2(b). In general, we expect that Mn, a
partial replication system making replication decisions with n
attributes, has lower cost and latency than Mn−1 plus extra
random replicas.

C. Use continuous replications. To achieve further cost

1This is the rationale behind all history-based prediction systems, including
the existing user-based partial replication systems. We acknowledge that anti-
patterns can happen, where the geographic and temporal locality doesn’t hold.
An example is a repeating pattern of an attribute being popular briefly and
not accessed at all for the duration of popularity monitor window. However,
we believe those artificial patterns rarely happen with user-generated data.

2Atlanta has the highest number of USTA members per capita in the US.
3Isner played for University of Georgia and is a top-ranked tennis player

in the US as of Dec. 2015.

Lat
SLO

Cost

attrn

b

Full

LatbLatn+1

Costn

Costn+1

Latn

attrn+1

(a) Cost under latency SLO

Latency

Cost
SLO

attrn

attrn+1
Full

Costn Costn+1

Latn+1

Latn

(b) Latency under cost SLO

Fig. 3: Cost and latency reduction of continuous replications under SLO
constraints. Attributes are labeled with attr1 to attrn by their angles from
the line extending the full replication. In Figure (a), the blue and red lines
represent cost of continuous and non-continuous replication, respectively. The
blue and the (red+blue) areas represent the sum of all costs of continuous and
non-continuous replications, respectively. In Figure (b), the lines and areas
represent latencies.

Metadata DB
Attr popularity

Acorn client library
Application

Local Remote
Object

location

Object DB

Acorn
server

Acorn
server

Acorn
server

Replicate
from / to
remote

datacenters

Read / Write

Acorn server

Fig. 4: Acorn system architecture

or latency reduction SLO constraints on top of the attribute-
popularity-based access predictions, you can add as many extra
random replicas as needed to meet your SLO constraints. This
“continuous” replication allows a replication system to meet
the SLOs without having to settle for suboptimal ones. In
Figure 3(a), when you have a latency SLO Latn, you can
use attribute attrn with cost Costn. As the latency SLO
becomes smaller (as users want faster responses), you can add
as many extra replicas as needed to meet the new SLO, as in
the blue line of the figure until the cost becomes Costn+1,
at which point you can use the next attribute attrn+1. With-
out continuous replication, you would have to use attribute
attrn+1, resulting in a higher cost depicted in the red area in
the figure. In the same manner, continuous replication brings
latency reduction as depicted in the red area in Figure 3(b).

III. SYSTEM DESIGN

Acorn consists of Acorn servers and a client library that
applications link against, as shown in Figure 4. Metadata
DB consists of attribute popularity tables and object location
tables.

Attribute popularity monitor. Acorn servers in each dat-
acenter monitor popularity of each attribute independently
from other datacenters using a sliding time window per each
attribute, as shown in Figure 5. Popularity of an attribute item

Popularity
threshold

... Tennis
TennisBall

TennisOpen

Tension
...

Count

Sliding time window

…

Te
nn

isenqueue
attribute

item

dequeue
attribute

item

increment decrement

Te
nn

is

Te
nn

is

Te
nn

isB
al

l

Te
nn

isO
pe

n

Te
ns

io
n

Te
nn

isC
ou

rt
Fig. 5: Attribute popularity monitor

increases as it enters the sliding time window and decreases
as it exits the window. Popularity counters are shared by all
Acorn servers in a datacenter. A popularity threshold per each
attribute determines whether an attribute item is popular or
unpopular.

Popularity synchronization between datacenters. Acorn
synchronizes attribute popularity metadata periodically with
remote datacenters. An attribute popularity synchronizer node,
selected from Acorn servers in a datacenter, proxies the syn-
chronization, which is similar to what Cassandra’s coordinator
node does with the inter-datacenter communication. At every
synchronization epoch, a synchronizer node calculates changes
in popularity items since the previous epoch, i.e., newly
popular items and items that are not no longer popular, and
broadcasts them to remote datacenters.

Partial replications. Upon a write request, Acorn makes
replication decisions independently in each datacenter based
on its attribute popularity snapshots of remote datacenters.
Unlike existing work (placement manager of SpanStore [2] or
configuration service of Tuba [5]), Acorn does not involve any
global component when making replication decisions, enabling
low latency and high availability. After writing an object in a
datacenter, Acorn updates the object location metadata, which
is looked up when an Acorn server misses the object in the
local datacenter and needs to fetch it from a remote datacenter.

A read request first looks for an object in a local datacenter;
then, if it misses, it then fetches the object from the closest
(the one with the lowest network latency) remote datacenter.

IV. IMPLEMENTATION

We implement Acorn by modifying Apache Cassandra [6].
We modify the write path so that the StorageProxy module
writes objects to the local datacenter and to a subset of
remote datacenters by checking their attributes against attribute
popularity snapshots of remote datacenters. Since the number
of replicas could be smaller than what full replication would
do, CL (consistency level) is internally modified so that the
number of acknowledgements for which a client waits does
not exceed the number of replicas. StorageProxy, after writing
an object to local object DB, updates the object location table
for future on-demand fetch operations. Read serves a requested

object from a local datacenter first, and, when it misses the
object, it fetches the object from the closest remote datacenter.
The request is notified to attribute popularity monitor asyn-
chronously.

Acorn’s popularity monitor uses Cassandra counters [9]
internally to monitor the popularity of each attribute item.
The counters are “eventually” consistent, just like any other
writes and reads with their CLs less than Quorum. They
serve Acorn’s purpose very well for the two reasons; a) We
prefer performance and scalabiltity over strong consistency. b)
Within a local datacenter, which is the scope of the monitoring,
inconsistencies requiring conflict resolutions rarely occur.

V. EVALUATION

We evaluate Acorn by comparing it with existing, user-
based systems in terms of cost and latency using two types of
applications: a public and a private data-sharing application.

Experimental setup. The public data-sharing application
workload was gathered from an extensive crawling of Twitter;
we crawled tweets that have both YouTube links and coordi-
nates using the Snowball crawling method [10] with periodic
random seedings to prevent the crawler from being biased
towards nodes with a high number of edges. The workload
had 2.3 M YouTube videos, 833 K users, and 7.2 M accesses
to the videos. For the private data-sharing application, we used
a Yelp dataset [7], which had 1.1 M reviews, 253 K users,
and a 956 K-edge social network graph. From the dataset, we
built social network application requests; users check the latest
reviews from their friends, just like Facebook users check the
status updates of their friends [3]. We set up a simulated multi-
datacenter testbed at Georgia Institute of Technology with real-
world network latencies among datacenters.

Evaluation metrics. To compare replication models inde-
pendently from application sizes or object sizes, we use cost
and latency overhead as evaluation metrics. We define cost
overhead CO of a replication model as a relative cost to the
minimum cost, which is the cost of the no-active replication
model (NA): CO = (Cost−CostNA)/CostNA. In the same
manner, we define latency overhead LO as a relative latency
to the minimum latency: LO = (Lat−LatFull)/LatFull. The
partial replication with future knowledge model has a LO 0
and a CO 0, which is every partial geo-replication system’s
ultimate goal.

The right attributes for each application. Figure 6
demonstrates different types of applications have different
attributes that replication decisions can be made best out
of. In the public data-sharing application, data is accessed
through various channels, and the “user”-based channel is not
the best one for making replication decisions. In this case,
“topic” captures the popularity of objects better than “user”.
In the private data-sharing application, where data is shared
among friends, “user” is a natural choice. A natural follow-up
question is how do you know which attributes are the best for
your application? Sometimes they are trivial for application
designers; for example, in social network applications, where
checking status updates of friends is the most-used feature, it

0.0

0.5

1.0

1.5

User Topic User Topic

C
o
st

 o
v
e
rh

e
a
d

-18%

-97%

YouTube Yelp

0.0

0.1

0.2

0.3

User Topic User Topic

-52%

YouTube Yelp

2.0

2.1

2.2 -3.3%

La
te

n
cy

 o
v
e
rh

e
a
d

Fig. 6: Cost and latency overhead by attributes and application types

0.1

0.2

0.4

1.0

2.0

Su St M Su St M

C
o
st

 o
v
e
rh

e
a
d

-23%-7.2%

-80%-83%

YouTube Yelp

0.0

0.1

0.2

Su St M Su St M

-70%

-86%

YouTube Yelp

2.0

2.1

2.2 -4.2%
-1.1%

La
te

n
cy

 o
v
e
rh

e
a
d

Fig. 7: Cost and latency overhead comparison of single- vs. multi-attribute-
based replications. Su and St use a single-attribute “user” and “topic”,
respectively, for making replication decisions. M uses both of them.

is trivial that “user” is the best attribute. Other applications can
find their attributes with trial runs of Acorn with some initial
part of the data. For example, with a trial run of only 3%
of the public data-sharing application workload, we identified
that “topic” was a better attribute than “user”.

Multi-attribute based replication. In both public and
private data-sharing applications, multi-attribute based repli-
cations outperform single-attribute based ones under SLO
constraints, as shown in Figure 7: up to 23% and 83% cost
overhead reductions in the public and private data-sharing
applications, respectively, and up to 4.2% and 86% latency
overhead reductions.

Continuous replication. Figure 8(a) compares the cost
of a continuous replication system with the cost of a non-
continuous replication system under latency SLO constraints.
When the latency SLO is high, i.e., when the storage system
has a good latency budget, the system can be configured
to no-active replication model and run with the lowest cost.
As the latency SLO decreases, the system needs to move
from a no-active replication model to user-based to topic-
based to (user+topic)-based, and finally to full replication
model to meet the decreased latency SLO. A non-continuous
replication system needs to follow the red line to meet the new
latency SLO, resulting in a bigger cost jump than a continuous
replication system, which needs only a small amount of extra
replicas to meet the same SLO. Our experiments with the
public data-sharing application workload demonstrate that the
continuous replication system has an average cost reduction
of 40.62% over the non-continuous replication system. In
the same manner, the continuous replication system has an
average latency reduction of 35.00% over the non-continuous
replication system under cost SLO constraints as shown in
Figure 8(b).

Overall, Acorn achieves up to 54.28% and 89.91% cost
overhead reduction and 37.73% and 90.90% latency overhead
reduction for the public and private data-sharing applications

C
o
st

Latency SLO (ms)

Full

UT T

U Na
 0

 1

 2

 3

 4

 5

 50 75 100

40.62%
reduction

(a) Cost under latency SLOs

La
te

n
cy

 (
m

s)

Cost SLO

Full

UT
TU

Na

 0

 25

 50

 75

 100

 1 2 4

35.00%
reduction

(b) Latency under cost SLOs

Fig. 8: (a) Cost of the continuous and non-continuous replication system under
latency SLO constraints using the public data-sharing application workload.
Each of the blue and the red line represents the cost of continuous and non-
continuous replication system under latency SLOs. Cost in the y-axis is plotted
in the relative cost to the no-active replication system for an easy comparison.
UT, T, U, and Na represent (user+topic)-based, topic-based, user-based, and
no-active replication, respectively. The blue and the (red+blue) area represent
the sum of all costs of the continuous and non-continuous replication system,
respectively. (b) Latency of the continuous and non-continuous replication
system under cost SLO constraints.

over existing partial replication systems.

VI. CONCLUSIONS AND FUTURE WORK

We explore the attribute-based partial geo-replications in
multi-datacenter environment with the three key ideas: a)
Use the right attributes for each application, b) Use multiple
attributes, and c) Use continuous replications. We evaluate
the idea with our prototype implementation of Acorn and
demonstrate considerable reductions in cost and latency with
two types of data-sharing applications. Future work will inves-
tigate fault-tolerance issues arising from a reduced number of
object replicas, deletion or offloading unpopular objects to cold
storage, and partial replication under client-defined constraints,
e.g., favoring private datacenters over public datacenters due
to capital vs. operational expenditure.

REFERENCES

[1] S. Kadambi et al., “Where in the world is my data,” in Proceedings
International Conference on Very Large Data Bases (VLDB), 2011.

[2] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Mad-
hyastha, “Spanstore: Cost-effective geo-replicated storage spanning mul-
tiple cloud services,” in Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles. ACM, 2013, pp. 292–308.

[3] S. Traverso et al., “Social-aware replication in geo-diverse online sys-
tems,” Parallel and Distributed Systems, IEEE Transactions on, vol. PP,
no. 99, pp. 1–1, 2014.

[4] D. B. Terry et al., “Consistency-based service level agreements for
cloud storage,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles. ACM, 2013, pp. 309–324.

[5] M. S. Ardekani and D. B. Terry, “A self-configurable geo-replicated
cloud storage system,” in Symp. on Op. Sys. Design and Implementation
(OSDI), 2014, pp. 367–381.

[6] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[7] Yelp, “Yelp Dataset Challenge,” 2015. [Online]. Available: http:
//www.yelp.com/dataset challenge

[8] A. Brodersen, S. Scellato, and M. Wattenhofer, “Youtube around the
world: geographic popularity of videos,” in Proceedings of the 21st
international conference on World Wide Web. ACM, 2012, pp. 241–250.

[9] Datastax, “Whats New in Cassandra 2.1: Better Implementation of
Counters,” 2014. [Online]. Available: http://www.datastax.com/dev/
blog/whats-new-in-cassandra-2-1-a-better-implementation-of-counters

[10] S. Scellato, C. Mascolo, M. Musolesi, and V. Latora, “Distance matters:
geo-social metrics for online social networks,” in Proceedings of the 3rd
conference on Online social networks, 2010, pp. 8–8.

