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Abstract
Emerging applications such as autonomous drones and mas-

sively multiplayer gaming require real-time communication

between multiple geo-distributed participating entities. A

publish-subscribe system deployed on a geo-distributed edge

infrastructure would provide a scalable messaging middle-

ware for such applications. However state-of-the-art publish-

subscribe systems like Apache Pulsar and Kafka perform

inefficiently in a geo-distributed deployment due to hetero-

geneous client-broker latencies and constant client mobil-

ity. We present a novel control-plane architecture for geo-
distributed publish-subscribe systems that is capable of adap-

tive topic partitioning to enable low-latency messaging for

such applications. We leverage a peer-to-peer network co-

ordinate protocol for scalable estimation of network laten-

cies between publish-subscribe brokers and clients. Client-

broker latency and workload metrics are continuously col-

lected from brokers and used to detect latency violations or

workload imbalance, which triggers reassignment of topics.

We develop ePulsar, which incorporates the control-plane

architecture ideas into the popular Apache Pulsar publish-

subscribe system, retaining Pulsar’s data-plane APIs. We

evaluate the efficacy and overheads of the proposed con-

trol plane using workload scenarios representative of typical

edge-centric applications on an emulated geo-distributed

infrastructure.
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1 Introduction
Applications such as drone control and Massively Multi-

player Online Games (MMOG) need to support large amounts

of clients, retaining high throughput and low latency com-

munication. The synchronization decoupling provided by

publish-subscribe systems [14, 38] makes them an ideal mes-

saging middleware for supporting these applications. Typi-

cally, pub-sub systems consist of broker middleware nodes
that are responsible for message exchange within the sys-

tem. Popular pub-sub systems such as Apache Kafka and

Pulsar are commonly used for supporting low latency and

high throughput messaging for datacenter applications. Pub-

sub systems have been shown to be suitable for sharing

game state updates in MMOGs [6], swarm synchronization

for autonomous robots (drones) [4], and data distribution

for large-scale stream processing [16]. However, contem-

porary applications such as MMOGs, large scale IoT, and

Unmanned Aerial Vehicle (UAV) coordination pose latency

constraints that make cloud-based publish-subscribe system

deployments unsuitable due to the high WAN latency be-

tween clients and middleware nodes. Given the proximal

nature of edge resources, they can be utilized for hosting
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pub-sub middleware close to clients and thereby provide low

end-to-end pub-sub latency.

However, adapting state-of-the-art cloud-based pub-sub sys-

tems like Kafka and Pulsar to a geo-distributed edge infras-

tructure poses peculiar challenges. Such systems typically are

topic-based and they partition topics among brokers by com-

puting consistent-hash of topic name. Consistent hashing

ensures even distribution of load among brokers - which is

key to manageable end-to-end latency in datacenters where

the network topology is more or less homogeneous. However,

in edge infrastructure, the physical location of a client has

a significant impact on client-broker network latency, and

latency-agnostic consistent hashing does not account for net-

work proximity. In addition, client mobility requires constant

adaptation of topic partitioning to continuously provide low

end-to-end latency. The network infrastructure itself could

experience changes (e.g., increased latency between servers)

which might affect end-to-end latency. Finally, due to the

capacity constraints and limited statistical multiplexing at

edge sites, load-aware topic partitioning is important to avoid

workload hotspots and minimize end-to-end latency [22].

To address the above challenges, we design a novel edge-
centric control plane architecture for pub-sub systems. The

elements of this architecture include the following features,

which are the primary contributions of this paper: (1) A

network-proximity monitoring technique that leverages net-

work coordinates so thatworkload distribution can be latency-

sensitive. The technique uses a decentralized network coor-

dinates protocol [9, 23] to scalably obtain pairwise network

latency estimates between system entities. (2) A latency and

workload-aware adaptive topic partitioning policy that keeps

the end-to-end latency under the threshold set by the appli-

cation.

To put the above contributions into practice, we extend

Apache Pulsar – a popular cloud-based pub-sub system –

to build ePulsar, which offers the same functionality as

Pulsar alongside agile and adaptive topic partitioning to pro-

vide low end-to-end latency. We evaluate ePulsar against
realistic workload scenarios on an emulated geo-distributed

infrastructure to show the performance improvements over

off-the-shelf deployment of a cloud-based Pulsar. The com-

prehensive evaluation study forms the third contribution of

this paper. While the control plane ideas have been incorpo-

rated into Pulsar as a proof of concept, the ideas are general

and can be applied to any edge-centric pub-sub system.

The rest of the paper is structured as follows. We set the

context for this work in Section 2 and enumerate the control-

plane requirements of an edge-centric pub-sub system in

Section 2.4. The architecture of ePulsar is presented in Sec-

tion 3, followed by implementation details in Section 4. Sec-

tion 5 presents the results of microbenchmarking ePulsar;

and end-to-end evaluations of two exemplar applications

with an emulated infrastructure. We conclude with a discus-

sion of future work in Section 6.

2 Context
We first describe the characteristics of the geo-distributed

edge infrastructure which would host both the edge-centric

pub-sub system and client applications (Section 2.1). We then

illustrate examples of applications that will benefit from an

edge-centric pub-sub system (Section 2.2). The state-of-the

art in pub-sub systems and their limitations in supporting

such geo-distributed applications are discussed next (Sec-

tion 2.3). The section concludes with the control-plane re-

quirements for an edge-friendly pub-sub system (Section 2.4).

2.1 Assumptions about Edge Infrastructure
We consider an edge computing infrastructure that con-

sists of multiple geo-distributed sites in each metropolitan

area. These sites comprise multiple server racks and could

be owned by service providers (such as AT&T and Com-

cast [28]), or by emerging edge solution providers (such as

EdgeMicro [26] and VaporIO [21]). Since these sites are lo-

cated just a few hops away from end-devices, they can be

accessed with low network latency. Such sites in different

cities along with cloud datacenters form a computational

continuum to serve latency-critical applications to a geo-

distributed set of clients.

2.2 Exemplar Applications
We describe two applications that would benefit from a geo-

distributed pub-sub system.

2.2.1 UAV Swarm Coordination
Operating swarms of unmanned aerial vehicles (UAVs) have

applications in smart cities, surveillance, etc. A common way

to operate UAV swarms is to assign one of the UAVs as the

swarm leader and the others as followers [34]. The leader re-
ceives commands from a control station and translates them

into actionable tasks, which are then conveyed to the follow-

ers to guide their motion. In addition, the swarm leader also

receives updates of relevant objects (e.g., obstacles) from the

followers and instructs the swarm members to update their

trajectory. Such communication has previously been mod-

eled using a pub-sub abstraction [4]. Ensuring low-latency

communication between leaders and followers, and between

leader and ground control is essential for the efficient opera-

tion of the swarm.

Swarm mobility leads to changes in the routing path of pack-

ets through cellular networks, causing increased communica-

tion delay between the drones and the pub-sub brokers [18].

Therefore, a latency-sensitive pub-sub system is necessary

to ensure proper swarm control.
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2.2.2 Massively Multiplayer Online Games (MMOG)
Cloud-based control of MMOG reduces users’ Quality of Ex-

perience (QoE) due to the high network latency between the

clients and the game server [8]. It has been shown [30] that

users would experience a much better QoE (25% lower state

update latency) in MMOG if cooperating game servers are

hosted on edge infrastructure. Geographically distributed

end-users (avatars) connect to their geographically nearby

game servers. The game servers use a peer-to-peer archi-

tecture [3] with dedicated pairwise connections amongst

them to maintain the game state information, and commu-

nicate game state updates to the avatars in their respective

Area-of-Interest (AoI).
An edge-centric pub-sub system would offer a scalable al-

ternative to maintaining the game state among the server

instances, and the subscription of avatars to each server in-

stance. As gameplay progresses, commensurate with their

mobility pattern, avatars would unsubscribe and re-subscribe

to server instances based on AoI.

2.3 State-Of-The-Art Pub-Sub Systems
Apache Kafka and Apache Pulsar are popular cloud-based

pub-sub systems. Their simple and easy-to-use semantics

coupled with scalable performance for data communication

(high message throughput and low latency) make them at-

tractive platforms for structuring cloud-based applications.

However, the use cases identified earlier pose unique chal-

lenges due to the fact that the communicating entities are

mobile and geo-distributed. Thus a cloud-based pub-sub sys-

tem would not cater to their need for end-to-end low latency

guarantees between the communicating entities. While the

data plane of Apache Kafka and Apache Pulsar offer very

good performance, their control plane decisions (e.g., for

broker and bookie placement) assume all the communicating

entities reside in the cloud with uniform communication

latencies among the nodes. With mobility of clients in the

aforementioned applications, it is imperative that the con-

trol plane decisions take into account network proximity of

edge nodes to clients to ensure meeting end-to-end latency

constraints. Further, continuous monitoring of violations of

latency constraints is necessary to support such applications.

There has been prior work in building edge-centric pub-sub

systems, which include EMMA [31], FogMQ [1], and Mu-

tiPub [17]. However, these systems do not meet the data

communication and/or the scalability needs of the afore-

mentioned applications. EMMA does not handle message

reliability guarantees or at-least-once/exactly-once seman-

tics that are typically offered by commercial pub-sub systems.

FogMQ relies on creating a clone in the proximity of each

device to handle communication on behalf of that device.

With a large number of participating clients, this design de-

cision will be a huge resource burden on the already scarce

edge resources making the system non-scalable. MultiPub

aims to provide latency guarantees for multi-region pub-sub

systems by relying on having detailed information of inter-

region latencies, as well as the network latency between

every client-broker pair. Although this might be tractable

for deployments with a handful of cloud regions, the much

denser distribution of edge sites makes monitoring and main-

taining such fine-grained latency information infeasible.

From an analysis of the state-of-the-art, we conclude that

cloud-based pub-sub systems owing to their maturity have

the best data plane and scalability attributes. However, a

careful rethink of the control plane for pub-sub systems is

needed to make such pub-sub systems operate adequately

for supporting novel geo-distributed edge applications like

the ones discussed in Section 2.2.

2.4 Control-Plane Requirements
We summarize the control-plane requirements for an edge-

friendly pub-sub system:

• It should facilitate latency-aware topic partitioning for

meeting application-specified end-to-end pub-sub latency

thresholds.

• It should offer scalable inter-site latency estimation to

support a large community of communicating entities.

• It should provide agile reconfiguration of topic parti-

tioning to minimize violation of end-to-end application-

specified latency thresholds.

The goal of this paper is to architect an agile control-plane

for an edge-friendly pub-sub system which should meet the

requirements mentioned above. To show the efficacy of this

control plane, we implement these ideas in Apache Pulsar.

However, the ideas are general and can be incorporated into

any edge-centric pub-sub system.

3 ePulsar Architecture
Fig. 1 shows the main architectural components of ePul-
sar and how it extends Pulsar’s control-plane to achieve the

requirements posed by geo-distribution. Given that we use

Apache Pulsar to evaluate the efficacy of our contributions,

we begin with a description of Pulsar’s control-plane de-

sign. In the subsequent subsections, we describe how the

architectural elements of ePulsar are integrated into Pulsar.

3.1 Control-plane Design of Apache Pulsar
Pulsar supports two types of topics - persistent and non-
persistent. Messages on persistent topics are logged on durable

storage of bookie nodes (instances of Apache BookKeeper)
for reliability [2], while non-persistent topics are not. Pul-

sar groups topics into bundles – the unit of monitoring and
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topic partitioning. This design choice was made to amor-

tize the amount of metadata needed to be tracked by the

system. Topics are assigned to bundles by performing con-

sistent hashing on the topic name. Each bundle is assigned

to a unique broker through topic partitioning. Pulsar uses a

ZooKeeper [20] instance to store cluster configuration data

such as active brokers, bookies, bundles, and broker to bundle

mapping. The ZooKeeper instance also serves as a reposi-

tory for monitoring data which is periodically updated by

each broker. Monitoring data comprises per-bundle traffic

load and each broker’s resource usage. The Load Manager

module of Pulsar processes the monitoring data to determine

candidate brokers for hosting a bundle, as well as to check if

the current topic partitioning needs to be updated. Such a

reconfiguration is needed when a broker is overloaded, in

which case some bundles are migrated to another broker.

Bundle migration in Pulsar is carried out by first having the

current broker relinquish ownership of them followed by

those bundles being lazily re-assigned to a less loaded broker

determined by the same topic partitioning policy.

Figure 1: Architecture of ePulsar. The shaded components

are the unique enhancements in ePulsar. The entities with
dashed outlines represent baseline Pulsar’s components that

have been replaced with edge-centric implementations.

3.2 Per-Topic Load and Latency Monitoring
One fundamental design departure fromPulsar is not bundling

topics into bundles, so that we can monitor and handle

broker-assignment of each topic independently. This design

choice is reflected in the monitoring module at each bro-

ker. As in Pulsar, each broker hosts modules for monitoring

resource usage (CPU, memory, and network bandwidth) at

the broker as well as per-topic traffic characteristics (includ-

ing message rate and number of clients). Additionally, we

also monitor the latency attributes of the broker and clients.

These monitored metrics are periodically reported to the

ZooKeeper instance. We now discuss in more detail the la-

tency monitoring module.

Decentralized Network Coordinate protocol. Scalable
and accurate measurement of network latencies between

clients and brokers is essential for the selection of a suitable

broker and ensuring low pub-sub latency. Network coor-

dinate (NC) systems are distributed protocols to scalably

determine the network proximity between a pair of nodes

Notation Definition
t topic

P (t) producers of topic t
C (t) consumers of topic t
Lth (t) end-to-end latency constraint for topic t
P [t] broker hosting topic t
NC (i) network coordinate of entity i

NC (I ) centroid network coordinate of entities in I
d (nc1,nc2) distance between network coordinates

W (t) Deviation of client NC from centroids of topic t
E (t) Worst-case end-to-end latency for topic t

Table 1: Notations used.

in a distributed system without performing direct measure-

ments [12]. Such systems embed nodes in a geometric space

such that the network latency between any two nodes can

be estimated by calculating the Euclidean distance between

their positions (coordinates) in this space. Doing so avoids

the network overhead of pair-wise direct measurements. We

employ a popular decentralized network coordinate protocol,

Vivaldi [9] with some enhancements proposed by Ledlie, et

al. [23] and Lee, et al. [24]. Prior art has shown that NC proto-

cols provide efficient, accurate, and stable latency estimates

in the wild [23].

Each broker’s Latency Monitoring module contains an agent

of the NC protocol, which interacts with its peer agents in

other brokers. NC agents are also run on client nodes and

they too form a part of the peer-to-peer (P2P) network of

agents along with the brokers. Through periodic communi-

cation with a finite set of peers, each agent converges on a

stable network coordinate. Each client periodically queries

the coordinate of its NC agent and reports it to the broker

that currently hosts its topic. Each broker periodically re-

ports the NC of its agent, along with the coordinates reported

by clients of its hosted topics to the ZooKeeper instance. This

combination of NCs for broker and clients is used to compute

the end-to-end pub-sub latency for a given topic.

Aggregation of Per-topic Latency Data. We reduce the

amount of per-topic monitoring data sent to ZooKeeper by

aggregating the network coordinates of multiple clients. For

each topic t that is hosted on broker b, we report the fol-

lowing data items through monitoring. Table 1 provides a

summary of notations used.

• Producer and Consumer Centroid. The producer and
consumer centroids provide an approximate location of

the network location of a topic’s clients. We compute

the centroid producer coordinate NCP (t) and centroid

consumer coordinate NCC (t) as follows.

NCP (t) = NC ({i : i ∈ P (t)})

NCC (t) = NC ({i : i ∈ C (t)})
4
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• Maximum Deviation from Centroids. To cope with

the loss of information with centroids, we send the max-

imum deviation of the clients’ coordinates from their

corresponding centroid. We denote this asW (t) and it is

computed as shown below.

max

p∈P (t )
d
(
NC (p) ,NCP (t)

)
+ max

c ∈C(t )
d
(
NC (c) ,NCC (t)

)
• Worst-case End-to-end Latency. For each topic t , we
compute theworst-case pub-sub latency across all producer-

consumer pairs.We denote this as E (t) and it is computed

as follows.

max

p∈P (t )
d
(
NC (p) ,NC (P [t])

)
+ max

c ∈C(t )
d
(
NC (c) ,NC (P [t])

)
This information is used to determine whether the cur-

rent broker, denoted by P [t] is meeting the topic’s end-

to-end pub-sub latency threshold.

One key point to take note of is that the volume of per-topic

monitoring data generated is independent of the number of

clients using that topic. Given the high heterogeneity of bro-

ker and client network locations in a geo-distributed setting,

this aggregation technique significantly reduces monitoring

data traffic. By contrast, a naive approach which records

the network coordinates of all clients would incur network

traffic proportional to the number of clients of each topic.

3.3 Latency and Load-Aware Topic Partitioning
ePulsar’s topic partitioning policy uses the fine-grained

per-topic latency and load monitoring data collected from

brokers to meet end-to-end latency guarantees. We imple-

ment this policy by extending the Load Manager module in

Pulsar, which periodically processes the latest monitoring

data and determines whether the currently observed system

state requires an update to the topic partitioning. An update

to topic partitioning may be required for one of two reasons.

(1) The end-to-end pub-sub latency for a topic E (t) exceeds
the topic’s prescribed threshold Lth (t).

(2) Workload capacity on a broker exceeds a high watermark,

resulting in inflated processing latency on the broker. A

broker is said to be overloaded in case the consumption

of any one of the hardware resources (CPU, memory or

network bandwidth) exceeds a threshold, or if one of the

aggregate traffic parameters (e.g., output message rate)

exceeds a threshold. Through a comprehensive profiling

of Pulsar’s data-plane, we have identified the most rele-

vant traffic parameters and their respective thresholds

that indicate broker overload. In this scenario, the over-

loaded broker’s per-topic traffic load is analyzed and a

subset of topics are selected for migration, such that their

removal from the broker will result in reduction of load

below the high watermark.

The pseudocode of this algorithm is presented in Algorithm 1.

First, we iterate through each topic and determine if its worst-

case end-to-end latency violates its threshold and if so we add

it to the set of topics to be migrated (lines 15-17). Next, we

determine the set of brokers that are overloaded (line 18). For

each such broker, we extract a set of topics whose migration

would result in avoiding overload (lines 19-21). We compute

repartitioning for these topics and final migration commands

(reconfigurations) is then executed by the LoadManager. The

logic for computing repartitioning of topics is present in the

PlaceTopics procedure. For each topic we first determine a

ranked set of latency-feasible brokers (Section 3.4.1). Next,

in the order of increasing size of the candidate set, we try to

place each topic on the candidate brokers, such that the topic

placement does not result in broker overload (lines 5-10).

The policy for determining overload of brokers, selecting

topics for migration, and finding candidate brokers are exten-

sible; we discuss them in detail in Section 3.4. In the event that

the Load Manager detects the need for topic repartitioning,

a new broker is selected for that topic, and a reconfiguration

of topic ownership is carried out (Section 3.6).

3.4 Topic Partitioning Policies
The latency and load-aware topic partitioning algorithm

discussed above provides an extensible framework for imple-

menting various policies. In this section we provide detail

into the policies we use for each of the constituent decision-

making steps in Algorithm 1.

3.4.1 Selecting Broker Based on End-to-End Latency
As a result of the fine-grained per-topic data collected by

the latency monitoring discussed in Section 3.2, we propose

the following policy to select a broker that keeps end-to-end

latency under a specified threshold. For each broker b that is

a potential candidate for hosting topic t , we computeW (t ,b),
the expected worst-case end-to-end latency that broker b
would be able to offer.

W (t ,b) = d
(
NCP (t) ,NC (b)

)
+d

(
NCC (t) ,NC (b)

)
+W (t)

We then filter the set of brokers for which the approx. worst-

case end-to-end latencyW (t ,b) is under the topic’s threshold
Lth (t). If the set of latency-feasible brokers B (t) is empty,

we return the entire broker list as candidates. We rank the

candidate brokers by increasingW (t ,b).

3.4.2 Filtering Overloaded Brokers
We label a broker as overloaded if one of the following con-

ditions holds true.

(1) The utilization of broker’s hardware resources, namely

CPU, memory and network bandwidth exceeds a thresh-

old of 85% (same as Pulsar).

(2) Aggregate output message rate (messages/sec) at broker

exceeds the threshold Rthout . This condition ensures that

5
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Algorithm 1 Topic Manager algorithm. Inputs are P0 (initial
topic partitioning) andM (monitoring data)

1: procedure PlaceTopics(Tmiдr , P ,M)

2: F ← dict ()
3: for t ∈ Tmiдr do
4: F [t] ← дet_f easible_brokers_by_latency (t ,M)

5: sort Tmiдr by increasing |F [t] |
6: for t ∈ Tmiдr do
7: for bcand ∈ F [t] do
8: if can_host (bcand , t , P ,M) then ▷ no broker

overload

9: P [t] ← bcand
10: break

11: return P
12: procedure PerformRepartitioning(P0,M)

13: R ← {} ▷ set of migration commands

14: Tmiдr ← {} ▷ topics to migrate from curr broker

15: for t ∈ P0.topics do
16: if latency_violated (t) then
17: Tmiдr ← Tmiдr ∪ {t}

18: Bover load ← дet_overloaded_brokers (P0,M)
19: for b ∈ Bover load do ▷ resource-based detection

20: Tb ← дet_topics_to_miдrate (b, P0,M)
21: Tmiдr ← Tmiдr ∪Tb

22: P ← PlaceTopics
(
Tmiдr , P0,M

)
23: R ← {} ▷ set of repartitioning commands

24: for t ∈ P0.topics do
25: if P [t] , P0 [t] then
26: R ← R ∪ {(t , P0 [t] , P [t])}

27: execute_reconf iдs (R)

processing latency on the broker does not impact the end-

to-end latency. Through extensive profiling of ePulsar’s
data-plane (as described in Section 5.4), we determine

both the metric and the threshold for checking overload.

We note that more complex policies for determining broker

overload such as the one proposed by Khare, et al. [22] could

also be used. However, we defer the exploration of such

policies to future work.

3.4.3 Topic Selection to Migrate from Brokers
For simplicity, we assume that two topics with an identical

output message rate (msgs/sec) would incur identical load

on a broker. Rout (t) represents total incoming and outgoing

message rates for a topic t . To minimize the number of mi-

grations required, we prioritize migrating topics with higher

Rout (t). If the trigger for broker overload was high resource

usage, then we determine the target aggregate message rate

that topic migration should achieve to lower the resource

utilization below the threshold. We keep marking topics as

candidate for migration (in decreasing order of Rout (t)) until

the target message rate is achieved. If the trigger for broker

overload was high aggregate output message rate, then we

remove topics (similar to the above description) until the

total output message rate falls below the threshold Rthout .

3.5 Reducing Message Processing Latency
Broker communicating with a remote system entity in the

critical path of message processing can significantly impact

end-to-end latency, even though the broker has been chosen

keeping network proximity in mind. Such a workflow exists

in Pulsar’s data-plane, wherein serving persistent topics re-

quires the broker logging individual messages on the durable

storage of one or more BookKeeper nodes (bookies) before

the producer can be acknowledged. Thus latency-aware bro-

ker selection needs to be augmented with a suitable bookie

selection policy for end-to-end latency satisfaction.

ePulsar selects bookie nodes that are resident on the same

edge site as the broker to avoid remote communication in

the critical path. For better reliability, bookie nodes from

distinct racks on the same edge site (Section 2.1) are selected.

We allow developers to specify the number of bookie nodes

to persist a topic’s messages on, and the size of the write

quorum (number of bookie acks needed before acknowledg-

ing the producer). This design enables developer to choose a

tradeoff between fault-tolerance and latency overhead.

3.6 Control-Plane Agility for Reconfigurations
One of the requirements of ePulsar is to be responsive when
detecting and adapting to workload dynamism via topic re-

partitioning. ePulsar achieves this requirement by (a) better

coordination between Load Manager and brokers to reduce

per-topic migration time, and (b) exploiting concurrency to

increase topic migration throughput. We discuss both these

design choices in this section.

EnhancedCoordination.Weperform topic unloading from

old broker and loading on new broker together as part of the

sameworkflow.We add coordination steps in the communica-

tion between the LoadManager and the brokers involved in a

topic migration. Fig. 2 shows the steps involved in ePulsar’s
migration workflow. The Load Manager sends a command

to the current broker to release the topic (1). The old broker

releases ownership of the topic by updating ZooKeeper (2).

Upon successful write to ZooKeeper, it terminates the con-

nections to the clients of that topic, providing them the new

broker’s address (3), and informs the newly chosen broker

to acquire ownership of this topic (4). Clients reconnect to

the new broker (7) and resume operation when their connec-

tions are established. Step 3 is an expanded control action in

ePulsar compared to baseline Pulsar. Specifically, notifying

the clients of the new broker is not part of the workflow of

baseline Pulsar. Further, step 4 does not exist at all in base-

line Pulsar. Step 3 lets clients know the next broker for the

6
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topic under migration and eliminates the need for clients to

perform topic lookup from the Load Manager. Step 4 allows

the old broker to proactively inform the new broker to ac-

quire ownership of the topic, which hides this latency for

communication with ZooKeeper (Step 6) from the clients,

thus reducing client downtimes. We define the duration be-

tween the Load Manager sending “Release Topic” command

to old broker (1) and receiving the “Topic Release Complete”

response (5) as the per-topic migration time. This metric rep-

resents the elapsed time incurred in the migration workflow

by the Load Manager for a single topic.

Figure 2: Sequence diagram of ePulsar’s topic migration

workflow. The time duration for which a client remains dis-

connected from a broker is termed as client downtime.
Concurrent Topic Migration. ePulsar’s Load Manager

employs a pool of threads to execute topic migration. As

shown in Fig. 2, topic ownership in ZooKeeper is updated by

the individual brokers themselves. This strategy allowsmulti-

ple concurrent migrations to proceed, relying on ZooKeeper

for ensuring consistent updates to topic ownership. Fur-

ther, this strategy also allows the Load Manager to carry

out concurrent migration of topics to chosen brokers using

the thread pool. On the other hand, the Load Manager in the

baseline Pulsar carries out topic migration sequentially.

4 Implementation
We implement ePulsar by integrating the architectural com-

ponents presented in Section 3 into the control plane of

Apache Pulsar version 2.2.1. As we mentioned in Section 3.2,

for fine-grained monitoring we enforce the maximum num-

ber of topics in a bundle to be equal to 1, and split any bundle

immediately that is assigned more than one topic. Keeping

the bundle concept in tact allows ePulsar to leverage Pul-

sar’s bundle-oriented monitoring and load management sys-

tem.Wemaintain per-topic latency constraints in ZooKeeper

and allow application developers to specify them through a

command-line utility. The periodicity of processing monitor-

ing data in the Load Manager is 5 seconds.

DeploymentConfiguration of ePulsar.Broker and bookie
nodes are hosted both at edge sites for serving low-latency

applications as well as in a remote datacenter (i.e., cloud). The

Topic Manager role is assigned to a broker through leader

election, although we restrict the role to be assigned to a

cloud broker because of better reliability of cloud resources.

The ZooKeeper instance is co-resident in the cloud. Clients

connect to the pub-sub infrastructure through various access

media, e.g., cellular (4G LTE), WiFi or wired networks.

Network Coordinate P2P System.We use Serf [19] as the

network coordinate agent as described in Section 3.2. Serf

agent uses a gossip protocol to discover peers in the clus-

ter, and newly joined nodes fetch information about seed

nodes from a central database. Member nodes of a Serf clus-

ter communicate with each other as per the enhanced Vivaldi

NC protocol, which has been shown to converge to stable

coordinates after 60 minutes of the NC cluster being up [23].

Integrating NC P2P System with ePulsar. Each of ePul-
sar’s entities - brokers and clients - run an instance of the

Serf agent that form a P2P cluster. We designate brokers in

the cloud as seed nodes of the NC cluster. ePulsar’s clients
can be static or mobile depending on the application use-case.

Through experimentation, we have found that the Vivaldi

NC protocol does not provide stable latency estimates when

mobile clients are nodes in the NC P2P cluster. However,

such mobile devices invariably connect to the Internet via

a nearby gateway node e.g., local breakout [25] for clients

running on a 4G/LTE network. We assume the presence of a

lightweight network coordinate proxy (NC Proxy) running

on such gateway nodes, serving as the source of network

coordinate information for the mobile clients connected to

that gateway node. Thus the NC of a mobile client defaults

to that of the gateway node that it is currently connected

to. Since all the data plane actions of a mobile client goes

through its associated gateway node (which serves as the

NC Proxy), the client-proxy latency is a constant factor in

the end-to-end delay, and is accounted for by adding it to

the height parameter of the proxy’s NC
1
.

The entities in ePulsar running NC’s Serf agents (broker,

static clients, and NC proxies) are stable and have a much

longer uptime (on the order of days) compared to the 60

minute convergence time of the NC cluster. The client library

queries its current network coordinate (or that of its NC

proxy) periodically every 5 seconds and reports it to the

broker hosting its topic. Similarly, the broker queries its

current network coordinate periodically every 5 seconds.

5 Performance Evaluations
We evaluate ePulsar to validate the following hypotheses.

(1) Inter-node latency estimation using ePulsar’s network
coordinate protocol has high accuracy and imposes low

overhead on participating nodes (Section 5.3).

1
Height component of Vivaldi’s NC accounts for constant latency faced by

clients due to their access network.
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(2) Per-topic aggregation of client NCs as centroids does not

result in selecting brokers that violate end-to-end (E2E)

latency constraints (Section 5.5), while providing consid-

erable savings in monitoring overhead (Section 5.6).

(3) Agility-oriented optimizations in the control-plane result

in reduction ofmigration overheads (client downtime and

per-topic migration time) over Pulsar (Section 5.7).

(4) ePulsar is able to meet E2E latency constraints for ex-

emplar applications (Section 5.8).

We verify the above hypotheses using two main methods: (1)

Microbenchmarks that analyze different parts of ePulsar’s
architecture in isolation. (2) End-to-end evaluations of multi-

ple application scenarios consisting of realistic infrastructure

topology and client workload.

5.1 Evaluation Scenarios
We wish to evaluate ePulsar under realistic infrastructure
and subscription patterns. For this purpose, we consider

the following evaluation scenarios from which we design

microbenchmarks and end-to-end experiments.

5.1.1 Unmanned Aerial Vehicle Swarms
A swarm consists of multiple drones that move together for

accomplishing a given task. The swarm contains a leader

drone and the rest are followers. Each swarm follows a Ran-

dom Waypoint mobility model [36].

Subscription Pattern. The leader drone sends movement

commands to the followers through a topic called follow_leader.
The followers communicate information extracted from on-

board sensors to the leader via a topic sensor_data. The E2E
pub-sub latency constraint is set at 40 ms.

Infrastructure. We consider a city-wide cellular network

equipped with edge resources, where UAVs use LTE as the

communication medium. We assume that the city is divided

into multipleMobile Edge Computing (MEC) zones, each with

a single edge site. The locations of the edge sites is deter-

mined via k-means clustering on the cell tower locations

[35] of Atlanta [7]. The edge sites communicate with each

other via a city-level switch, with inter-site RTT of 30 ms.

Each edge site hosts a broker and an NC proxy. Each client

is directly connected to the edge site corresponding to its

current location based on k-means clustering. Since clients

are mobile, they query NC from the respective sites they are

directly connected to. The broker running the Load Man-

ager component and the ZooKeeper instance is hosted in the

cloud with a one-way latency of 40 ms to any edge site.

5.1.2 Massively Multiplayer Online Gaming
The MMOG scenario comprises multiple players joining a

game session from multiple cities across the USA. We con-

sider a distributed game server deployment with each city

hosting a game server. Each game server serves clients in

the same city, and uses pub-sub middleware to exchange

game-state updates with other servers. Client avatar interac-

tions are modeled based on Destiny 2 [5], wherein avatars

form groups (uniformly sampled) and play with/against each

other. Each avatar has an exponentially distributed lifetime

for being present in the current group, after which it would

join another uniformly selected group.

Subscription Pattern. The subscription pattern is object-

based [6] wherein each avatar a is associated with a topicTa
to which the game server serving a’s client pushes informa-

tion about any action taken by that avatar. The game server

subscribes to the topics of all avatars in its current group

to receive updates about their gameplay actions. The E2E

pub-sub latency threshold is set to 100ms.

Infrastructure. We assume a multi-city infrastructure in

the US (similar to Google’s Edge network [30]) with each city

consisting of a game server and a pub-sub broker. Inter-city

latencies are modeled based on the WonderNetwork dataset

[32]. Latency between broker and game server in the same

city is set to 5 milliseconds. The broker hosting the Load

Manager component and the ZooKeeper instance is located

in the city of New York, which is also a part of the topology.

5.2 Evaluation Platform
The evaluation scenarios described in Section 5.1 pose the

following requirements to be satisfied by the evaluation plat-

form: (i) support a heterogeneous network topology, (ii) allow

emulation of unmodified software components (Pulsar enti-

ties and clients), and (iii) emulate device mobility. To satisfy

these requirements, we use the Containernet [29] evaluation
platform, which has also been used by previous edge comput-

ing research [15, 33]. Containernet uses Docker containers

as hosts (allowing use of unmodified software entities) in

network topologies emulated using Open vSwitch. We set

custom latencies on the network links using the Linux tool

tc (to support heterogeneous topologies), and remove/create

network links on the fly (to emulate device mobility).

The emulated infrastructure is deployed on an Ubuntu 16.04

VM with 48 CPU cores and 64 GB RAM. We use Docker’s

resource reservation to allocate dedicated resources to each

container and minimize performance interference.

5.3 LatencyEstimation viaNetworkCoordinates
Network coordinates offer a more scalable way of measuring

pairwise network latencies compared to direct per-pair mea-

surements. The intent in this subsection is to validate the first

hypothesis, namely, the efficacy of the NC protocol which is

used in ePulsar. For this purpose, we consider a simple yet

representative topology of an NC cluster as shown in Fig. 3a.

Nodes of the NC cluster are connected to a central switch.

All the nodes have the same link latency to the switch (which

is varied in the experiments using the Linux tc tool).
8
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(a) NC Cluster Topology.

(b) RTT estimation error.
Figure 3: Accuracy of the enhanced Vivaldi NC protocol

using a simple topology shown in Fig. 3a. The link latency is

controlled using the Linux tc tool.

Accuracy. We study the impact of two control variables

on RTT estimation accuracy of NC protocol: (1) number

of nodes in the NC cluster, and (2) the actual RTT setting

between the nodes. Metric of interest is per-pair error in

RTT estimation. Fig. 3 shows that the error remains rela-

tively constant and low (< 3.5 ms) with increasing number

of nodes. The error increases marginally with higher actual

RTT but remains small (< 6 %) in relation to the actual RTT

setting. There could be transient errors in latency estimation

as a result of unpredictable vagaries in the WAN which are

out of the control of the NC protocol. The optimizations to

the Vivaldi algorithm [23, 24] safeguard the NC protocol

from transient noise in RTT measurements between NC Serf

agents. ePulsar’s latency estimation accuracy is a function

of the enhanced Vivaldi NC protocol used by the Serf [19]

agent which ePulsar adopts as is. Transient errors in latency
estimation manifest in ePulsar as temporarily sub-optimal

broker selection that could violate E2E latency requirements

of the pub-sub clients. However, due to the transient nature

of these errors, the broker selection will self-correct itself.

Overhead of Running Agent. We measured the CPU and

memory usage of the NC agent with two control knobs: num-

ber of participating nodes in the protocol (varied from 2-128),

and the frequency of querying the agent for its coordinate

(varied from every second to every 5 seconds). The CPU

utilization for all the above configurations is less than one

percent while memory requirement is less than 15 MB.

This set of experiments and results confirms our first hypoth-

esis that using a decentralized network coordinate protocol

to estimate network latencies between entities is accurate.

At the same time, it incurs low resource overhead.

5.4 Profiling ePulsar’s Data-Plane
In this section we describe the methodology for determining

the traffic parameters and thresholds for determining the

broker overload (as mentioned in Section 3.4.2). We do so

by profiling the data-plane of ePulsar against the workload
generated by OpenMessaging benchmark[27]. Our evalua-

tion setup comprises 1 broker, 1 bookie and 2 client nodes

each running on a separate virtual machine; each with 8

CPUs and 16 GB RAM. We focus on persistent topics for this

evaluation, as they exert more load on the data-plane. We

measure the E2E latency against a wide range of workloads

by changing the following traffic parameters: number of top-

ics, number of producers and consumers per topic, message

size, and per-topic messages rate. From the collected data, we

found that the aggregate output message rate (msgs/sec) on a

broker is strongly correlated with p95 E2E latency, and rates

higher than 1500K messages per second leads to significant

deterioration of processing latency on the broker. Therefore,

in the E2E evaluations, we use this threshold as a filter to

determine broker overload in the broker selection policy.

5.5 Broker Selection Policy Assessment
Earlier (in Section 3.4.1) we proposed a topic partitioning

policy for satisfying the latency constraints of topics. In

this section, we evaluate the effectiveness of the policy to

meet its objective for realistic infrastructure topologies and

client subscription patterns. We compare the proposed policy

against the following two baselines.

• AllPairs. Same as ePulsar, but instead of clients’ NC

centroids,AllPairs takes the NC of each individual client

and computes the expected E2E latency for each producer-

consumer pair. A broker is chosen only if the worst-case

E2E latency falls below the threshold.

• Pulsar. As mentioned in Section 2.3, Pulsar offers well-

developed data-plane semantics which are appropriate

for the target applications for the edge. Therefore, we

choose Pulsar as the other baseline. Pulsar uses consistent

hashing to compute the hash for a topic name. The output

space of the hash function is divided among all brokers

uniformly. The topic is assigned to the broker inside

whose partition the topic’s hash falls.

5.5.1 Methodology
For each representative application scenario mentioned in

Section 5.1, we generate infrastructure topologies with vary-

ing amount of geo-distribution. For the inter-city MMOG

topology we vary the number of cities, while for the UAV

swarm topology we vary the number of MEC zones in the

metropolitan area. For each such topology, we first emulate

the infrastructure of the given topology using Containernet.

After allowing the NC agents in brokers and clients to stabi-

lize for 10 minutes, we query each agent’s coordinate. The

querying is done once per topology. Using the coordinates

of all nodes in the topology, we can then estimate the E2E

delay for any producer-consumer pair of a topic given the lo-

cation of the clients and the broker hosting that topic. Based

on the specific application scenario’s subscription pattern,

we determine the clients for each topic and place them on

the nodes of the generated topology. The coordinates of the
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producers and consumers for each topic serve as the input

to the broker selection policy. We analyze the result of selec-

tion policy in terms of the E2E latency and violation ratio.

Violation ratio represents the fraction of producer-consumer

pairs for whom the latency threshold is violated. In the ex-

periments, we consider 1000 different random permutations

of client placement and topic subscriptions. The intent is to

have a large coverage of possibilities wherein clients could

be located in different geographical areas and/or could be

subscribing to different sets of topics.

5.5.2 MMOG Scenario
We vary the number of cities in the topology and distribute

a total of 1024 MMOG clients across all cities with equal

probability (following the strategy suggested in Deng, et

al. [11]). We randomly assign the clients into 128 groups to

simulate group formation during the session. Clients’ avatars

follow the subscription pattern described in Section 5.1.2.

(a) Worst-case E2E latency (b) Violation Ratio
Figure 4: Analysis of broker selection policy for MMOG

application scenario.

Fig. 4a shows the worst-case E2E latency over all producer-

consumer pairs for all topics in the evaluation for the differ-

ent broker placement policies. Pulsar’s consistent hashing is

consistently worse than the two latency-aware placement

strategies (AllPairs and ePulsar’s policy). ePulsar offers a
worst-case latency similar to AllPairs. In Fig. 4b, the viola-

tion ratio for each broker selection policy is shown. Pulsar’s

consistent hashing causes a high number of violations due

to latency-agnostic topic partitioning, whereas AllPairs and

ePulsar offer similar levels of violation.

5.5.3 UAV Swarm Scenario
We vary the number of MEC zones in the simulated metro

area and distribute 16 UAV swarms in the city. Each swarm

comprises 8 UAVs, with one of them serving as the leader.

UAVs follow the subscription pattern described in Section 5.1.1.

Figs. 5a and 5b show the worst-case E2E latency and viola-

tion ratio over all producer-consumer pairs. Since ePulsar
performs latency-aware topic partitioning, the worst-case la-

tency remains under the threshold, resulting in no violations

even when the number of MEC zones is increased.

(a) Worst-case E2E latency (b) Violation Ratio.
Figure 5: Analysis of broker selection policy for UAV swarm

application scenario.

The results in this subsection, for both application scenarios,

validate the first part of the second hypothesis that the loss

of information by aggregating clients’ network coordinates

as centroids does not result in poor broker selection with

respect to meeting E2E latency constraints.

5.6 Monitoring Overhead Reduction
We evaluate the savings in monitoring traffic by aggregating

per-topic client NCs at the serving broker before reporting

them to ZooKeeper. This traffic is sent continuously through

the WAN and impacts scalability of the system, hence we

consider aggregate monitoring traffic rate as the metric-of-

interest. We focus our evaluation on a single broker hosting

topics with multiple clients - as the behavior is independent

of other brokers. We vary the number of topics hosted on the

broker and the number of clients connected to each topic.

Figure 6: Monitoring traffic rate under varying number of

topics and clients per topic. ePulsar’s NC aggregation results

in considerable savings over naive AllPairs.

Fig. 6 shows the data rate ofmonitoring traffic sent to ZooKeeper.

An increasing number of topics results in higher data rate.

The rate of increase is higher without centroid aggregation

(AllPairs policy) and also with more clients per topic. ePul-
sar’s aggregation, however, causes data rate to be indepen-

dent of the number of clients - since a constant amount of

data is sent to ZooKeeper per topic. These results validate

the second part of the second hypothesis that aggregating

clients’ network coordinates as centroids results in reducing

the monitoring overhead.
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5.7 Reduction of Migration Overhead
Here we present the improvements due to ePulsar’s op-
timizations to Pulsar’s topic migration workflow. ePulsar
improves agility of the control-plane by improving coordi-

nation between the Load Manager and the brokers involved

in a migration. Higher concurrency for executing topic mi-

grations is another contribution that augments the control

plane agility. We choose two metrics of interest: (1) client

downtime during topic migration, i.e., time between discon-

nection from the old broker and establishment of connection

to the new broker, and (2) per-topic migration time to the

new broker. We vary the number of topics that are concur-

rently migrated, the one-way WAN latency between brokers

at the edge and the Load Manager, and the number of migra-

tion executor threads in the Load Manager. Our test setup

comprises 2 brokers and multiple client containers running

the client processes. For this experiment, we use a custom

Load Manager implementation that periodically triggers the

migration of all topics in the system from the first to the sec-

ond broker and back and so on. Each topic has only 1 client

so that we can focus on the worst-case client downtime.

(a) Client downtime when
128 topics are simultane-
ously migrated using 16 mi-
gration executors.

(b) Median per-topic migra-
tion time (one-way WAN la-
tency between broker and
Load Manager = 40ms).

Figure 7: Comparison of topic migration overheads for base-

line Pulsar and ePulsar. Note that only ePulsar benefits
from multiple migration executor threads.

Fig. 7a shows that ePulsar’s client downtime is significantly

lower than that of baseline Pulsar when 128 topics are con-

currently migrated using 16 migration executor threads. The

optimized migration workflow of ePulsar (Fig. 2) is the pri-
mary reason for this performance gain. Multiple rounds of

communicationwith the remote LoadManager and ZooKeeper

through the WAN is the cause for the inflation of the client

downtime for the baseline. The higher the WAN latency be-

tween the broker and the Load Manager the higher the gain

for ePulsar. Fig. 7b shows the per-topic migration time with

varying number of topics and different settings of migration

executor threads. The one-wayWAN latency from the broker

to the LoadManager is set at 40 ms for this experiment. ePul-
sar benefits from the concurrency in migration execution

to reduce the per-topic migration time, while the baseline

Pulsar does topic migration sequentially (Section 3.6).

The results in this subsection validate the third hypothesis

regarding the agility of ePulsar to reduce the completion

time and client downtimes during topic migration.

5.8 End-to-End Evaluations
In this section, we evaluate ePulsar’s ability to respect E2E

latency constraints of the exemplar applications (Section 2.2),

and validate the fourth hypothesis. The metric we use for

the evaluation is E2E pub-sub latency – i.e., the elapsed time

between a client publishing on a topic and the receipt of the

published message by all the clients subscribing to that topic.

5.8.1 UAV Swarms Scenario
We consider the infrastructure topology described in Sec-

tion 5.1.1 with 4 MEC zones and emulate using Containernet.

We emulate each UAV swarm as an independent container

where the mobility of all of the members of the swarm are

identical. In the emulated network topology, each zone con-

sists of a network switch to which the broker and the NC

proxy connect. We create a link between the swarm’s con-

tainer and the switch corresponding to the swarm’s current

MEC zone. When a swarmmoves into a new zone, the link to

the previous zone’s switch is removed and a link to the new

zone’s switch is created. We emulate 8 independent swarms,

each with 8 UAVs, following the Random Waypoint mobility

model in the city at a relatively high speed of 50 meters/sec
2
.

Both leader and followers generate 200 msgs/sec each of size

1 KB [37]. We perform this experiment for 10 minutes.

We show the E2E latency of a single representative topic

from each swarm in Fig. 8
3
. For each swarm. the E2E latency

remains under the latency threshold (40 ms) for most of the

experiment duration. Transient violations of latency thresh-

old occur when a swarm moves into a different MEC zone

than the one currently hosting the swarm’s topics. ePulsar’s
monitoring module detects such violations and triggers mi-

gration of the swarm’s topics to the broker at the new MEC

zone, after which the E2E latency returns back under the

latency threshold.

5.8.2 MMOG Scenario
We emulate a realistic instance of the MMOG scenario on an

infrastructure topology consisting of 5 cities in USA, as de-

scribed in Section 5.1.2. Each city contains 1 broker node and

multiple edge sites each running an NC proxy and a game

server (the game servers are stationary clients to ePulsar). 64
MMOG mobile clients are uniformly distributed among the

2
We use such a high speed to trigger several mobility-driven topic migra-

tions during the experiment.

3
To avoid cluttering the figure, we do not show all the topics of each swarm

since their behavior is identical.
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Figure 8: E2E latencies experienced by the 8 independent drone swarms for their respective representative topic over time.

Latency violations (transient spikes) are observed when a swarm moves from one MEC zone to another. For a brief period, the

latency remains higher than the threshold. ePulsar’s topic migration brings the latency back under the threshold.

Figure 9: E2E Area-of-Interest (AoI) latencies for one representative client avatar in the MMOG scenario. Each line represents

the delay experienced in receiving updates made by individual avatars that are in the representative client’s AoI, and runs for

as long as the avatars are in the AoI of the representative client.

cities and they form groups at random. To model dynamism,

the emulated MMOGmobile clients leave their current group

after a period T, and join another group at random. Each

client samples T from an independent uniform distribution

between 30 and 60 seconds. We set the per-avatar update

message size to 998 bytes and the message rate to 300 mess-

sages/sec [38]. We perform this experiment for 10 minutes.

Fig. 9 shows the E2E Area-of-Interest (AoI) latency experi-

enced by one particular MMOG mobile client. During its

gameplay, a number of different avatars enter the AoI of the

given client’s avatar, and we denote the delay in receiving

their action updates by an individual line. Transient spikes in

E2E latency are observed when the change in subscriptions

to a topic causes the migration of the topic to a better broker.

ePulsar is able to consistently provide E2E latency below

the threshold of 100ms even with frequent AoI changes.

6 Conclusion and Future Work
We presented a control-plane architecture for edge-centric

pub-sub systems and integrated it into an open-source cloud-

centric pub-sub system Apache Pulsar. The resulting system,

ePulsar, performs latency-aware topic partitioning and sup-

ports agile reconfiguration in the event of E2E latency vio-

lation. For scalable inter-node latency estimation, ePulsar
incorporates an enhanced Vivaldi network coordinates pro-

tocol. ePulsar performs continuous monitoring to detect

E2E latency violations, which triggers topic repartitioning

and migration of topics to new brokers. The control flow of

ePulsar is optimized to reduce client downtime and topic

migration overheads. Microbenchmarks and end-to-end eval-

uations show the agility of ePulsar relative to the baseline

Pulsar. While the design principles of ePulsar have been
demonstrated using Pulsar, the principles are general and can

be applied to any edge-centric topic-based pub-sub system.

Avenues for future work include reducing the dependence

on centralized components in the control-plane of ePulsar,
specifically the Load Manager and the ZooKeeper, thus in-

creasing ePulsar’s scalability in a geo-distributed setting.

Distributed management of topics in a pub-sub system has

been explored by Dedousis, et al. [10], and similar techniques

can be incorporated into ePulsar. Prior art has explored the

use of Raft consensus and Serf gossip protocol to replace

ZooKeeper in Kafka [13], and such ideas can be explored for

adoption in ePulsar as well.
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