
INCA: Architectural Support for Building
Automated Capture & Access Applications

Khai N. Truong and Gregory D. Abowd
 College of Computing & GVU Center

Georgia Institute of Technology
801 Atlantic Drive

Atlanta, GA 30332-0280 USA
+1 404 545 1036

 {khai, abowd}@cc.gatech.edu

ABSTRACT
Applications that automatically capture some details of a
live experience and provide future access to that
experience are increasingly common in the ubiquitous
computing community. However, there remains a largely
unexplored design space of potential new applications,
and very few of the previous systems have been able to
evolve in functionality over an extended period of time.
To overcome these challenges, we present a distillation of
the essential architectural features of an automated
capture and access application. We introduce a toolkit,
Infrastructure for Capture and Access (INCA) that
encourages a simplified model for designing,
implementing and evolving capture and access
applications. We validate the utility of INCA through
three sample applications that show variety within the
wider design space and accessibility of the toolkit for
others.

Keywords
Ubiquitous computing, capture and access applications,
architecture, toolkit, application development.

INTRODUCTION
In his 1945 Atlantic Monthly article, Vannevar Bush
described his vision of the memex, noting that a “record
… must be continuously extended, it must be stored, and
above all it must be consulted” [3]. Our daily lives
provide us with a great deal of records and memories that
we want to access at some point in the future. Inspired by
the vision of Bush and the progress of ubiquitous
computing over the past decade, many researchers have
demonstrated devices and applications to support the
automated capture of live experiences and the future
access of those records (see [31] for a full review). The
purpose of every capture and access application is to
preserve some portion a live experience so that it can be

consulted in the future. Broadly speaking, a capture and
access application needs to:

• preserve relevant details from an experience;
• mark associations between a variety of related

captured artifacts; and
• provide effective interfaces to review past

experiences in a way that suits some human
concern.

Though there are many demonstrations of automated
capture and access applications in varying domains, such
as classrooms [1, 7, 21], meetings [5, 22, 26, 28, 33, 34],
and conferences [11], there remains a largely unexplored
design space of potential new applications. Furthermore,
there has been relatively little evaluation of these systems
under authentic use, with the notable exception of Tivoli
[20] and eClass [2], largely because these demonstrations
are hard to build and even harder to maintain and evolve
over the course of a longitudinal study of use.
To facilitate research in ubiquitous computing, advances
are necessary to improve the tools we provide ourselves
and other creative designers who wish to realize and
improve upon the visions of Bush and Weiser.
Previously, we have worked on tools to support context-
aware computing [9, 10] and human-assisted error
correction resulting from recognition-based interfaces [17,
18]. In these previous cases, our method has been to
present the relevant design abstractions for a well-defined
class of applications, develop an architectural solution to
support the design and construction of these applications,
implement a toolkit that embodies these abstractions and
then validate the abstractions, architecture and toolkit by
developing interesting and complex applications within
the design.
We apply this research method for the class of automated
capture and access applications. Specifically, we present
an overview of the essential features of capture and access
applications that define the relevant design space. We
relate the kinds of problems developers have with the
construction task for capture and access applications. We
present those characteristics common across all such

Submitted for review to UIST 2002.

applications, resulting in a language for design. There is
an explicit architecture for these applications that is
presented and a toolkit, INCA (Infrastructure for Capture
and Access) that embodies the relevant abstractions and
architecture. INCA is successful to the extent that it:
• lowers the barrier for others to build capture and

access applications;
• inspires the construction of a larger variety of

applications previously unexplored; and
• facilitates evolution of applications as they are fine-

tuned to meet the users’ needs.

Overview
We begin by outlining the essential features of capture
and access applications, a distillation of our extensive
experience building successful and not-so-successful
systems. The rest of the paper focuses on the definition
and use of the INCA toolkit. We begin with a discussion
of the assumed architecture of a capture and access
application that supports and a number of important
programming abstractions and run-time features that
simplify many of the challenges in constructing
applications in this domain. We end the paper with a
presentation of three sample applications meant to
validate our claim that INCA achieves the goals of
lowering the barrier to entry, inspiring creativity in the
application space and facilitating evolution. We conclude
with a discussion of related work and future challenges.

ESSENTIAL FEATURES OF CAPTURE & ACCESS
APPLICATIONS
Our own investigation of automated capture and access of
live experiences began with the eClass project (formerly
known as Classroom 2000) [1]. In retrospect, the relative
success of this project in the classroom and as a research
platform led us to investigate the capture and access of
informal and serendipitous meetings, software
architectural discussions, distributed meetings, and
domestic settings. For a detailed review of our
experience, consult [31]. Through this experience, we
have defined five domain-specific aspects of the capture
and access application space that help designers tailor
specific solutions:
1. Who are the users during capture and access? It is

important to identify how many users are involved in
the separate capture and access phases, what roles
they have in this application domain, and whether
captured records are public, private or a mixture.

2. What is captured and accessed? An experience is
defined in terms of some set of artifacts that are
manipulated and information streams that are
generated. Which of these artifacts and streams are
important to review later on, and what level of
fidelity is required between the live experience and
the playback of the captured experience?

3. When does capture and access occur? How often
does the captured experience occur and is there any
pattern that predicts when it occurs? How much time
lag is there between the live experience and the
expected time of access?

4. Where does capture and access occur? Does capture
or access occur in a well-defined location or set of
locations? Is mobility during capture or access
important?

5. How is capture and access performed? What devices
and tools are required during the live experience and
must be instrumented in order to facilitate capture of
activity? What devices are used to access a past
experience?

These aspects help define a design space for capture and
access applications that shows how previous research
relates as well as highlights interesting gaps in the design
space that remain to be explored. Some examples of these
gaps include capture of distributed experiences, capture
with user mobility, context-based access of captured
experiences and long-term access of captured data.
In addition to understanding the important features of the
design space, we have also gained an appreciation of the
importance of structuring a capture and access
application. A primary reason why our classroom research
succeeded was because we could evolve the system over a
3.5-year period of evaluation, aided considerably by the
architectural decisions made early on. The system was
structured into four phases: pre-production, live capture,
post-production/integration, and access [1]. This
separation of concerns allowed for parts of the system to
be altered without globally affecting the entire system.
As our exploration of capture and access continued
beyond the classroom, we learned several other important
architectural lessons:
• Information must be stored (or persist) until it is later

accessed. This may seem obvious, and is implied in
the post-production/integration phases of eClass, but
it is often overlooked as a design issue.

• The phases of eClass imply a sequential ordering of
activities, but it is better to consider the functional
components of the overall architectural solution.
Therefore, we have capture, storage and access as
important building blocks for all capture and access
applications, with no implied ordering of when they
occur relative to each other.

• The post-production/integration activity is further
separated into concerns pertaining to: storage, as
discussed above; transduction (or transformation)
into different data types; and integration, in which
relationships between separately captured streams
cause the multiple streams to be delivered
collectively during access.

• Information integration occurs due to different
contextual relationships between captured streams.
Examples are streams captured at the same place and
time, or covering the same topic, or captured by the
same person.

• Access happens on varying time-scales, depending on
when information is accessed relative to when it was
captured. Therefore, different forms of access
interfaces and services are desired, such as a
summarized view that allows the user to drill down
over summaries of long-term captured data.

THE INCA TOOLKIT
In order to allow designers to focus on the essential
features of a capture and access application, we need to
provide abstractions and tools that fit the architectural
insights presented above. INCA provides a small set of
key architectural abstractions, which we explain below.
There are additional features of INCA that simplify other
aspects of application development that stem from the
inherent distributed nature of these applications, and
common data types and features that allow programmers
and end-users to inspect and control the run-time system.

The Architecture of an INCA application
As motivated above, INCA supports the following
separate functional components of a capture and access
application:
• Part of the system is responsible for the capture of

information as streams of data.
• Part of the system is responsible for the storage of

attribute-tagged (representing contextual metadata)
information.

• When information needs to be converted into
different formats and types, part of the system must
transduce the information.

• Part of the system provides access to multiple related,
or integrated, streams of information that are
gathered as response to context-based queries.

From the design perspective, any capture and access
application is expressible in terms of these basic
functions. For any given application, there may be more
than one instance of each of the above functions (e.g., the
personal audio loop application discussed below provides
a capture component for each room requiring audio
capture).
From the implementation perspective, the INCA toolkit
provides a direct way to translate the design into
executable form. For each functional component above,
INCA defines an interface and an encapsulated module
that a programmer implements and instantiates as part of
the application code. As we will demonstrate later, this
results in more rapid application development because the
similar structure of all applications eliminates many of the
difficulties of coordinating distributed components.

Specifically, the part of the system responsible for the
capture of information implements the Capturer interface
and instantiates a CaptureModule object. Similarly, there
are Storer, Transducer, and Accessor interfaces and
StorageModule, TransductionModule, and AccessModule
object classes for those respective portions of the system.
We wrap support for the integration of information
directly into support for the access of the information,
such that when information is requested, related streams
of information are jointly provided.
Rather than needing to worry about issues pertaining to
data distribution (e.g., what IP address devices are
running on, what network protocols are supported, etc.)
INCA provides developers with a network abstraction.
This abstraction allows application developers to create
applications that function without needing to know how
the different parts communicate with one another. These
specialized network modules only need to be made aware
of a Registry running at a well-known location. The
Registry object maintains a list of the available modules
that handle the capture, storage, transduction and access
of information. This object completely abstracts the
communication between all relevant applications and
devices.
In Figure 1, a simple capture and access application is
built as a distributed system constructed as separate
Capturer, Storer, and Accessor components. It is possible
to have any number of components running at the same
time (though we only show 3). Additionally, a
component does not have to be strictly only a Capturer or
an Accessor, etc. Instead, a self-contained device may be
a Capturer, Accessor and Storer all wrapped in a single
component.
One example of how INCA simplifies the programming
task is seen in the relationship between an Accessor and

Figure 1. General architecture for systems built using
INCA. A Registry is running at some well-known location
and any number of applications acting as Capturers,
Accessors, Storers, or Transducers can connect to it and
share captured information through instances of
specialized networked modules (such as a CaptureModule,
AccessModule, etc.).

the rest of the run-time system. An Accessor makes
context-based queries (e.g., deliver all data owned by
“Khai” originating from “CRB 381” in the past week) but
the application programmer does not need to know where
any of this captured data resides. The run-time system of
INCA resolves the query and delivers the information to
the requesting Accessor.

Additional Features & Reusable Services
In any applications development effort, there are many
stakeholders involved. Features were included in INCA
to allow designers to develop adaptable systems, for
evaluators to better understand uses of the systems, and to
better protect privacy for users. We next discuss the
implementation details of important features and reusable
services supported by INCA.

Support for common data streams
There is much variety in the kinds of data (or information)
involved in different applications. Abstracting away the
details of the information being captured allows the
infrastructure to provide generic support to a variety of
applications designed for different domains. By viewing
captured data as only raw bytes with tagged attributes, the
infrastructure is able to handle all data in the same generic
fashion.
In our review of the literature, we have found a set of data
types that are typically captured for later review —ink,
audio, video and Web visits. There is a tendency for
developers to re-implement devices and applications to
work with these data types. However, reusable
components can be constructed to remove future
replicated efforts. INCA includes a library of reusable
components to handle the capture, access, storage, and
transduction of these specific data types.

Reusable run-time services
Different capture and access applications will often
require the same kinds of services. Once a component is
implemented in INCA, it can be made available during
run-time for a variety of applications. This encourages the
development of general-purpose run-time services. We
list a few that have already been created in the current
INCA distribution.
Attribute-based storage. A Repository service is a
sample service extending the basic StorageModule and
Storer interface. It provides a relational database and
supports the storage and retrieval of any kind of data
tagged with attributes. A Repository can be launched and
left running, so that application developers can have
storage performed as an existing service without
additional development effort or modification. The
Repository class can also be extended to meet a specific
application need, such as storing only personal
information or optimized for a specific captured data type.
Audio capture. Classrooms in major universities are
often used for many different reasons, such as: for
classroom lectures, project meetings, or private

discussions. A common information stream that would be
useful to capture, regardless of the application, is audio.
In the physical environment, an audio capture service can
provide recording services available to all the different
capture and access applications in that environment.
Later in this paper, we will present the use of an audio
capture and access service to provide near-term audio
reminders to users.
Attribute-based access & information integration. As
mentioned previously, the support for the integration of
information is wrapped into the support for the access of
the information. Information is integrated based on how
it is requested through context-based queries. In its
simplest form, the query match is based on attribute
name-value pairs and can grow to include more general
data retrieval operations that more effectively filter and
mine large distributed repositories. Various temporal and
spatial integration techniques have been explored in the
past [1, 4]. These techniques, and more, can now be
created as reusable integration services.

Scalability
Issues pertaining to data distribution are completely
abstracted away by a Registry object and its relationship
to the other architectural modules. While a few systems
operate on a single stand-alone device, most systems are
built using multiple networked devices. As a result, while
INCA relieves the programmer from having to worry
about most of the concerns of distribution, there is a
potential for scalability problems when the number of
devices in a system is not known ahead of time and can
continue to grow as devices are introduced into the
environment.
We perform a simple network filtering method to
minimize the amount of bandwidth consumption. First,
different parts of the system are responsible for different
roles, such as capture, storage, etc. When applications
instantiate specialized modules (such as a
CaptureModule), the modules are viewed as either an
information produce, consumer or both. This
categorization is used to cut back on some needless
network traffic. Additionally, components subscribe for
specific information they want to consume or publish a
set of attributes describing the information they are
capable of producing. Thus, when information is
requested, only information producers are checked to see
if the kind of information requested is among what they
can provide. Information is delivered across the network
only after these two checks are satisfied. Similar filtering
is done to reduce network bandwidth for capture and
transduction activities.

Observing the run-time state
An ObserveModule is available to allow components
implementing an Observer interface to gain access to the
state of the system. An Inspector component is available
in the library of reusable components to allow users to
quickly view the entire state of the system. These

services that reflect the run-time state are useful for a
variety of stakeholders.
First, there is an inherent concern for privacy as capture
often involves the preservation of potentially important
and personal information. One way to alleviate concern is
to provide a way for users to understand the status of the
system. Knowing what information can be captured in an
environment, and what is currently capturing or not can
allow users to adapt their behaviors in that environment.
Second, these observation services allow application
developers to build context-aware capture and access
applications. In knowing the set of capture and access
components available in a particular environment, it is
possible to enable applications to leverage the available
capture and access services.
Third, system evaluators can use observation services to
keep a better log of how the system is used. The actual
use of a system in an authentic setting is often different
from that in laboratory settings. As ubiquitous computing
systems are often built for anywhere-anytime use, it has
been a problem in the past to gain an actual understanding
of when the system is in use and how. This feature allows
the evaluator to build an application to subscribe for
changes in the status of the system in terms of when
components are introduced, what kind of information it
works with and how it manipulates that information.

Controlling capture & access
In addition to being able to observe the run-time state, we
also want to control the capture and access of activities.
This feature could potentially allow users to turn on or off
the capture during a live experience to keep aspects of the
experience private. Likewise, in a context-aware system,
if a person has a preference of never having any
information captured and is the only one in an
environment, the system can have all capture temporarily
disabled.
Applications implementing a Controller interface can use
an instantiated ControlModule to affect all other
components on the system. A Manager component is
available in the library of reusable components to allow
users to quickly view and control the entire state of the
system.

APPLICATIONS BUILT WITH INCA
Now that we have defined the key architectural
abstractions and other useful services provided by INCA,
we must validate all three claims for a toolkit to support
research in capture and access:

1. INCA lowers the barrier for development;
2. INCA inspires exploration in the design space; and
3. INCA facilitates evolution of applications.
We present three applications of automated capture and
access built using INCA. The first two were designed and
developed by the authors and demonstrate exploration of
the design space and evolution. The third application was
designed and developed independently by a researcher
new to the area of automated capture and access. For
each application, we will provide a brief motivation,
describe how the system was designed and built, and
highlight the role of INCA in that exercise. Additional
implementations of applications using INCA are
discussed elsewhere [29, 30].

WebMemex
Motivation
WebMemex is an application built to support the
continuous capture of a user’s Web history. Initially
inspired by the value of Web capture in eClass lectures,
we wanted to build a more general capture service in
support of several access services: the suggestion of
related URLs that a user has seen in the past (in the spirit
of the Remembrance Agent [25]); an explicit search over
a user’s complete Web history; and a collaborative filter
to suggest relevant Web sites to friends (see [30]).
History mechanisms in standard Web browsers are
impoverished, requiring users to recall hard-to-remember
features of the Web page, such as its URL or title. As we
experience the Web, we visit many sites and view many
documents; however, when we want to retrieve previously
seen information, too often we have either forgotten to
bookmark the relevant URLs or the local history
mechanism of the browser machine we used some time
ago is not accessible.

How WebMemex works
The WebMemex service is provided through an
augmented Web proxy server, resolving the problem that
existing history mechanisms are local to a single machine.
Standard Web browsers can be quickly configured to talk
to an HTTP proxy. When a user surfs the Web, her
browser will request Web pages from the proxy server.
The Web proxy server retrieves the request and serves it
to the user on the requesting client browser. If the user
has capture and access services enabled, the Web proxy
server will react appropriately when the document being
returned is of the content type text/html.

If the user wants her session captured, Web visits are
tagged with the URL, the title, up to 10 keywords for that
Web page, the time that Web page was visited, the IP
address of the browser machine, and the user’s ID. The
captured information is stored in a property-based
Repository until it is later accessed. Two separate access
services are supported implementing different integration
techniques. To support the recommendation of related
URLs to what the user is currently viewing, Web pages
matching on keywords are queried for, and displayed in a
small popup window (see figure 2b). To support the

search over a user’s Web history, information is retrieved
based on queries explicitly set by the user. Once found,
users can also review the trails surrounding a particular
Web page visit; in this scenario, these trails come from a
stream of Web visits temporally integrated.

How INCA helps
The Web proxy is constructed as an INCA application. It
consists of a single CaptureModule that adds a Web visit
to the list of previously seen pages. All visits are time-
marked, so multiple visits to a Web page are recorded.

Figure 3. WebMemex architecture. WebMemex is an enhanced Web proxy server to capture Web history and provide
access services.

(a) (b) (c)

Figure 2. The WebMemex Prototype. To use WebMemex, a user simply configures of a browser to talk to a proxy server
that captures Web histories and when a user begins a Web surfing session, the browser automatically goes to a screen for the
user to sign (2a). Once authenticated, the Web browser captures the user’s surfing history and recommends to her URLs she
has previously seen that are related (2b). The user may also perform searches over her entire personal surfing history by
context (such as when or where she saw the page) and content (such as what the page was about).

There is a single StorageModule (is it an instance of the
already defined Repository services). The variety of
access services (recommendation, search, collaborative
filtering) are each implemented as a separate
AccessModule. The only application logic required for the
Web proxy is to be aware of the user’s desire for capture
and access so the services are invoked only when needed.
This system demonstrates information that is captured
once but can be useful in many different access scenarios.
The different access features explore the integration of
information over time and by keyword. In INCA, the
different ways to integrate information differ merely in an
information query statement; this allows expert designers
to explore more sophisticated integration techniques with
no more difficulty –similar to the ideas of expert use in
interface design.

Personal Audio Loop (PAL)
Motivation
The Personal Audio Loop application explores the near-
term capture and access of audio streams to provide users
with a quick retrospective memory of recent events. This
system can assist with interruption recovery and activity
resumption. Unlike a tape recorder, this service continues
to capture audio even when playback of previously
recorded information is accessed. Near-term audio
reminder services such as this have been explored in the
context of telephone conversations [8, 16].

How PAL works
We designed an application aimed to provide personal,
near-term reminders through the use of a short audio-
loop. Initially our prototype was built as an application to
run on a single device (laptop) that users would carry with
them into meeting rooms (see Figure 4). In this version,
audio is continuously recorded and segmented into 4-
second chunks. As capture occurs, a semi-persistent
storage is made aware of the audio data just captured and
is responsible for providing access to components when
requested, and deleting the audio segments after they
become older than 15 minutes. When users interact with
the interface (see figure 4), they are essentially specifying
a time-point at which to begin review. Audio is then
stitched together for playback.
The simple user interface was inspired by playback
capabilities of a modern digital video recorder, such as
TIVO and ReplayTV. When a near-term reminder is
desired, the user can jump back 30 seconds into the
recently recorded audio stream. She can also nudge
forward 7 seconds in the event of an overshoot. More
sophisticated skimming techniques are currently under
investigation and can be easily introduced into the
application.

Simplified evolution of PAL with INCA
Though we found this standalone service useful in our
own experience, we wanted to eliminate the need for
users to carry any device. We wanted to evolve the
application and offload more functionality to the

Figure 4. Personal Audio Loop architecture. A near-term
audio capture and access reminder system, in which audio
from a microphone input is captured and put into a semi-
persistent storage (where information lasts for at most 15
minutes). Audio stored in the storage can be accessed by
an interface which allows users to jump back 30 seconds at
a time in the audio, 7 seconds forward, or to stop (and
return to live).

Figure 5. Personal Audio Loop architecture for multiple
rooms. Each room is instrumented with microphones and
floormats (to identify who are present in the rooms). The
Audio Capturer captures audio a semi-persistent storage
for that room. Audio is then retrieved by the access
interface from different storages (depending on where the
user has been in the last fifteen minutes), stitched back and
played as it is retrieved.

environment. Recording was distributed to a number of
different rooms in our lab environment. Room-level
indoor positioning information is then used as context to
allow us to tag recorded audio with information of which
people were present during any interval of the recording.
The effect for a single user is that they can now access
any portion of their recent past, regardless of where they
were and without having to carry around a recording
device.
Even though the original PAL was built as a stand-alone
application, it was trivial to convert to this distributed
version. The original capture component was modified to
tag audio segments with user identities and then deployed
as a running service in several locations. The access
component was modified to allow for a query containing
a user identity. No modifications were necessary for the
storage component. A single Registry is used to connect
all the capture, storage, and access services.

Synchronous Discussion Tool
Motivation
The previous two examples demonstrated relatively novel
capture and access applications whose design,
construction, and evolution by the authors was facilitated
by INCA. One other goal for this work is to lower the
barrier for others to build a variety of capture and access
applications. To begin validating this claim, INCA was
made available to a research group at the University of
São Paulo in Brazil. The Intermedia group there is
primarily interested in multimedia and hypermedia
research, but is interested in looking at capture and access
as a means of simplifying the authoring of multimedia

documents [23].
In their research, they have adopted the use of CoWebs
[15] as asynchronous discussion spaces, and are
investigating how asynchronous discussion spaces
influence interesting synchronous discussions between
people currently viewing the same page. This has led to
the development of a whiteboard and text chat tool in
which the discussion is stored back into the discussion
space for future reference.

How the chat tool works
Synchronous communication provided in chat tools can
be viewed as a capture and access problem, as well.
Information created by a user is captured and quickly
made available to any application interested in it. The
chat tool is connected to the CoWeb discussion space.
Any number of users can participate in the discussion;
multiple discussions can occur at the same time.
Furthermore, each CoWeb page is uniquely identified
through a URL. Therefore, a particular chat session can
be tagged with the context of chat participants, time and
the originating pate from the CoWeb.

How INCA lowers the barrier
This application illustrates the support to help application
developers overcome barriers in building simple capture
and access applications. There are a number of different
ways this application could have been built. This
application developer took an approach in structuring the
solution different from what we would have done. Our
approach would have created two separate capture
components for the whiteboard and text chat instead of a
single combined component. However, it is encouraging
to see that the abstractions presented by INCA are flexible
enough to support a variety of solutions in these simple
cases. We are confident that INCA will be suitable for
general distribution to encourage exploration of the large
design space of capture and access.

RELATED WORK
Of the existing related work, most are demonstration
vehicles to illustrate the benefit of automated capture and
access for a variety of situations, such as the classroom,
meetings, and other generalized experiences. The novel
aspect of each application pertains to some new
interaction much which the designers are most interested
in exploring, such as:
• How to capture information using vision [13] [21]
• How to integrate various captured streams [1, 4]
• How to store information in a more fluid manner [12,

14, 24]
• How to access captured information in a more

flexible and natural method [32].
A lot of effort and overhead must be taken in order to get
the system built before a narrow aspect of the capture and
access problem gets explored.

Figure 6. Chat application allowing people to share text
and ink messages.

There has been previous work that looks at some of the
challenges involved in providing infrastructural support
for more general exploration of the potential uses of
capture and access applications. The STREAMS work
introduced a technique for capturing multiple streams of
information as separate, single medium streams that can
be temporally integrated [6]. The Tivoli work at Xerox
PARC explored how to coordinate multiple applications
to work collectively to capture multiple streams of
information [19]. Lifestreams [14]and TimeScape [24]
are examples of systems which uses time to coordinate
the display of all the documents people create. Presto, on
the other hand, describes a placeless method for storing
information that allows related pieces of information to be
grouped together and retrieved [12]. Multimedia
documents demonstrate how SMIL (and the use of time)
can coordinate the playback of the captured experience.
This previous body of work presents key features that are
desired from a single infrastructure for capture and access
applications [27].
The work we have presented in this paper provides all the
functionalities mentioned here —integrating these
features into a single framework that manages all the
implementation details involved. Beyond this goal, our
work allows designers to decompose the development
process into smaller parts that are easier to attack
separately, and enables the development of reusable and
customizable building blocks for further investigation. In
doing so, we present a community of application
developers with the opportunity to explore the
construction of applications in a variety of domains —to
build applications that explore the full range of
possibilities in the capture and access design space.

CONCLUSIONS
Many remain inspired by the visions of Vannevar Bush
and Mark Weiser. We have entered an important stage in
ubiquitous computing research. While there is still plenty
of room for innovative technological advances, we are to
the point where it is important to begin to understand how
ubiquitous computing impacts the human experience in
practice. However, serious improvements to the tools we
use are required in order for major advances in the
human-centered research agenda of ubiquitous
computing. We cannot observe what we cannot build and
use reliably.
In this paper, we have targeted the specific challenge of
building applications that support the automated capture
of live experiences for later access. There is plenty of
motivation to believe that this class of application can
provide meaningful and useful services to end users, but
there is not enough evidence to validate the claim. This
is because capture and access applications are hard to
build and keep operational, resulting in a limited variety
of demonstrational applications and even more limited
empirical observation of use.

We presented key architectural insights into the creation
of capture and access applications. Designing in terms of
these architectural features —capture of attribute-tagged
data streams, storage, transduction and access of related
and integrated streams— allows a designer to focus on
key distinguishing features of any capture and access
application. We introduced the INCA toolkit as a means
of transforming high-level designs into implementations
that hide details of distribution and data from the
programmer. To validate the effectiveness of INCA, we
presented three applications to show how such a tool can
lower the barrier to entry into this domain, and facilitate
creative and iterative exploration within a large and
complex design space.

ACKNOWLEDGMENTS
Much of this work was funded through grants from
various organizations, including the National Science
Foundation, DARPA, the Army Research Lab, Sun
Microsystems and Hewlett-Packard. We also thank Maria
da Graça Pimentel and her student Renan Cattelan from
the University of Sao Paulo in Brazil for being our test
users and adopting this work in their research. More
information on INCA can be obtained at
http://fce.cc.gatech.edu/ubicomp/projects/inca/. For
access to the latest version of the toolkit, contact Khai
Truong.

REFERENCES
1. Abowd, G., et al. Teaching and Learning as

Multimedia Authoring: The Classroom 2000 Project.
In the Proceedings of ACM MM '96 Boston, MA.

2. Brotherton, J.A., Enriching Everyday Activities
through the Automated Capture and
Access of Live Experiences - eClass: Building,
Observing and Understanding the Impact of Capture
and Access in an Educational Domain, in College of
Computing. 2001, Ph.D. Thesis. Georgia Institute of
Technology: Atlanta,GA.

3. Bush, V., As We May Think, in Atlantic Monthly.
1945.

4. Chiu, P., et al. A genetic algorithm for video
segmentation and summarization. In the Proceedings
of IEEE Intl. Conf. on Multimedia and Expo (ICME
2000).

5. Chiu, P., et al. NoteLook: Taking Notes in Meetings
with Digital Video and Ink. In the Proceedings of
ACM Multimedia 1999 Orlando, FL.

6. Cruz, G. and Hill, R. Capturing and Playing
Multimedia Events with STREAMS. In the
Proceedings of ACM Multimedia 1994 San
Francisco, CA.

7. Davis, R.C., et al. NotePals: Lightweight Note
Sharing by the Group, for the Group. In the
Proceedings of CHI 1999 Pittsburgh, PA.

8. Deitz, P. and Yerazunis, W. Real-Time Audio
Buffering for Telephone Applications. In the
Proceedings of UIST'01 Orlando, Florida.

9. Dey, A.K., Providing Architectural Support for
Building Context-Aware Applications, Ph.D. Thesis.
College of Computing. 2000, Georgia Institute of
Technology: Atlanta.

10. Dey, A.K. and Abowd, G.D., A Conceptual
Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications. HCI,
2001. 16(1-3).

11. Dey, A.K., et al. The Conference Assistant:
Combining Context-Awareness with Wearable
Computing. In the Proceedings of ISWC 1999 San
Francisco, CA.

12. Dourish, P., et al. Using Properties for Uniform
Interaction in the Presto Document System. In the
Proceedings of UIST 1999 Asheville, NC.

13. Franklin, D., Bradshaw, S., and Hammond, K.
Jabberwocky: You don't have to be a rocket scientist
to change slides for a hydrogen combustion lecture.
In the Proceedings of IUI '00.

14. Freeman, E.T., The Lifestreams Software
Architecture, Ph.D. Thesis. Department of Computer
Science. 1997, Yale University.

15. Guzdial, M., Supporting Learners as Users. The
Journal of Computer Documentation, 1999. 23(2): p.
3-13.

16. Hindus, D. and Schmandt, C. Ubiquitous Audio:
Capturing Spontaneous Collaboration. In the
Proceedings of Computer Supported Collaborative
Work 1992 Toronto, Canada.

17. Mankoff, J.C., An architecture and interaction
techniques for handling ambiguity in recognition-
based input. Ph.D. Thesis. College of Computing.
2001, Georgia Institute of Technology: Atlanta,
Georgia.

18. Mankoff, J.C., Hudson, S.E., and Abowd, G.D.
Interaction techniques for ambiguity resolution in
recognition-based interfaces. In the Proceedings of
UIST '00 San Diego, CA.

19. Minneman, S., et al. A confederation of tools for
capturing and acessing collaborative activity. In the
Proceedings of ACM Multimedia 1995 San
Francisco, CA.

20. Moran, T.P., et al. "I'll Get That off the Audio": A
Case Study of Salvaging Multimedia Meeting
Records. In the Proceedings of CHI 1997 Atlanta,
GA.

21. Mukhopadhyay, S. and Smith, B. Passive Capture
and Structuring of Lectures. In the Proceedings of
ACM Multimedia 1999 Orlando, FL.

22. Pedersen, E.R., et al. Tivoli: An Electronic
Whiteboard for Informal Workgroup Meetings. In the
Proceedings of ACM INTERCHI 1993 Amsterdam,
The Netherlands.

23. Pimentel, M., Abowd, G., and Ishiguro, Y. Linking
by Interacting: a Paradigm for Authoring Hypertext.
In the Proceedings of Hypertext'2000 San Antonio,
TX: ACM.

24. Rekimoto, J. Time-Machine Computing: A time-
cenric approach for the information environment. In
the Proceedings of UIST '99 Asheville, NC: ACM
Press.

25. Rhodes, B.J., Just-In-Time Information Retrieval, in
Media Laboratory. 2000, MIT.

26. Richter, H., et al. Integrating Meeting Capture within
a Collaborative Team Environment. In the
Proceedings of UbiComp 2001 Atlanta, GA.

27. Shirmohammadi, S., Ding, L., and Georganas, N., An
Approach for Recording Multimedia Collaborative
Sessions: Design and Implementation. Journal of
Multimedia Tools and Applications, 2001.

28. Streitz, N.A., et al. DOLPHIN: Integrated Meeting
Support across Liveboards, Local and Remote
Desktop Environments. In the Proceedings of
Computer Supported Collaborative Work 1994
Chapel Hill, NC.

29. Truong, K.N., and Abowd, G. Personal Audio Loop:
Reminders from a PAL. Submitted to UbiComp
2002.

30. Truong, K.N., Abowd, G., and Pimentel, M.
Vicariously Sharing Captured Web Experiences
through an Automated Recommendation System.
Submitted to CSCW '02.

31. Truong, K.N., Abowd, G.D., and Brotherton, J.A.
Who, What, When, Where, How: Design Issues of
Capture & Access Applications. In the Proceedings
of UBICOMP 2001 Atlanta, GA.

32. Truong, K.N. and Chiu, P. SpaceTime Browser: A
Tool for Interacting with Documents Using Space
and Time Attributes. Submitted to UIST '02 Paris,
France.

33. Weber, K. and Poon, A. Marquee: A tool for real-
time video logging. In the Proceedings of CHI 1994
Boston, MA.

34. Wilcox, L., Schilit, B.N., and Sawhney, N.
Dynomite: A Dynamically Organized Ink and Audio
Notebook. In the Proceedings of CHI 1997 Atlanta,
GA.

