
1

A Context-Based Infrastructure for Smart Environments

Anind K. Dey, Gregory D. Abowd and Daniel Salber

Graphics, Visualization and Usability Center and College of Computing,
Georgia Institute of Technology, Atlanta, GA, USA 30332-0280

{anind, abowd, salber}@cc.gatech.edu

Abstract. In order for a smart environment to provide services to its occupants,
it must be able to detect its current state or context and determine what actions
to take based on the context. We discuss the requirements for dealing with
context in a smart environment and present a software infrastructure solution
we have designed and implemented to help application designers build intelli-
gent services and applications more easily. We describe the benefits of our in-
frastructure through applications that we have built.

1 Introduction

One of the goals of a smart environment is that it supports and enhances the abilities
of its occupants in executing tasks. These tasks range from navigating through an
unfamiliar space, to providing reminders for activities, to moving heavy objects for
the elderly or disabled. In order to support the occupants, the smart environment must
be able to both detect the current state or context in the environment and determine
what actions to take based on this context information. We define context to be any
information that can be used to characterize the situation of an entity, where an entity
can be a person, place, or physical or computational object. This information can
include physical gestures, relationship between the people and objects in the envi-
ronment, features of the physical environment such as spatial layout and temperature,
and identity and location of people and objects in the environment.

We define applications that use context to provide task-relevant information and/or
services to a user to be context-aware. For example, a context-aware tour guide may
use the user’s location and interests to display relevant information to the user. A
smart environment, therefore, will be populated by a collection of context-aware
applications or services. The increased availability of commercial, off-the-shelf sens-
ing technologies is making it more viable to sense context in a variety of environ-
ments. These sensing technologies enable smart environments to interpret and begin
to understand the contextual cues of its occupants. The prevalence of powerful, net-
worked computers makes it possible to use these technologies and distribute the con-
text to multiple applications, in a somewhat ubiquitous fashion. So what has hindered
applications from making greater use of context and from being context-aware?

A major problem has been the lack of uniform support for building and executing
context-aware applications. Most context-aware applications have been built in an ad

2

hoc manner, heavily influenced by the underlying technology used to acquire the
context. This results in a lack of generality, requiring each new application to be built
from the ground up. There has been little attempt to insulate the sensing of context in
the physical world from using the context in applications. This makes it difficult to
build new applications and to transfer existing applications to new environments with
different or changing sensing technologies. To enable designers to easily build con-
text-aware applications, there needs to be architectural support that provides the gen-
eral mechanisms required by all context-aware applications. This support should
include an insulation layer that on one side can hide the details of how context is
sensed from applications, and on the other side, that can provide persistent context in
a flexible manner without worrying about what, if any, applications require it.

At Georgia Tech, we have begun the construction of an experimental home to
serve as a living laboratory for the experimentation of a number of ubiquitous com-
puting research problems, including context-aware application development. One of
the goals is to produce an “Aware Home” that will know contextual information
about itself as well as information about its inhabitants 1[11].

 There are a number of human-centered arguments for why an aware home is both
desirable and worrisome. For instance, it may allow elderly to “age in place”, re-
maining in familiar surroundings of their domicile as an alternative to more expensive
and potentially alienating assisted living centers. But an environment that is instru-
mented to know too much about occupants’ activities might not be a relaxing place to
reside. Investigating these human-centered themes is a central focus of the long-term
research plan. A necessary stepping-stone is the software infrastructure to allow us to
rapidly prototype intelligent, or context-aware, services within such an environment.

This paper describes a distributed software infrastructure to support context-aware
applications in the home environment. We provide a discussion of how context has
been handled in previous work and why we would like to handle it as a generalized
form of user input. In earlier work [17], we presented the concept of context widgets,
which allow us to handle context in a manner analogous to user input. This paper
discusses the infrastructure support necessary for using context and context widgets.
We derive the requirements for the infrastructure by examining the differences be-
tween the uses of context and input. Next, we present our solution for supporting the
design and execution of context-aware applications in smart environments. Finally,
we discuss the benefits and limitations of the infrastructure, based on our experiences
in building context-aware applications.

2 Discussion of Context Handling

We have discussed the importance of context in smart environments. The reason why
context is not used more often is that there is no common way to acquire and handle
context. In this section, we discuss how context has previously been acquired and

1 More information on the Aware Home is available at http://www.cc.gatech.edu/fce/house

3

discuss some concepts that will allow us to handle context in the same manner as we
handle user input.

2.1 Current Context Handling

In general, context is handled in an improvised fashion. Application developers
choose the technique that is easiest to implement, at the expense of generality and
reuse. We will now look at two common ways for handing context: connecting sensor
drivers directly into applications and using servers to hide sensor details.

With some applications [8,16], the drivers for sensors used to detect context are di-
rectly hardwired into the applications themselves. Here, application designers are
forced to write code that deals with the sensor details, using whatever protocol the
sensors dictate. There are two problems with this technique. The first problem is that
it makes the task of building a context-aware application very burdensome, by re-
quiring application builders to deal with the potentially complex acquisition of con-
text. The second problem with this technique is that it does not support good software
engineering practices. The technique does not enforce separation of concerns between
application semantics and the low-level details of context acquisition from individual
sensors. This leads to a loss of generality, making the sensors difficult to reuse in
other applications and difficult to use simultaneously in multiple applications.

The original Active Badge research took a slightly different approach [20]. Here, a
server was designed to poll the Active Badge sensor network and maintain current
location information. Servers like this abstract the details of the sensors from the
application. Applications that use servers simply poll the servers for the context in-
formation that they collect. This technique addresses both of the problems outlined in
the previous technique. It relieves developers from the burden of dealing with the
individual sensor details. The use of servers separates the application semantics from
the low-level sensor details, making it easier for application designers to build con-
text-aware applications and allowing multiple applications to use a single server.

However, this technique has two additional problems. First, applications that use
these servers must be proactive, requesting context information when needed via a
polling mechanism. The onus is on the application to determine when there are
changes to the context and when those changes are interesting. The second problem is
that these servers are developed independently, for each sensor or sensor type. Each
server maintains a different interface for an application to interact with. This requires
the application to deal with each server in a different way, much like dealing with
different sensors. This may affect an application’s ability to separate application
semantics from context acquisition.

2.2 Current Input Handling

Ideally, we would like to handle context in the same manner as we handle user input.
User interface toolkits support application designers in handling input. They provide

4

an important abstraction to enable designers to use input without worrying about how
the input was collected.

This abstraction is called a widget, or an interactor. The widget abstraction pro-
vides many benefits. The widget abstraction has been used not only in standard key-
board and mouse computing, but also with pen and speech input [1], and with the
unconventional input devices used in virtual reality [13]. It facilitates the separation
of application semantics from low-level input handling details. For example, an ap-
plication does not have to be modified if a pen is used for pointing rather than a
mouse. It supports reuse by allowing multiple applications to create their own in-
stances of a widget. It contains not only a polling mechanism but also possesses a
notification, or callback, mechanism to allow applications to obtain input information
as it occurs. Finally, in a given toolkit, all the widgets have a common external inter-
face. This means that an application can treat all widgets in a similar fashion, not
having to deal with differences between individual widgets.

2.3 Analogy of Input Handling to Context Handling

There have been previous systems which handle context in the same way that we
handle input [2, 18]. These attempts used servers that support both a polling mecha-
nism and a notification mechanism. The notification mechanism relieves an applica-
tion from having to poll a server to determine when interesting changes occur. How-
ever, this previous work has suffered from the design of specialized servers, that
result in the lack of a common interface across servers [2], forcing applications to
deal with each server in a distinct way. This results in a minimal range of server types
being used (e.g. only location [18]).

Previously, we demonstrated the application of the widget abstraction to context
handling [17]. We showed that context widgets provided the same benefits as GUI
widgets: separation of concerns, reuse, easy access to context data through polling
and notification mechanisms and a common interface. Context widgets encapsulate a
single piece of context and abstract away the details of how the context is sensed. We
demonstrated their utility and value through some example applications.

The use of the widget abstraction is clearly a positive step towards facilitating the
use of context in applications. However, there are differences in how context and user
input are gathered and used, requiring a new infrastructure to support the context
widget construct. The remainder of this paper will describe the requirements for this
architecture and will describe our architectural solution.

3 Infrastructure Requirements

Applying input handling techniques to context is necessary to help application de-
signers build context-aware applications more easily. But, it is not sufficient. This is
due to the difference in characteristics between context and user input. The important
differences are:

5

• the source of user input is a single machine, but context in a smart environment can
come from many, distributed sources

• user input and context both require abstractions to separate the details of the sens-
ing mechanisms, but context requires additional abstractions because it is often not
in the form required by an application

• widgets that obtain user input belong to the application that instantiated them, but
widgets that obtain context are independent from the applications that use them
While there are some applications that use user input that have similar characteris-

tics to context, (groupware [14] and virtual environments [5] deal with distributed
input and user modeling techniques [9] abstract input, for example), they are not the
norm. Because of the differences between input and context, unique infrastructure
support is required for handling context and context widgets. We will now derive the
requirements for this infrastructure.

3.1 Distribution of context-sensing network

Traditional user input comes from the keyboard and mouse. These devices are con-
nected directly to the computer they are being used with. When dealing with context
in an instrumented smart environment, the devices used to sense context most likely
are not attached to the same computer running the application. For example, an in-
door infrared positioning system may consist of many infrared emitters and detectors
in a building. The sensors must be physically distributed and cannot all be directly
connected to a single machine. In addition, multiple applications may require use of
that location information and these applications may run on multiple computing de-
vices. As environments and computers are becoming more instrumented, more con-
text can be sensed, but this context will be coming from multiple, distributed ma-
chines. Support for the distribution of context is our first high-level requirement.

The need for distribution has a clear implication on infrastructure design stemming
from the heterogeneity of computing platforms and programming languages that can
be used to both collect and use context. Unlike with user input widgets, the program-
ming languages used by the application to communicate with context widgets and
used by the widgets themselves, may not be the same. The infrastructure must support
interoperability of context widgets and applications on heterogeneous platforms.

3.2 Abstraction: Interpretation and Aggregation

There is a need to extend the existing notification and polling mechanisms to allow
applications to retrieve context from distributed computers in the same way that they
retrieve input from local widgets. There may be multiple layers that context data goes
through before it reaches an application, due to the need for additional abstraction.
For example, an application wants to be notified when meetings occur. At the lowest
level, location information is interpreted to determine where various users are and
identity information is used to check co-location. At the next level, this information is
combined with sound level information to determine if a meeting is taking place.

6

From an application designer’s perspective, the use of these multiple layers must be
transparent.

In order to support this transparency, context must often be interpreted before it
can be used by an application. An application may not be interested in the low-level
information, and may only want to know when a meeting starts. In order for the in-
terpretation to be reusable by multiple applications, it needs to be provided by the
infrastructure.

To facilitate the building of context-aware applications, our infrastructure must
support the aggregation of context about entities in the environment. Our definition of
context given earlier describes the need to collect context information about the rele-
vant entities (people, places, and objects) in the environment. With only the context
widget abstraction, an application must communicate with several different context
widgets in order to collect the necessary context about an interesting entity. This has
negative impacts on both maintainability and efficiency. Aggregation is an abstrac-
tion that allows an application to only communicate with one component for each
entity that it is interested in.

3.3 Component Persistence and History

With most GUI applications, widgets are instantiated, controlled and used by only a
single application. In contrast, our context-aware applications do not instantiate indi-
vidual context widgets, but must be able to access existing ones, when they require.
This leads to a requirement that context widgets must be executing independently
from the applications that use them. This eases the programming burden on the appli-
cation designer by not requiring her to maintain the context widgets, while allowing
her to easily communicate with them. Because context widgets run independently of
applications, there is a need for them to be persistent, available all the time. It is not
known a priori when applications will require certain context information; conse-
quently, context widgets must be running perpetually to allow applications to contact
them when needed. Take the call-forwarding example from the Active Badge re-
search [20]. When a phone call was received, an application tried to forward the call
to the phone nearest the intended recipient. The application could not locate the user
if the Badge server was not active.

A final requirement linked to the need for execution persistence is the desire to
maintain historical information. User input widgets maintain little, if any, historical
information. For example, a file selection dialog box keeps track of only the most
recent files that have been selected and allows a user to select those easily. In general
though, if a more complete history is required, it is left up to the application to im-
plement it. In comparison, a context widget must maintain a history of all the context
it obtains. A context widget may collect context when no applications are interested
in that particular context information. Therefore, there are no applications available to
store that context. However, there may be an application in the future that requires the
history of that context. For example, an application may need the location history for

7

a user, in order to predict his future location. For this reason, context widgets must
store their context.

3.4 Requirements Summary

We have presented requirements for a software infrastructure that supports context-
aware applications. To summarize, these requirements are:
• allow applications to access context information from distributed machines in the

same way they access user input information from the local machine;
• support execution on different platforms and the use of different programming

languages;
• support for the interpretation of context information;
• support for the aggregation of context information;
• support independence and persistence of context widgets; and
• support the storing of context history.
In the next section, we describe the context-based infrastructure that we have built to
address these requirements.

4 Description of Infrastructure

Our infrastructure was designed to address the requirements from the previous sec-
tion. We used an object-oriented approach in designing the infrastructure. The infra-
structure consists of three main types of objects:

• Widget, implements the widget abstraction
• Server, responsible for aggregation of context
• Interpreter, responsible for interpretation of context

Figure 1. Data flow between applications and the context-based infrastructure.

Figure 1 shows the relationship between the objects and an application. Each of these
objects is autonomous in execution. They are instantiated independently of each other
and execute in their own threads, supporting our requirement for independence.

8

These objects can be instantiated all on a single or on multiple computing devices.
Although our base implementation is written in Java, the mechanisms used are pro-
gramming language independent, allowing implementations in other languages.

It is important to note that the infrastructure provides scaffolding for context-aware
computing. By this we mean that it contains important abstractions and mechanisms
for dealing with context, but it is not a complete solution, nor is it meant to be. The
infrastructure supports building widgets and interpreters required by an application,
but will not necessarily have them available. Compared to input, there are a larger
variety of sensors used to sense context and a larger variety of context. This makes it
very difficult to provide all possible combinations of widgets and interpreters.

4.1 Context Widgets

A context widget, as mentioned earlier, has much in common with a user interface
widget. It is defined by its attributes and callbacks. Attributes are pieces of context
that it makes available to other components via polling or subscribing. Callbacks
represent the types of events that the widget can use to notify subscribing compo-
nents. Other components can query the widget’s attributes and callbacks, so they
don’t have to know the widget capabilities at design time. A context widget supports
both the polling and notification mechanisms to allow components to retrieve current
context information. It allows components to retrieve historical context information.
The basic Widget object provides these services for context widgets that subclass it.

Creating a new widget is very simple. A widget designer has to specify what at-
tributes and callbacks the widget has, provide the code to communicate with the sen-
sor being used, and when new data from the sensor is available, call 2 methods:
sendToSubscribers() and store() . The Widget class provides both of these
methods. The first method validates the data against the current subscriptions. Each
time it finds a match, it sends the relevant data to the subscribing component. For
example, multiple applications have subscribed to a Meeting Widget with different
callbacks, attributes, and conditions. When the widget obtains new meeting informa-
tion it sends it to the appropriate subscribers.

The second method adds the data to persistent storage, allowing other components
to retrieve historical context information. This addresses our requirement for the
storage of context history. The Widget class provides a default implementation for
persistent storage using MySQL, a freeware database. The persistent storage mecha-
nism is “pluggable”. A widget designer not wanting to use the default mechanism can
provide a class that implements a temporary cache and allows the storage and re-
trieval of information from some persistent storage. The name of the class is given to
the widget at run time, allowing the new storage mechanism to be used.

4.2 Context Servers

Context servers implement the aggregation abstraction, which is one of our require-
ments. They are used to collect all the context about a particular entity, such as a

9

person, for example. They were created to ease the job of an application programmer.
Instead of being forced to subscribe to every widget that could provide information
about a person of interest, the application can simply communicate with a single ob-
ject, that person’s context server. The context server is responsible for subscribing to
every widget of interest, and acts as a proxy to the application.

The Server class is subclassed from the Widget class, inheriting all the methods
and properties of widgets. It can be thought of, then, as a compound widget. Just like
widgets, it has attributes and callbacks, it can be subscribed to and polled, and its
history can be retrieved. It differs in how the attributes and callbacks are determined.
A server’s attributes and callbacks are “inherited” from the widgets to which it has
subscribed. When a server receives new data, it behaves like a widget and calls
store() and sendToSubscribers() .

When a designer creates a new server, she simply has to provide the names of the
widgets to subscribe to. In addition, she can provide any attributes or callbacks in
addition to those of the widgets and a Conditions object. The Conditions object is
used in each widget subscription, so the server only receives information it is inter-
ested in. For example, the Anind User Server would have the subscription condition
that the name must equal “Anind”.

4.3 Context Interpreters

Context interpreters are responsible for implementing the interpretation abstraction
discussed in the requirements section. Interpretation of context has usually been per-
formed by applications. By separating the interpretation abstraction from applica-
tions, we allow reuse of interpreters by multiple applications. An interpreter does not
maintain any state information across individual interpretations, but when provided
with state information, can interpret the information into another format or meaning.
A simple example of an interpreter is one that converts a room location into a build-
ing location (e.g. Room 343 maps to Building A). A more complex example is one
that takes location, identity and sound information and determines that a meeting is
occurring. Context interpreters can be as simple or as complex as the designer wants.

Context to be interpreted is sent to an interpreter’s interpretData() method.
It returns the interpreted data to the component that called the interpreter. Interpreters
can be called by widgets, servers, applications and even by other interpreters. When a
designer creates a new interpreter, she only has to provide the following information:
the incoming attributes, the outgoing attributes, and an implementation of inter-
pretData() .

4.4 Communications Infrastructure

All of the top-level objects (widgets, servers, and interpreters) used are subclassed
from a single object called BaseObject. The BaseObject class provides the basic
communications infrastructure needed to communicate with the distributed compo-
nents and abstract away the details of heterogeneous platforms and programming

10

languages, supporting heterogeneity and distribution. Applications use this class to
communicate with the context infrastructure. The communications includes dealing
with both the passing of high-level data and low-level protocol details.

High-level Communications A basic communications infrastructure is needed to sup-
port semantic or high-level communications. BaseObject provides methods for com-
municating with the widgets, servers, and interpreters. In particular it facilitates sub-
scribing and unsubscribing to, querying/polling and retrieving historical context
• Callback: the event of interest to the component
• Attributes: the particular widget attributes of interest
• Conditions: the conditions under which the widget should return data to the sub-

scribing component
These three options essentially act together as a filter to control which data and

under which conditions context events are sent from a widget to a subscribing com-
ponent to be handled. This is an extension of the general subscription mechanism,
where only callbacks can be specified. This helps to substantially reduce the amount
of communication, which is important in a distributed infrastructure for performance
reasons. This mechanism also makes it easier for application programmers to deal
with context events, by delivering only the specific information the application is
interested in.

Figure 2. Example of application interacting with context widget. Arrows in-
dicate communications flow.

When a widget sends callback data to a subscribing application, the application’s
BaseObject instance uses the data from the callback to determine which object to send
the data to. It calls that object’s handle() method, as shown in Figure 2. An appli-
cation has subscribed (2a) to the Location Widget, wanting to know when Gregory
has arrived in Room 343. When the Location Widget has new location information
available (2b), it compares the information to see if the information meets the sub-
scription conditions. If it does, it sends the information to the application (2c) and the
application’s BaseObject routes it to the handle() method (2d).

Communications Fundamentals The BaseObject acts as both a client and a server (in
the client-server paradigm of distributed computing), sending and receiving commu-
nications. The BaseObject uses a “pluggable” communications scheme. By default, it
supports communications using the HyperText Transfer Protocol (HTTP) for both
sending and receiving messages. The language used for sending data is, by default,
the eXtensible Markup Language (XML). The BaseObject does support the use of

11

other communications protocols and data languages. When a designer wants an object
to use a different protocol, SMTP (Simple Mail Transfer Protocol) for example, she
creates an object that “speaks” the SMTP protocol for outgoing and incoming com-
munications. She then passes the name of this object to the BaseObject at the time of
instantiation. The BaseObject uses this object rather than the default object. In a
similar fashion, a designer can replace XML with use his own data encoding scheme.

XML and HTTP were chosen for the default implementation because they support
lightweight integration of distributed components and allow us to meet our require-
ment of support on heterogeneous platforms with multiple programming languages.
XML is simply ASCII text and can be used on any platform or with any programming
language that supports text parsing. HTTP requires TCP/IP and is ubiquitous in terms
of platforms and programming languages that support it. Other alternatives to XML
and HTTP include CORBA and RMI. Both were deemed too heavyweight, requiring
additional components (an ORB or an RMI daemon) and in the case of RMI, would
have forced us to use a specific programming language – Java.

5 Experience and Contributions

In this section, we describe the benefits and limitations of the context-based infra-
structure for building context-aware applications. We will discuss these issues using
context-aware applications that have already been created with this infrastructure.

We have built multiple types of each object (widgets, servers, and interpreters) and
included this library of objects in our Context Toolkit2. Our default implementation of
the infrastructure was developed in Java. However, the abstractions and mechanisms
that address our requirements are both platform and programming language inde-
pendent. To demonstrate this, we have also written applications and widgets in C++,
Python, and Frontier. We have components of the infrastructure executing on Win-
dows CE, 95 and NT, Linux, Solaris, IRIX, and the Macintosh platforms, including
mobile, wearable, and desktop machines.

5.1 Benefits

The benefits of the context-based infrastructure are that it:
• hides the details of the context sensors; and
• supports lightweight integration of components;
• makes it easy to add context to existing applications that don’t use context;
• makes it easy to add more context to applications that already use context; and
• supports reusability by multiple applications.
We will discuss these benefits, using the applications we have developed as examples.

Hides Context-Sensing Details A benefit of the infrastructure is that it hides details of
the context sensors. This allows the underlying sensors to be replaced, without af-

2 The Context Toolkit may be downloaded at http://www.cc.gatech.edu/fce/contexttoolkit/

12

fecting the application. We have built multiple applications that use location and
identity context. In each case, when we change the sensor used to provide this context
information, the applications do not have to be modified. We have built context wid-
gets that sense location and identity around JavaRings (www.ibuttons.com), the Pin-
Point indoor positioning system (www.pinpointco.com), and the Texas Instruments
TIRIS RFID system (www.ti.com). We have also built context widgets that determine
activity context, using sound-level information, motion sensors, and door open/closed
status. For a third type of context, we have built context widgets that can capture
presentation information from a Web browser or PowerPoint.

Lightweight Integration The use of lightweight communications and integration
mechanisms supports the deployment of the infrastructure and applications on multi-
ple platforms using multiple programming languages. We have implemented an
In/Out Board application [17] that keeps track of who is in our building and when
they were last seen. This application has been implemented in a stand-alone mode in
Java, and on the web3 using Frontier on a Macintosh and Python on Linux. We built a
notetaking application [7] that assists conference attendees in choosing which pres-
entations they wanted to attend based on their personal interests and recommenda-
tions of colleagues and in taking notes on the presentations by automatically moni-
toring and capturing presentation information. The Conference Assistant application
was executed on a Windows CE device, with widgets, servers, and interpreters exe-
cuted in C++ and Java on Solaris and Windows NT and 95. A combination of motion
sensors placed around entrances/exits to our research lab and magnetic reed switches
that determine when a door is open/closed are being used to keep track of the number
of people in our laboratory. This application was built in C++ and Java on Linux.

Simple to Use Context From an application builder’s perspective, the infrastructure
makes it simple to add the use of context to applications that previously did not use
context. The DUMMBO [3] application is an augmented whiteboard that stores what
is written on it and spoken around it, to aid in the capture of informal whiteboard
meetings. The original version did not use context and began to capture audio and
pen strokes when someone started writing on the whiteboard. The application was
modified to initiate data capture when people were gathered around the whiteboard,
but had not yet started writing. This enables capture of spoken information that would
otherwise be lost. The change required the addition of 25 lines of Java code. The
significant changes included 2 lines added to use the infrastructure, 1 line modified to
enable the class to handle callbacks, and 17 lines that are application specific.

Simple to Add Context Based on these results, we argue that it is also simple to add
additional context to applications that already use the infrastructure. In the Confer-
ence Assistant application, the use of context was made much simpler through the use
of context servers (for each user and presentation room). From the application
builder’s viewpoint, the servers make accessing context information much easier than

3 See http://fire.cc.gt.atl.ga.us/inout for the web version

13

dealing with the multiple widgets individually. If a new type of context was added to
this application, the application could continue to use a context server as a proxy to
the context information, requiring minimal changes.

Supports Multiple Simultaneous Applications An important feature of the infrastruc-
ture is independent execution. This lets the context-based infrastructure run inde-
pendently of applications, which allows multiple applications to use the infrastructure
simultaneously. We have built a number of applications that leverage off of the con-
text-based infrastructure we have running in our lab, including the In/Out Board, a
context-aware tour guide, the Conference Assistant, and a context-aware mailing list
that only delivers mail to the current occupants of the building.

5.2 Current Limitations and Future Work

Although our infrastructure eases the building of context-aware applications, some
limitations remain. In particular, it does not currently support continuous context,
dealing with unreliable sensor data, transparently acquiring context from distributed
components, and dealing with component failures. We discuss each of these issues
and propose possible solutions.

Currently, the infrastructure only supports discrete context, and not continuous
context such as a video feed or GPS location information. Given that a large number
of sensors in a smart environment will provide continuous data, we need to support
the collection of this type of context. We are investigating two possible solutions. The
first is to provide a special mechanism that supports reliable, fast streaming of con-
tinuous context from widgets to applications. The second solution is to interpret the
continuous data in real-time and have context widgets provide the discrete interpreta-
tions to applications.

All sensors have failure modes, making the data they produce unreliable at some
point in time. To add to this problem, the data from many sensors must be interpreted
to make sense of it. In much the same way as speech input must be recognized with-
out a 100% accurate recognizer, context from sensors must also be understood. The
problem with context is greater due to the fact that with speech input, the user is able
to give feedback about incorrect recognition results. With context, this isn’t the case.
Recognized context is often used without being displayed to the user. The infrastruc-
ture must provide support for applications that may be using unreliable context in-
formation. This support many include the use of sensor fusion from multiple, hetero-
geneous sensors (with different failure modes) to increase reliability, as well as the
passing of a reliability measure with each piece of context. We perform sensor fusion
in an ad hoc fashion, but we are exploring a general mechanism for supporting it.

The infrastructure does not completely support the transparent acquisition of con-
text for applications. In order for an application to use a widget, server, or interpreter,
it must know both the hostname and port the component is being executed on. When
the infrastructure supports a form of resource discovery [19], it will be able to effec-
tively hide these details from the application. This will allow the application to really

14

treat local context widgets like user interface widgets. When an application is started,
it could specify the type of context information required and any relevant conditions
to the resource discovery mechanism. The mechanism would be responsible for
finding any applicable components and for providing the application with ways to
access them. We have investigated many existing techniques for supporting resource
discovery and are currently in the process of selecting one to implement.

Another limitation of the infrastructure is dealing with component failures. When a
component fails, it has to be manually restarted. With a requirement for perpetual
execution, this is clearly not an admirable property. The infrastructure does keep
track of existing subscriptions between component restarts. So, when a component
fails and is restarted, it knows what components were subscribed to it so it can con-
tinue notifying them of context events. But, the infrastructure needs a facility for
automatically restarting components when they fail. We are currently investigating
the use of watchdog processes and redundant components for this purpose.

6 Related Work

In our previous discussion on context handling, we discussed work that influenced us
in our decision to treat context like input. We can see from the recent CoBuild work-
shop and AAAI Symposium on Intelligent Environments that there has been a lot of
related work in smart environments. Rather than review the current state of smart
environments, we will look at work that supports the use of context.

The proposed Situated Computing Service [10] has an infrastructure that is similar
in intent to ours. It insulates applications from context sensors. It is a single server
that is responsible for both context acquisition and abstraction. It provides both poll-
ing and notification mechanisms for accessing relevant information. It differs from
our research in that it uses a single server to act as the interface to all the context
available in an environment as opposed to our modular infrastructure. A single pro-
totype server has been constructed as proof of concept, using a single sensor type.

The AROMA system [15] explored awareness in media spaces. Its architecture
used sensor abstraction and interpretation to provide awareness of activity between
remote sites. Interpreted context at each site was displayed at the other sites.

The CyberDesk system [6] used minimal context to provide relevant services to a
desktop computer user. Its modular architecture separated context sensing, abstrac-
tion, and notification. It did not use a distributed architecture or support aggregation.

7 Conclusions

We have presented a context-based infrastructure for supporting the software design
and execution of context-aware applications in the Aware Home, a prototype smart
environment. Our infrastructure builds upon our previous work [17] that introduced
the idea of a context widget for treating context like user input. We generated re-
quirements for the infrastructure based on the differences between dealing with con-

15

text and input. Using these requirements, we designed and built an infrastructure to
make it easier for applications to deal with context. We discussed the benefits of the
infrastructure through example applications that we have built. Finally, we described
the limitations of the current infrastructure and, as part of our future work, plan to
address these with the suggested improvements. We intend to test the context-based
infrastructure through the use of a larger variety of context and the building of more
complex applications within the Aware Home.

References

1. Arons, B. The design of audio servers and toolkits for supporting speech in the user interface. Jour-
nal of the American Voice I/O Society 9 (1991) 27-41.

2. Bauer, M. et al. A collaborative wearable system with remote sensing. In Proceedings of Interna-
tional Symposium on Wearable Computers (1998) 10–17.

3. Brotherton, J.A., Abowd, G.D. and Truong, K.N. Supporting capture and access interfaces for in-
formal and opportunistic meetings. Georgia Tech Technical Report, GIT-GVU-99-06. (1998).

4. Clark, H.H. & Brennan, S.E. Grounding in communication. In L.B. Resnick, J. Levine, & S.D.
Teasley (Eds.), Perspectives on socially shared cognition. Washington, DC. (1991).

5. Codella, C.F. et al. A toolkit for developing multi-user, distributed virtual environments. In Pro-
ceedings of Virtual Reality Annual International Symposium (1993) 401–407.

6. Dey, A.K., Abowd, G.D. and Wood, A. CyberDesk: A framework for providing self-integrating
context-aware services. Knowledge-Based Systems 11 (1999) 3-13.

7. Dey, A.K. et al. The Conference Assistant: Combining context-awareness with wearable computing.
To appear in the Proceedings of the International Symposium on Wearable Computers ’99.

8. Harrison, B.L. et al. Squeeze me, hold me, tilt me! An exploration of manipulative user interfaces.
In Proceedings of CHI'98 (1998) 17–24.

9. Horvitz, E. et al. The Lumiere Project: Bayesian user modeling for inferring the goals and needs of
software users. In 14th Conference on Uncertainty in Artificial Intelligence (1998) 256-265.

10. Hull, R., Neaves, P., and Bedford-Roberts, J. Towards situated computing. In Proceedings of Inter-
national Symposium on Wearable Computers (1997) 146–153.

11. Kidd, C, et al. The Aware Home: A living laboratory for ubiquitous computing research. To appear
in the Proceedings of CoBuild’99 (1999).

12. Lamming, M. et al. The design of a human memory prosthesis. Computer 37, 3 (1994) 153-163.
13. MacIntyre, B. and Feiner, S. Language-level support for exploratory programming of distributed

virtual environments. In Proceedings of UIST’96 (1996) 83–94.
14. Greenberg, S. Sharing views and interactions with single-user applications. In Proceedings of the

ACM/IEEE Conference on Office Information Systems (1990) 227–237.
15. Pederson, E.R. and Sokoler, T. AROMA: Abstract representation of presence supporting mutual

awareness. In Proceedings of CHI'97 (1997) 51–58.
16. Rekimoto, J. Tilting operations for small screen interfaces. In UIST’96 (1996) 167-168.
17. Salber, D., Dey, A.K., and Abowd, G.D. The Context Toolkit: Aiding the development of context-

enabled applications. In Proceedings of CHI'99 (1999) 434-441.
18. Schilit, W.N. System architecture for context-aware mobile computing. Ph.D. Thesis, Columbia

University (1995).
19. Schwartz, M.F. et al. A comparison of internet resource discovery approaches. Computing Systems

(1992) 461-493.
20. Want, R. et al. The Active Badge location system. ACM TOIS 10, 1 (1992) 91–102.

