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Abstract

Our goal is to exploit human motion and object context to
perform action recognition and object classification. Towards
this end, we introduce a framework for recognizing actions
and objects by measuring image-, object- and action-based
information from video. Hidden Markov models are com-
bined with object context to classify hand actions, which are
aggregated by a Bayesian classifier to summarize activities.
We also use Bayesian methods to differentiate the class of un-
known objects by evaluating detected actions along with low-
level, extracted object features. Our approach is appropriate
for locating and classifying objects under a variety of con-
ditions including full occlusion. We show experiments where
both familiar and previously unseen objects are recognized
using action and context information.

1. Introduction

This paper proposes a novel approach to human activity
recognition that uses context information of particular objects
in the scene. We define classes that contain object-specific in-
formation, including associated properties, appearance-based
descriptions and actions. Objects provide a means to focus at-
tention on an individual interaction while maintaining aware-
ness of other interactions in the scene. By tracking hands,
contact with known objects is detected. Once contact has
been established, context is used to suggest specific hidden
Markov models (HMMs), if any, that may provide more ex-
plicit descriptions of action associated with the object. In-
teractions captured over time are aggregated using Bayesian
statistics, producing summaries of activity.

Additionally, we show that the relationship between hu-
man actions and objects can be exploited to detect and clas-
sify objects. Object classification is inferred, in part, by de-
tecting learned actions. Prior knowledge about object cate-
gories and image analysis provides additional discrimination.

�This research was funded, in part, by Texas Instruments and the National
Science Foundation, Grant #EIA-9806822.

A naive Bayesian classifier evaluates detected actions along
with recovered region features to differentiate the class of the
unknown object. We demonstrate detection and classification
of both rigid and deformable objects under a variety of con-
ditions including full occlusion.

This work has many practical applications where passive,
non-intrusive processes are needed to capture interactive ex-
periences, such as smart spaces or video surveillance. Our
proposed framework offers a pragmatic design approach for a
real-time vision system intended for use in multiple domains.

Related Work: The hidden Markov model (HMM) is
widely used to model complex motions for action recogni-
tion tasks [2, 9, 12]. Our work combines HMMs with context
to formalize the relationship between actions and objects.

Architectures that leverage hierarchical inheritance and
context have demonstrated their utility for managing and
cataloging information [4, 8] as well as for solving image
understanding problems. Pinhanez and Bobick have pro-
vided a Past, Now,and Future (PNF)-network, based on
interval algebra, to describe the temporal structure of ac-
tions, sub-actions, and events [11]. Mann and Jepson inte-
grate information about object properties and abilities (pri-
marily force/dynamic) to develop representations of activity
[7]. They attempt a bottom-up approach that infers physical
descriptions of the actions depicted in image sequences.

There has been extensive research on object detection and
classification (see [13] for review). Most of these proposals
require models or templates as the basis for constraining and
mapping extracted features. However, only limited progress
has been made towards the use of context and inference as the
primarymeans of recognizing objects.

Bayesian methods provide a formal means to reason about
partial beliefs under conditions of uncertainty [10]. The
framework proposed by Buxtonet al. uses Bayesian Net-
works to perform surveillance and evaluate evidence in well
understood scenes [3]. Yi and Chelberg assert the appro-
priateness of these networks for selecting probable objects
based on discriminating features and domain-specific knowl-
edge [14]. We incorporate similar concepts in our framework



Figure 1. Structure for abook article.

for summarizing activity and labeling unknown objects.

2. Representational Framework

We propose a hierarchical framework for representing
prior knowledge about image contents. This architecture,
calledObjectSpaces, uses familiar object-oriented constructs
like classesand inheritance to manage object context. Ob-
jectSpaces uses an adaptive bottom-up and top-down archi-
tecture with three, integrated layers. TheExtraction layer
is responsible for finding, extracting, and tracking people
and articles in the scene using simple, low-level techniques.
It also provides facilities for characterizing motion using
HMMs. TheObject layercontains objects that represent peo-
ple and articles in the scene. TheScene layer, which contains
domain-specific context, monitors physical contact between
people and articles, then examines these interactions for pat-
terns of behavior.

A class is a container for properties and methods needed
for holding context and implementing tasks. Objects point-
ing to scene articles and people are instantiated from two par-
ent classes,Article andPerson , respectively. The object
representing domain-specific context is derived from a third
parent class calledScene .

Instantiated objects provide a means to focus on motion
near a specific object without directing attention away from
any other object in the scene. By tracking the hands, contact
between known articles and people can be detected. Once
contact has been established, articles attempt to gather more
explicit descriptions of activity by comparing observed hand
motion to pre-trained actions that are indigenous to the ob-
ject. For example, consider abook object with two asso-
ciated actions described by HMMs, i.e.,left-to-right motion
! �ff : “flip forward” and right-to-leftmotion! �fb: “flip
backward”. After the hands penetrate the image area where
the book is located (establishing contact), sweeping the hand
from left to right will indicate flipping a page forward. Sev-
eral of the properties in this class are shown in Figure 1. Ar-
ticles also maintain histories of such interactive events with
people, which can be helpful for summarizing activities.

Class Inheritance and Reuse: Derived classes, or “chil-
dren”, possess the same properties and methods as the parent
class, but can be extended by adding additional properties and

Figure 2. GCM for book class derived from instantiations.

features. Inheritance provides a natural hierarchy that we take
advantage of to organize or disambiguate classes during ob-
ject and action recognition.

ObjectSpaces manages context in layers of abstraction. In
this way, objects (articles and people) and their behaviors
can be defined intrinsically, without regard for the domain in
which they will appear. Once developed, the class database
is available for reuse in multiple domains without retrofitting
the entire framework for a specific application. Behaviors be-
tween objects can be better specified at the scene-level, plac-
ing task dependencies at the highest level of abstraction. For
more information of ObjectSpaces, see [8].

Generalized Class Models: To organize our class database,
we developgeneralized class models(GCMs) for articles.
This model contains region- and image-based descriptions
that are representative of all instantiations of that particular
class. A GCM is created for every child level within the class
hierarchy. For example, thebook GCM points to stored, ini-
tializedbook objects, as Figure 2 illustrates. The associated
class actions, in this case�ff and�fb, and Gaussian probabil-
ity distribution functionsP that describe region features, i.e.
Ppixelarea, are also referenced. The notebook class extends
book by adding an action model for “write,”�wrt. Because
the book GCM is a parent,Pbook is influenced by the con-
tribution of its children, which includes notebook, although
Pnotebook bears no dependence onPbook. The entire set of
GCMs forms model spaceM .

3. Human Motion Analysis

Features of people and objects must be automatically iden-
tified and extracted to build meaningful representations that
accurately capture activities. We employ simple approaches
for tracking in real-time although a variety of more sophis-
ticated techniques could have been used. Our main focus is



on building higher-level meanings so we have designed our
framework to be invariant to these techniques.

Tracking the Hands: To determine which items in the sur-
roundings are handled, the location of a person's hands is re-
covered. Color input frames are analyzed in the YUV color
space. To detect new people entering the scene, we use back-
ground segmentation (Y-channel) to identify regions that be-
long to people. Then we segment skin-colored blobs from the
image (YUV-channels) using the color tableC = [y u v],
which is manually initialized. Blobs that do not match the
view-based model supplied by the person object are elimi-
nated. A tracking algorithm, which selects the centroid of
each hand blobx = [x y]T from the remaining candidates,
leverages scene context to deal with occasional occlusions
and tracking failures. To assist in tracking future locations
of each hand, the linear, estimated hand position is given by
x̂t+1 = xt + dx, wheredx = xt � xt�1.

Action Characterization using HMMs: The hidden
Markov Model (HMM) allows us to use established stochas-
tic processes to characterize deliberate, repeatable hand mo-
tion (see [6]). To model actions of durationT that take place
throughout the scene, hand position alone is used to con-
struct the observation featureO = fx1;x2; :::;xTg. Our
approach assumes a fixed, overhead camera so scale varia-
tion is insignificant because perspective projection distortion
is small. We anticipate that actions can occur any place within
the scene. To normalize motion displacement, objects supply
affine transformations based on the location of their bounding
boxes to deal with translation and rotation. The normalized
observation feature becomesbO = R(�)O +T, whereR is
a 2x2 rotation matrix about� andT is a displacement vector
from the object's centroid to the center of the image. As the
hands transverse through space during some action, they pass
through certain normalized areas in the image space that cor-
respond to the HMM's states. Hand transitions from area to
area generate a sequence of states, which characterize an ac-
tion. We assumed all actions are single-handed motions. Dur-
ing training, roughly 20 examples foreach action captured
by the same person are manually segmented. Deliberate rest
states are used as delimiters to parse individual actions during
testing. A 6 state, continuous HMM was empirically selected
to optimize recognition.

4. Evidence for Recognition

We collect image-, object-, and action-based evidence to
label and summarize activity as well as to identify unknown
objects and people.

Object-based Evidence: The statistical history of interac-
tions between articles can be helpful for predicting future

events. To begin, we establish the known articles in the
environment by deriving classes fromArticle for each
type and identifying its location in the scene by a bounding
box. After the scene is initialized, articles are denoted as
g = fg1; g2; :::gqg. When human activities involving these
objects are observed, the scene layer computes conditional
probabilities between every two articles, storing them in a
qxq matrix A, such thatA = foijg, whereoij = P (gjjgi).
Hereoij represents the probability that thejth article is han-
dled given that theith article was previously handled. This
information is particularly valuable for inferring an unknown
object by exploiting its relationship with known articles.

To benefit tracking and the detection of objects that are
fully occluded or a part of the background, we exploit the spa-
tial proximity of known articles. Within every scene,activity
zonesare designated by the bounding boxes of known articles
to indicate image regions where there is frequent hand traffic.
As the hands are tracked during activity, additional zones are
created when hands spend time in undesignated areas. We use
object transition matrixA and activity zones as a measure of
object-based evidence.

Image-based Evidence: After background initialization
(I(0)), changes in the background, presumably new, un-
known articles or people, are segmented from subsequent
framesI(t) based on an empirically determined threshold�,
producing binary imagebB(t). Connected component analysis
producesn regions labeledZi; 1 � i � n. Our correspon-
dence algorithm analyzes and tracks eachZi over consecutive
frames, using motion and pixel area as metrics for deciding
which regions belong to a person or to an object. A paramet-
ric model for people is invoked to label regions that belong to
humans and hand tracking starts as previously mentioned.

Regions that appear to be unlabeled articles are exam-
ined to identify evidence that can be used for recognition.
The foreground subimageFi(t) of Zi is given byFi(x; t) =
I(x; t); 8 x 2 Zi, wherex = [x y]T . To determineZi' s
orientation with respect to the angle of the principle axis, we
calculate� given by
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We apply a rotation matrix to obtain the normalized fore-
ground subimage, i.e.,bFi = R(��)Fi, so thatZi can be
compared to stored article templates from our class database,
which have already been modified such that� = 0 (illustrated
in Figure 3). We also recover other features ofZi, including
pixel area�i, aspect ratio�i, and perimeter edge count�i. A
bounding box is constructed aroundZi, which helps to detect
future hand overlap and to recover actions performed around
this region. To minimize noisy measurements, these parame-



Figure 3. Image-based Evidence:Segmentation and analy-
sis of newly introduced objects.

ters are averaged over several frames and used to instantiate
Zi as anunknownArticle object.

To leverage prior knowledge, we first attempt to identify
eachunknownZi by comparing its rotationally invariant im-
age, bFi, to each stored subimage templateSj that shares a
similarly-sized bounding box, such as those shown in Figure
2. Themean square error(MSE)�, used to quantify matching
of anN1xN2 pixel template, is defined as

�(i; j) =
1

N1N2

X
x2Sj

[Sj(x) � bFi(x)]2: (2)

The parameters�i; �i; �i, and� form �i, which represents
imaged-based evidence.

Action-based Evidence: The simple region and template
metrics discussed above may not provide the sufficient evi-
dence necessary to classify unknown objects. Moreover, the
unknown object may be part of the backgroundI(0), which
leads us to exploit motion to infer the object's class. Let
the entire set of HMMs used by the entire set of GCMs
M form action model space� of dimensionv, such that
� = f�ff ; �fb; �wrt; :::g = f�1; �2; :::; �vg. We determine
the most likely sequence of states given model�
 using the
Viterbi Algorithm [6]. So for every action model in�, we
calculatep
 = P (Oj�
), which we refer to as a measure of
action-based evidence.

Evaluating Evidence: Bayes' theorem weighs the strength
of belief in a hypothesis against prior knowledge and ob-
served evidence. In addition, it provides attractive fea-
tures, including: (1) its ability to pool evidence from various
sources while making a hypothesis, and (2) its amenability
to recursive or incremental calculations, especially when evi-
dence is accumulated over time [1]. These features motivate

Figure 4. Belief network corresponding to a naive Bayesian
classifier for selecting the most likely GCM.

our application of Bayesian classification to summarize activ-
ities and resolve unknown objects.

To summarize the object activities, human-object interac-
tions are modeled using the Markovian assumption, i.e.cur-
rent activity influenced by previous activity, which is a weak
assumption but one that maintains computational efficiency.
If hand motion is too subtle to be reliably characterized, an
“action” event" is used.

To begin, first consider a set
 of k different activities
�, such that
 = f�1;�2; ::;�kg. Each activity� con-
tains a set of action models or events, i.e.�writing =

f�drawing; �erasing; "move peng. In order to compute the
likelihood of an activity, we solve the relation

�̂ = max


fP (Oj�)g: (3)

The probability that a sequence of observations is produced
by a given activity�� is expressed as

P (Oj��) =
X
all q

P (Ojq;��)P (qj��)

=
X
all q

P (Ojq)P (qj��)
(4)

whereq = �1; �2; :::; �n represents ann-dimensional se-
quence of actions. An initial likelihood of a sequence of ac-
tions occurring during an activityP (qj��) is computed after
training. Moreover, this likelihood can be updated during ac-
tual testing.

For recognizing unknown objects, we construct a naive
Bayesian classifier [5], where each contributing portion of ev-
idence is assumed to be independent, to determine the most
likely GCM associated withZi (Figure 4). We allowMk to
represent thekth GCM in M . Starting with our image-based
evidence, we develop a measure of shape similarity that is
expressed asP (Mkj�i), or alternatively by

�i;k =
P (�ijMk)P (�ijMk)P (�ijMk)P (Mk)

P (�i; �i; �i)
: (5)

From Equation 2, ifminjf�(i; j)g � � , where� is discov-
ered empirically, we consider the contribution from any of
the stored subimage templatesSj. To express the MSE as a



likelihood thatZi is derived fromSj ' s GCM, we approximate
P (ZijSj;Mk) by

P (ZijSj ;Mk) � p� = e
��
� ; (6)

to produce an exponential distributionp� on the range [0:1].
The contribution from observing action�
 is quantified by
solving the relation

p̂ = max
�
fP (Mkjp
)P (�
 jMk)g: (7)

For eachZi, we select thêkth GCM producing the highest
score by

k̂ = arg max
M;�;�

fwT
eg (8)

wherew represents weights ande = [�i;k p̂ oi;j p�]
T . As

evidence is acquired,w is adjusted to reflect the strongest be-
liefs, such that

wi =
e2
i

eTe
; subject to

X
i

wi = 1: (9)

Additional biases are also placed onw, which have the effect
of dynamically adjusting the contribution of image- or action-
based influences. For example, if major changes in shape are
detected over time, a deformable object is assumed and both
w1 andw4 ! 0. If image-based evidence�i is available,̂k is
used to set the observation lengthT of the HMM based on the
most probable GCM. Otherwise, it is based on the averageT

used to train all models in�. Note that motion evaluation can
not begin until the specified number of observations has been
acquired.

After initial image-based evidence is acquired, future as-
sessments ofZi are not taken unless some noticeable change
has occurred. Recall that deliberate rest states between ac-
tions are used as delimiters for parsing hand motion. While
every frame is evaluated, action events are only recorded once
to prevent redundant observations. No belief assessment is
taken if no portion of the evidence offers at least some mod-
erate belief, i.e. ifei � 2

3 8 i. Because belief is accumulated,
weak evidence is not considered so that scores are not com-
promised over time.

5. Results and Experiments

Before we conducted experiments to test our approaches,
we used ObjectSpaces to set up article classes for the office,
kitchen, and automobile domains. The system has been im-
plemented inC++ to run on the Win9x/NT platform in near
real-time. Our approach uses a static view of the scene from a
ceiling mounted camera position (auto interior scene captured
by angled, sunroof-mounted camera).

Article Action Recognition Accuracy

Office Environment
bookcase grab book - 100%, return book - 90%
booky flip forward - 94%, flip backward - 90%
chair no action, event only - 100%
cup drinking - 100%, stir - 90%
desk drawing - 93%, erasing - 86%, open drawer - 100%,

close drawer - 80%
keyboard no action, event only - 97%
mouse no action, event only - 95%
notebooky flip forward - 94%, flip backward - 92%, write - 80%
phone pick up - 90%, put down - 60%, dial num. - 80%
printery open cover - 95%, close cover - 92%
table feeding - 88%, stirring - 93%, cut - 85%

Kitchen Environment
bowl stir - 90%
cabinet no action, event only - 100%
cut board cut - 88%, scrape off - 93%
can opener no action, event only - 100%
disposal no action, event only - 100%
microwavey open door - 100%, close door - 90%
pot/pan stir - 85%
refrig. open door - 100%, close door - 90%
stovey clean surface - 79%, open oven - 90%,

close oven - 77%, adjust temp controls (n.a.) - 95%
salt shake - 72%
sink adjust water flow (no act) - 100%, wash dish - 85%,

grab rinse nozzle (no action) - 100%
toaster no action, event only - 95%

Automobile Environment
cup drink - 85%
gearboxy gear changes: neut.! 1 - 100%, 1! 2 - 90%,

2! 3 - 100%, 3! 4 - 90%, 4! 5 - 100%,
neutral! reverse - 100%

lock no action, event only - 100%
prkg brake pull bake - 80%
radio adjust (no action, event only) - 100%
strg wheel turn left - 100%, turn right - 95%
temp ctrl adjust (no action, event only) - 100%
window roll up - 100%, roll down - 100%

Table 1. Experiment I: Office, kitchen, & automobile ob-
jects with associatedactions and recognitionaccuracy, respec-
tively. yClass with multiple or deformable shape states.

Experiment I: Capturing activities Office, kitchen, and
automobile (interior) scenes were configured with articles and
a person was invited to perform many common tasks and
activities. We manually segmented and labeled 597 action
examples from video for training the HMMs. Scripted se-
quences for each domain were used for testing. Accuracy of
interactive events captured by the system are shown in Table
1. Percentages for objects with no associated actions were
based on detectibility alone; otherwise, recognition precision
is shown. The following activities were summarized with
the respective accuracy:office - reading (95%), coffee break
(90%), computer-work (87%), taking phone message (60%),
and counting documents (93%); kitchen - washing dishes
(95%), cooking stir fry (87%), andcleaning kitchen (60%);
auto - accelerating (shifting up) (95%), drinking-and-driving
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(b)

Figure 5. From experiment II, the strength of belief (propor-
tional to grayscale) as image and action events are registered
to one of four unknownsZi. (a) office (b) kitchen

(87%), winding road (93%), roll window down (100%), roll
window up (100%), andparking car (85%). Throughout these
interactions, 90% of all actions were recognized (assessed
by hand-generated ground-truth observations). Using time-
stamped logs, the system was also able to measure duration
of hand-object contact. For the auto domain, a different per-
son was used for testing than for training, illustrating person
independent recognition of action (since only hand position is
used).

Experiment II: Recognizing new objects To demonstrate
detection and recognition of newly introduced objects, sev-
eral objects (book, notebook, printer, andmouse) were car-
ried into anoffice scene after the background was acquired.
Table 1 shows the actions or events associated with each arti-
cle. The system was already aware of several other objects in
the room, including a keyboard, chair, and desk. Segmenta-
tion began immediately as initial image-based evidence of the
unknown objects was acquired and initial beliefs were forged.
As a person interacted with both known and unknown objects
over several minutes, the strength of belief grew in propor-
tion to the number of actions identified, as shown in Figure
5(a). During eacheventperiod, new object-, action- or image-
based evidence is contributed from one of the four unknowns.
Rough shape and size information was sufficient for estab-
lishingZ2 andZ3 early on (event 1). While relevant actions
were able to classifyZ1 as a notebook by event 9, conflicting
actions registered toZ2 during events 12 and 13 compromised
belief testimony. AlthoughZ3 (mouse) has no actions associ-
ated with it, moderate belief can still be established by moni-
toring it's interaction with the keyboard (provided viaA). In
general, however, articles such asZ3 stand a greater chance
of being mis-labeled if actions associated with other GCMs
are performed while interacting with it. Classification proba-
bility for Z1 throughZ4 after 21 events (acquired over 1500

frames) was 97%, 94%, 80%, and 91%, respectively. Closer
inspection reveals that 5, 8, 4, and 6 events forZ1 throughZ4,
respectively, were needed to achieve this degree of classifica-
tion.

A similar experiment was conducted in thekitchen do-
main with a pot, pan, bowl, and salt shakeradded to the
scene already initialized with a stove, a pan, and cabinets.
Classification probability of these 4 unknowns after 18 events
was 98% (resulting from a template match of the same object
stored in the database), 85%, 77%, and 93%, respectively.

Experiment III: Object Recognition from action To eval-
uate the strength of action-based evidence, 11 action events
that were acquired over 583 frames. Image evidence assisted
in action recognition, but was not used to score GCMs dur-
ing evaluation. Figure 6(a) shows the mean log probability
of the candidate GCMs. Note that belief was shared between
the GCM for notebook and book until event 7, when “write”
was the most probable action observed, consequently reject-
ing book. Figure 6(b) shows theaccumulated likelihoods of
several actions as they occurred throughout this sequence. It
also reveals the potential for actions to be confused. Note that
some actions that never actually occurred, such as “erase,”
have high, accumulated probabilities, suggesting that it is
similar to several of the gestures performed. Also note that
recognition is not affected by an object's deformable struc-
ture.

Experiment IV: Recognizing objects in the background
To demonstrate detection and recognition of objects in the
background (full occlusion), we performed several eating ac-
tions (stir, cut, feed) in an undeclared space in the scene.
When actions, such as stir, occur for more than one GCM,
belief is shared. Without image-based segmentation, motion
normalization suffers, resulting in lower action recognition
rates and occasional mis-labeling. (Notice in events 8 and 9
in Figure 6(c), “open” and “erase” were mistaken for “feed”
and “cut”.) The table GCM exhibits the strongest belief, as
shown in Figure 6(c).

Over many of these tests, belief ranged from 5%-17%
lower over the same number of action events when image in-
formation was acquired, but not used for scoring GCMs. With
no image evidence acquired, action recognition suffered even
more and belief estimates dropped 14%-33%. Under these
circumstances, it is difficult to find an appropriate observation
length to parse continuous motion, especially if rest states are
not deliberate. However, these estimates can be raised by as-
sessing belief over more action events.

6. Summary and Conclusions

We present a flexible approach for recognizing human ac-
tivities as well as objects in the environment using motion



Figure 6. (a) from experiment III, mean log probability of GCM classification over several action events; (b) from experiment III, shows
the accumulated likelihoods of several actions as they occurred throughout the corresponding sequence, with the most probable action
per event highlighted (top); (c) from experiment IV, GCM Mean log probability ofunknown object without image-based segmentation

and context. A hierarchical framework is applied to ex-
tract information about interactions between objects and peo-
ple. HMMs are used for recognition of complex human ac-
tions because they can efficiently characterize motion pro-
files in spite of spatio-temporal variation. We use Bayesian
approaches to label activities and to classify rigid and de-
formable objects by relying on actions and image clues, when
available. We show that convergence toward proper GCM
classification is contingent on the quality and consistency of
the observed evidence. Overall recognition of 46 actions is
90.2%, tested on 450 sequences. Summarization accuracy of
14 activities averaged 87.6% and classification of 8 unknown
objects (using all available evidence) measured 89.7%.

Although the single-camera approach is appropriate most
of the time, non-planar, complex motion can become ambigu-
ous from one perspective. Because only position information
is used to model actions, single person training generalizes
well for person-independent testing, barring wild variations.
Although several scene articles have no actions associated
with them or no hand-based motion can be adequately mod-
eled, we have shown that exploiting the relationship between
object pairs can be helpful for summarizing activities and dis-
covering articles. Despite the scalability problems that can
be caused by associating all of the possible actions with each
object, we hope to limit these by working with well defined
and constrained domains. We plan to extend this work by
considering multitasked activities for multiple people.
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