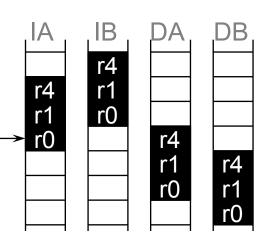


CS4803PGC Design and Programming of Game Console Spring 2012


Prof. Hyesoon Kim

Full/Empty Ascending/Descending

- - Descending (address grows download)
 - Ascending (Address grows upward)
 - Full/Empty: the stack pointer can be either point to the last item (a full stack) or the next free space (an empty stack)

Computing

ncreasing

Address

Stack Type	Push	Pop
Full descending	STMFD /	LDMFD
Full Ascending	STMFA/	LDMFA/
Empty Descending	STMED /	LDMED
Empty Ascending	STMEA /	LDMEA

Use of R15

- R15: PC
 - PC may be used as a source operand
 - Register-based shift cannot use R15 as source operands.
- Running-ahead PC's behavior
 - PC is always running ahead
 - PC is always pointing +8 of the current instruction
 - Imagine 3-stage pipeline machine . PC is pointing what to fetch when an instruction is in the WB stage in the 3-stage pipeline machine
- When R15 is a source, the current PC + 8 is supplied to the source operand.
- When R15 is a destination
 - S: 1: SPSR→ CPSR, affecting interrupt, resource PC and CPSR automatically,

Exception generation time

Pre-fetch abort: instruction fetch

Fetch	Decode	Execute	

PC+4

PC+8

Data abort : memory execution

Fetch Decode Execute

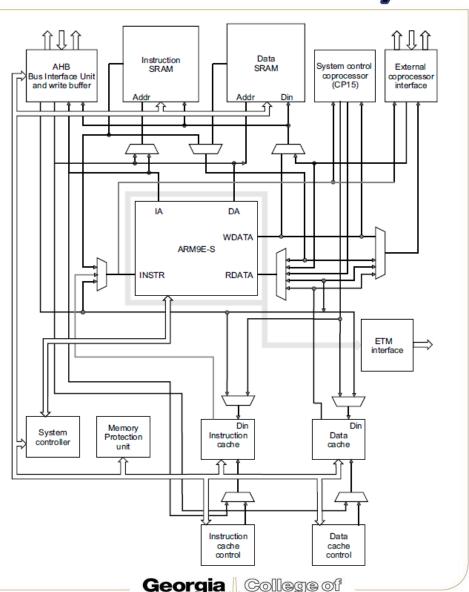
Controlling Interrupts

```
void event EnableIRQ (void)
                                void event DisableIRQ (void)
                                  asm {
  asm {
                                        MRS r1, CPSR
       MRS r1, CPSR
                                        ORR r1, r1, #0x80
        BIC r1, r1, #0x80
                                        MSR CPSR_c, r1
        MSR CPSR c, r1
// Enable Bit 7 (set
                                  // Disable bit 7 (set 1)
   register 0)
        28 27
31
                                        8
                                               6
                                                   5
 NZCV
                                             IF
                                                        mode
                  unused
```

Bit 7: interrupt

Bit 6: Fast interrupt

- SUB Ir, Ir, #4
- STMFD sp!{reglist, Ir}


```
•
, ••••
```

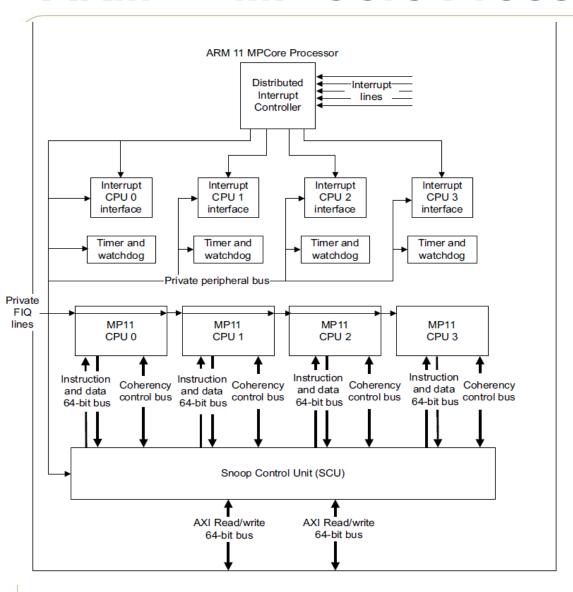
LDMFD sp!, {reglist,pc}^

- Soc for embedded system.
- Single chip DSP
- Embedded applications running an RTOS
- Mass storage HDD & DVD
- Speech coders
- Automotive control
 - Cruise control, ABS, etc.
- Hands-free interfaces
- Modems and soft-modems
- Audio decoding
- Dolby AC3 digital
- MPEG MP3 audio
- Speech recognition and synthesis.

Computing

ARM946E-S: (ARM 9 in Nintendo DS): Instructions

- Data processing instructions
- Load and store instructions
- Branch instructions
- Coprocessor instructions
 - Coprocessor data processing
 - Coprocessor register transfer
 - Coprocessor data transfer



ARM 11 MP Core Processor

New Features in ARM 11

- Improve Memory Accesses
 - Non-blocking (hit-under-miss) operations
- LD/ST and ALU are decoupled.
- Out-of-order completion:
 - Instructions that have no dependency on the outcome of the previous instruction can complete. !!! → Good or Bad?

ARMv5TE(J)	ARMv5TE(J)	A D.M	
	AINIVOIL(J)	ARMv5TE	ARMv6
5	6	7	8
(ARM926EJ)	(ARM1026EJ)	No	Yes
No	No	No	Yes
No	No	Yes	Available as coprocessor
No	Static	Dynamic	Dynamic
No	Yes	Yes	Yes
Scalar, in-order	Scalar, in-order	Scalar, in-order	Scalar, in-ord
None	ALU/MAC, LSU	ALU, MAC, LSU	ALU/MAC, LSU
No	Yes	Yes	Yes
Synthesizable	Synthesizable	Custom chip	Synthesizabl and Hard mad
Up to 250MHz	Up to 325MHz	200MHz – >1GHz	350MHz - >1GHz
	No No No No Scalar, in-order None No Synthesizable	No No No No No No No Static Yes Scalar, in-order Scalar, in-order ALU/MAC, LSU Yes Synthesizable Synthesizable	NoNoNoNoStaticDynamicNoYesYesScalar, in-orderScalar, in-orderScalar, in-orderNoneALU/MAC, LSUALU, MAC, LSUNoYesYesSynthesizableSynthesizableCustom chipUp to 250MHzUp to 325MHz200MHz -

ARM10E™

ARM9E™

Feature

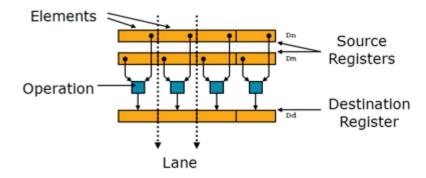
Figure 5. ARM Architecture Feature Comparisons

Intel®

ARM11[™]

Thumb-2 ISA

- Thumb-2 is a superset of the Thumb instruction set.
- Thumb-2 introduces 32-bit instructions that are intermixed with the 16-bit instructions. The Thumb-2 instruction set covers almost all the functionality of the ARM instruction set.
- Thumb-2 is backwards compatible with the ARMv6 Thumb instruction set.

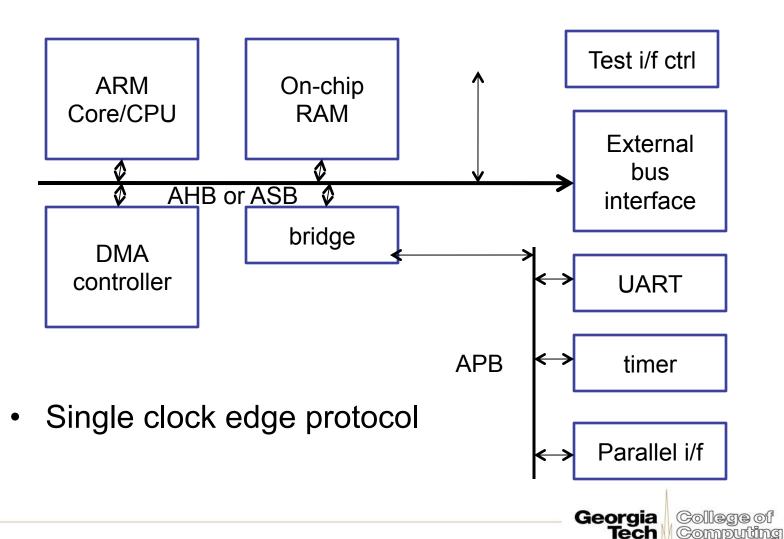


SIMD in ARM

- Neon: ARM's SIMD engine
- 128bit SIMD
- NEON instructions perform "Packed SIMD" processing:
- Registers are considered as vectors of elements of the same data type
- Data types can be: signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit, single precision <u>floating point</u>
- Instructions perform the same operation in all lanes

Usage model of NEON

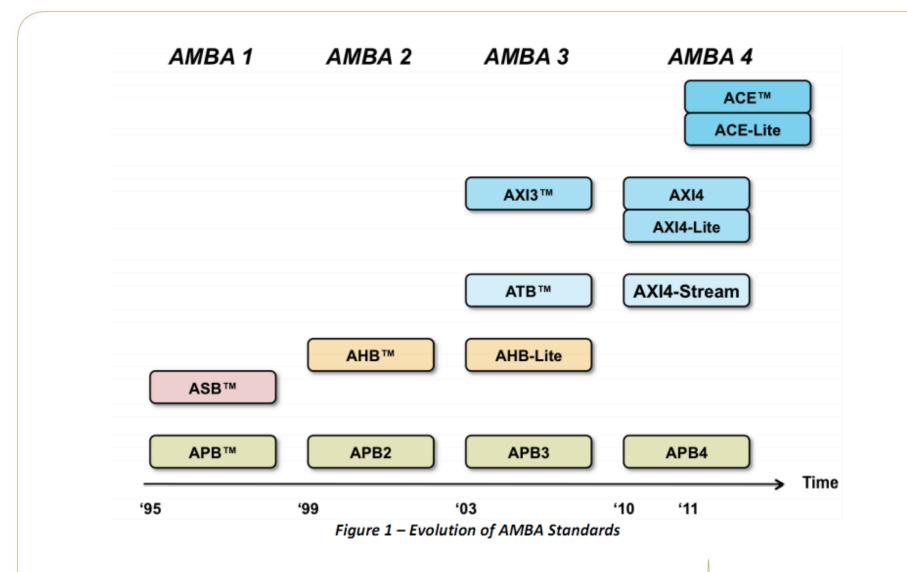
- Watch any video in any format
- Edit and enhance captured videos video stabilization
- Anti-aliased rendering and compositing
- Game processing
- Process multi-megapixel photos quickly
- Voice recognition
- Powerful multichannel hi-fi audio processing


ARM BUS

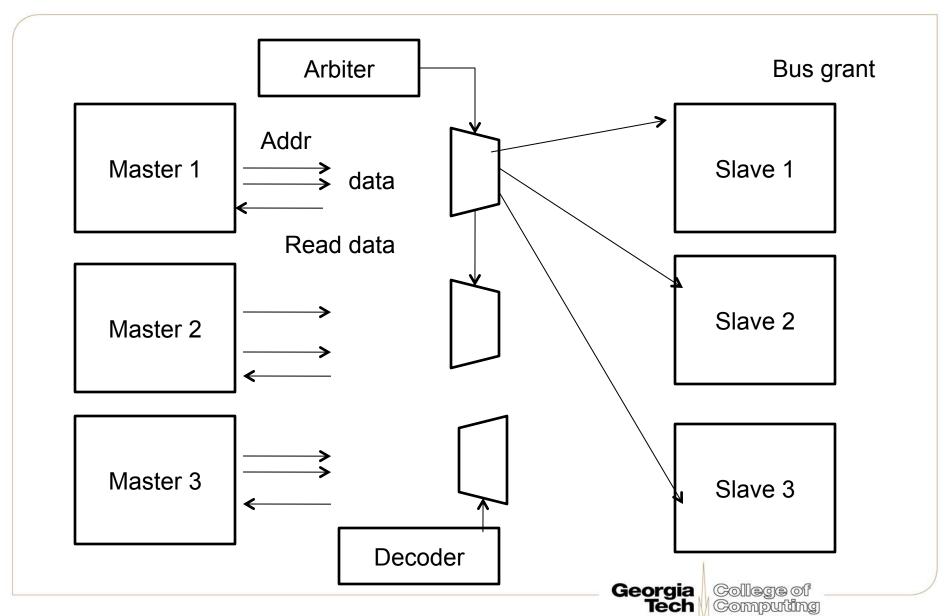
Advanced Microcontroller Bus Architecture (AMBA)

AMBA

- AHB (Advanced High-performance Bus)
 - New standard
 - Connect high-performance system
 - Burst mode data transfer and split transactions
 - Pipelined
- ASB (Advanced System Bus)
 - Old standard
 - Connect high-performance system
 - Pipelined
 - Multiple systems
- APB (Advanced Peripheral Bus)
 - A simpler interface for low-performance peripherals
 - Low power
 - Latched address, simple interface



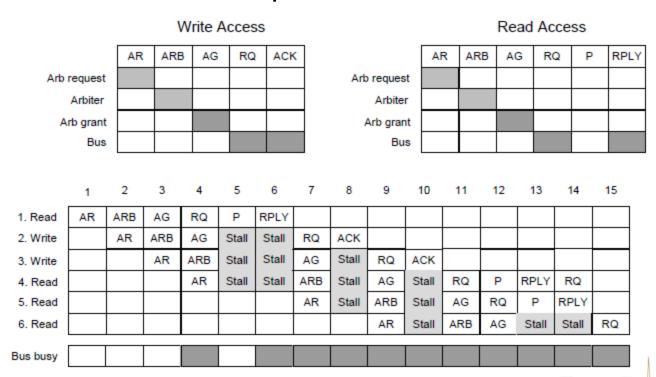
AMBA Revisions



Bus Arbitration

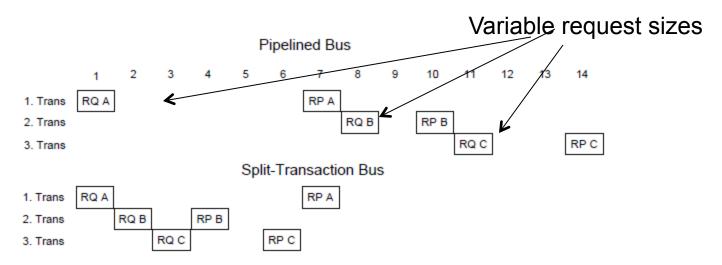
AMBA Arbitration

- A bus transaction is initiated by a bus master which requests access from a central arbiter.
- The arbiter decides priorities when there are conflicting requests.
- The design of the arbiter is a system specific issue.
- The ASB only specifies the protocol:
 - The master issues a request to the arbiter
 - When the bus is available, the arbiter issues a grant to the master.



Bus Pipelining

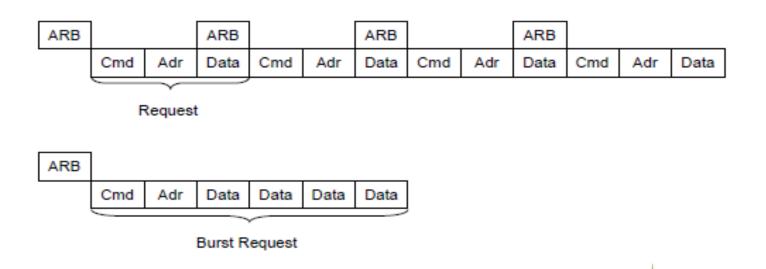
- A memory access consists of several cycles (including arbitration)
- Since the bus is not used in all cycles, pipelining can be used to increase performance



Split Transactions

- A transaction is splitted into a two transactions
 - Request-transaction
 - Reply-transaction
- Both transactions have to compete for the bus by arbitration

http://www.imit.kth.se/courses/2B1447/Lectures/2B1447_L4_Buses pdf



Burst Messages

- Overheads can be reduced if the requests are sent as a burst
- Overheads
 - Arbitration, Addressing, Acknowledgement
- Better efficiency, but be careful with long requests

http://www.imit.kth.se/courses/2B1447/Lectures/2B1447_L4_lectures/2B14

Bus Bridges

- Bus bridges are used to separate highperformance devices from low-performance devices
- All communication from high-performance bus with the low performance device goes via the bridge