

CS4803/CS8803 PGC Design and Programming of Game Consoles

Spring 2012 Prof. Hyesoon Kim

Georgia College of Tech Computing

What Will We Learn?

- Game programming
- Game architecture
- Graphics programming
- Computer architecture case studies → Game consoles
- Graphics processor hardware
- FPGA programming
- CUDA/OpenCL programming
- Embedded processor programming (Nintendo DS programming)

Game Console

- CPU
- GPU

Who Should Take?

- If you want to develop
 - Xbox 720 Xbox 1440?
 - Playstation 4,5,6 ?
- If you want to program efficiently using those hardware.
 - ARM Processors, Nintendo DS
- Learn the details of graphics hardware
- Experience with FPGA Programming
- Background
 - CS2200

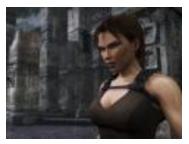
Course Info

 http://www.cc.gatech.edu/~hyesoon/spr12/i ndex.html

- 4 weeks Nitendo DS programming/ ARM processors
- 4 weeks Graphics processors, introduction to graphics, CUDA programming
- 4 weeks FPGA programming
- 3 weeks FPGA programming + case study

Changes from Last Year's Course

- FPGA Labs
 - Boards
- Lab days: have programming experience with some other programming platforms
- The importance of CUDA programming is reduced (not because CUDA becomes less important)



Why Game Consoles?

Computing

Georgia Tech

Effects of Game Industries

- Leading the industry
- Game processors are used for other applications
 - GPGPU:
 - Medical image processing
 - Scientific applications
- Movie industries

Requirements for GC

- Time constrain
- Lots of Data
- Heavy use of graphics
- Both Integer/floating point operations are important
- Floating point → low precision
- Stream applications
- Embedded systems
- Various I/O devices
- No comparability issues (no reason to support legacy code)
- All the platform is stable:
- Platform optimizations

- No TA
 - Help each other!
 - Use newsgroup to post and ask questions
- Newsgroup activity is counted as class participation points.
- cs4803pgc-2012@googlegroups.com

News from CES 2012

CES 2012: Intel enters the lucrative smartphone market

Intel teams up with Lenovo and Motorola for launch later this year, of the K800, an atom-based smartphone

Charles Arthur and agencies guardian.co.uk, Tuesday 10 January 2012 23.34 EST Article history

Intel CEO Paul Otellini holds an Intel smartphone reference design during a keynote address at CES. Photograph: Steve Marcus/Reuters

Sony's new tablet

CAPTION Jack Dempsey, AP

GAMING BLEND

Epic Fail: Microsoft Fails To Announce Xbox 720 At CES 2012

Author: William Usher

published: 2012-01-09 21:05:45

As if it really needs to be drilled home, Microsoft DID NOT announce a new console at this year's Consumer Electronics Show. The keynote intro came and went without even a whisper of a new console, despite a little bit of goading from Ryan Seacrest towards Microsoft's Steve Ballmer to reveal any additional info on products for 2012, there was nothing. I suppose their announcement about no longer doing keynote speeches or having booths at the show should have been a hint enough.

GAME WORKLOADS

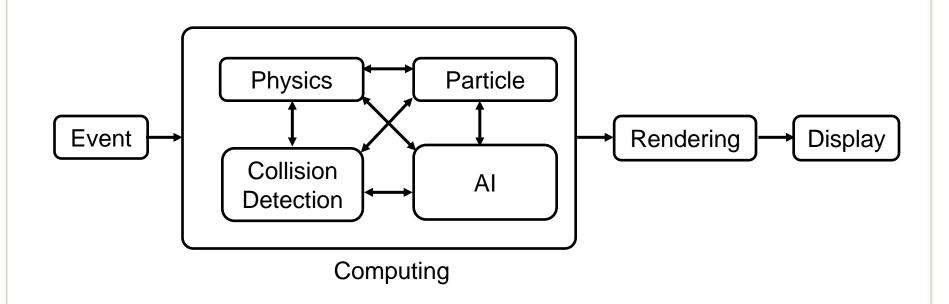
Game Workload Characterizations

- Still graphics is the major performance bottlenecks
- Previous research: emphasis on graphics
 - 2D/3D graphics tests
- Example: 3DMark Vantage
 - CPU and GPU tests
 - visual and game-play effects
 - CPU side: Physics Simulation and AI
 - Rendering tests (both CPU and GPU)

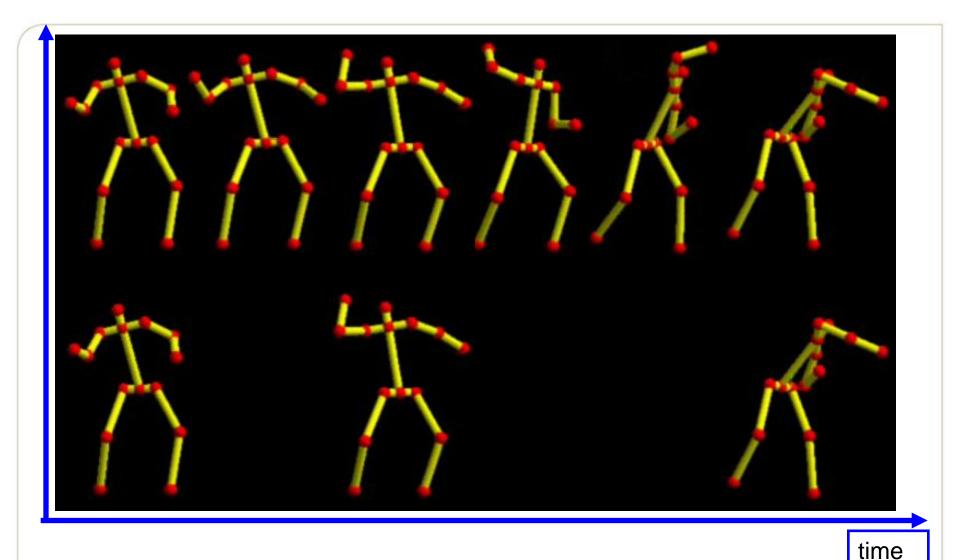
http://www.3dmark.com/

Game workloads

- Several genres of video games
 - First Person Shooter
 - Fast-paced, graphically enhanced
 - Focus of this presentation
 - Role-Playing Games
 - Lower graphics and slower play
 - Board Games
 - Just plain boring



Overview of Game Engine

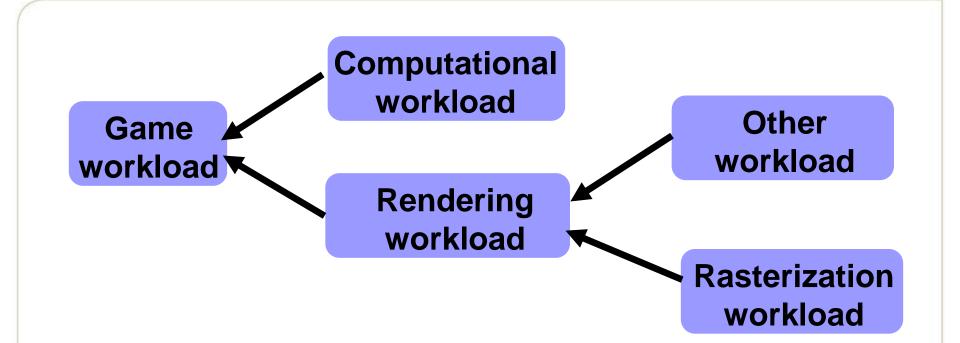


Frame Rates

- Current game design principles:
 - higher frame rates imply the better game quality
- Recent study on frame rates [Claypool et al. MMCN 2006]
 - very high frame rates are not necessary, very low frame rates impact the game quality severely

A First Cut: Reduce Frame Rates

Snapshots of animation [Davis et al. Eurographics 2003]


College of Computing

