How to Use a Short Basis: Trapdoors for Hard Lattices and New Cryptographic Constructions

Chris Peikert SRI

Work with Craig Gentry and Vinod Vaikuntanathan

- Candidates: [RSA78,Rabin79,Paillier99]
 - "General assumption"
 - ✓ Applications: digital signatures, OT, NIZK, . . .

- Candidates: [RSA78,Rabin79,Paillier99]
 - "General assumption"
 - ✔ Applications: digital signatures, OT, NIZK, . . .
- All rely on hardness of factoring
 - Complex: 2048-bit exponentiation
 - Lack of diversity
 - Broken by quantum algorithms [Shor]

Lattice-Based Cryptography

What's To Like

- ► Simple & efficient: linear ops, small integers
- Resist subexp & quantum attacks (so far)
- Security from worst-case hardness [Ajtai,...]

Lattice-Based Cryptography

What's To Like

- Simple & efficient: linear ops, small integers
- Resist subexp & quantum attacks (so far)
- Security from worst-case hardness [Ajtai,...]

What's Known

- 1 One-way & collision-resistant functions [Ajtai,...,MicciancioRegev]
- 2 Public-key encryption [AjtaiDwork,Regev]
- 3 Recent developments [LyubMicc,PeikWat,...]

Lattice-Based Cryptography

What's To Like

- Simple & efficient: linear ops, small integers
- Resist subexp & quantum attacks (so far)
- Security from worst-case hardness [Ajtai,...]

What's Known

- 1 One-way & collision-resistant functions [Ajtai,...,MicciancioRegev]
- 2 Public-key encryption [AjtaiDwork,Regev]
- 3 Recent developments [LyubMicc,PeikWat,...]

What's Missing

Everything else!
Practical signatures, protocols, "advanced" crypto, ...

1 Preimage sampleable trapdoor functions

• Generate (x, y) in two equivalent ways:

1 Preimage sampleable trapdoor functions

• Generate (x, y) in two equivalent ways:

"As good as" trapdoor permutations in many applications

1 Preimage sampleable trapdoor functions

• Generate (x, y) in two equivalent ways:

- "As good as" trapdoor permutations in many applications
- 2 "Hash and sign" signatures: FDH etc.

1 Preimage sampleable trapdoor functions

• Generate (*x*, *y*) in two equivalent ways:

- "As good as" trapdoor permutations in many applications
- 2 "Hash and sign" signatures: FDH etc.
- 3 Identity-based encryption, OT [PVW], NCE [CDMW], NISZK [PV], ...

1 Preimage sampleable trapdoor functions

• Generate (*x*, *y*) in two equivalent ways:

- "As good as" trapdoor permutations in many applications
- "Hash and sign" signatures: FDH etc.
- 3 Identity-based encryption, OT [PVW], NCE [CDMW], NISZK [PV], ...

New Algorithmic Tool

"Oblivious decoder" on lattices

A lattice $\mathcal{L} \subset \mathbb{R}^n$ having basis $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is:

$$\mathcal{L} = \sum_{i=1}^{n} (\mathbb{Z} \cdot \mathbf{b}_{i})$$

A lattice $\mathcal{L} \subset \mathbb{R}^n$ having basis $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is:

$$\mathcal{L} = \sum_{i=1}^{n} (\mathbb{Z} \cdot \mathbf{b}_{i})$$

A lattice $\mathcal{L} \subset \mathbb{R}^n$ having basis $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is:

$$\mathcal{L} = \sum_{i=1}^{n} (\mathbb{Z} \cdot \mathbf{b}_{i})$$

Shortest Vector Problem (SVP $_{\gamma}$)

▶ Given **B**, find (nonzero) $\mathbf{v} \in \mathcal{L}$ within γ factor of shortest.

A lattice $\mathcal{L} \subset \mathbb{R}^n$ having basis $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is:

$$\mathcal{L} = \sum_{i=1}^{n} (\mathbb{Z} \cdot \mathbf{b}_{i})$$

Shortest Vector Problem (SVP $_{\gamma}$)

▶ Given **B**, find (nonzero) $\mathbf{v} \in \mathcal{L}$ within γ factor of shortest.

Absolute Distance Decoding (ADD $_{\beta}$)

▶ Given **B** and target $\mathbf{t} \in \mathbb{R}^n$, find some $\mathbf{v} \in \mathcal{L}$ within distance β .

SVP_{γ} in the Worst Case

Average-Case

[Ajtai96,...,MicciancioRegev04]:

 ${
m SVP}_{\gamma}$ as hard as random lattice

 $\mathsf{SVP}_{\gamma \cdot n}$ every lattice

SVP_{γ} in the Worst Case

Average-Case

[Ajtai96,...,MicciancioRegev04]:

 ADD_{eta} as hard as $\mathsf{SVP}_{eta \cdot n}$ random lattice as hard as every lattice

Decoding hard on average, too

SVP_{\gamma} in the Worst Case

Average-Case

► [Ajtai96,...,MicciancioRegev04]:

$$\mathsf{ADD}_{\beta}$$
 as hard as $\mathsf{SVP}_{\beta \cdot n}$ every lattice

Decoding hard on average, too

Bottom Line

 \blacktriangleright On random lattices, SVP $_{\gamma}$ and ADD $_{\beta}$ seem exponentially hard

► "Hard" (public) verification basis B, short (secret) signing basis S

- "Hard" (public) verification basis B, short (secret) signing basis S
- Sign with "nearest-plane" algorithm [Babai]

- "Hard" (public) verification basis B, short (secret) signing basis S
- Sign with "nearest-plane" algorithm [Babai]

- "Hard" (public) verification basis B, short (secret) signing basis S
- Sign with "nearest-plane" algorithm [Babai]

- "Hard" (public) verification basis B, short (secret) signing basis S
- Sign with "nearest-plane" algorithm [Babai]

- "Hard" (public) verification basis B, short (secret) signing basis S
- Sign with "nearest-plane" algorithm [Babai]

- "Hard" (public) verification basis B, short (secret) signing basis S
- Sign with "nearest-plane" algorithm [Babai]

- "Hard" (public) verification basis B, short (secret) signing basis S
- Sign with "nearest-plane" algorithm [Babai]

- "Hard" (public) verification basis B, short (secret) signing basis S
- Sign with "nearest-plane" algorithm [Babai]

- "Hard" (public) verification basis B, short (secret) signing basis S
- Sign with "nearest-plane" algorithm [Babai]

Issues

- Generating short & hard bases together
 - Ad-hoc, no worst-case hardness

- "Hard" (public) verification basis B, short (secret) signing basis S
- Sign with "nearest-plane" algorithm [Babai]

Issues

- Generating short & hard bases together
 - Ad-hoc, no worst-case hardness
- 2 Secret key leakage
 - Total break after several signatures [NguyenRegev]

"Uniform" in \mathbb{R}^n when std dev \geq shortest basis [Regev,MicciancioRegev]

"Hard" public basis B, short secret basis S [Ajtai99,AP08]

"Hard" public basis B, short secret basis S [Ajtai99,AP08]

▶ Input $v \in \mathcal{L}$, error e

- "Hard" public basis B, short secret basis S [Ajtai99,AP08]
- ▶ Input $v \in \mathcal{L}$, error e

• [[[[[[•

- "Hard" public basis B, short secret basis S [Ajtai99,AP08]
- ▶ Input $v \in \mathcal{L}$, error e
- Uniform output t

- "Hard" public basis B, short secret basis S [Ajtai99,AP08]
- ▶ Input $\mathbf{v} \in \mathcal{L}$, error \mathbf{e}
- Uniform output t

- "Hard" public basis B, short secret basis S [Ajtai99,AP08]
- ▶ Input $\mathbf{v} \in \mathcal{L}$, error \mathbf{e}
- Uniform output t

crete Gaussian" Da

► Conditional distribution is "discrete Gaussian" $D_{\mathcal{L},\mathbf{t}}$

Analysis tool in [Ban,AR,Reg,MR,Pei,...]

- ▶ Given basis S, samples $D_{\mathcal{L},\mathbf{t}}$ for any std dev $\geq \max \|\mathbf{s}_i\|$
 - Leaks nothing about S!

- ▶ Given basis S, samples $D_{\mathcal{L},\mathbf{t}}$ for any std dev $\geq \max \|\mathbf{s}_i\|$
 - Leaks nothing about S!
- Randomized nearest-plane [Babai,Klein]

- ▶ Given basis S, samples $D_{\mathcal{L},\mathbf{t}}$ for any std dev $\geq \max \|\mathbf{s}_i\|$
 - Leaks nothing about S!
- Randomized nearest-plane [Babai,Klein]

- ▶ Given basis S, samples $D_{\mathcal{L},\mathbf{t}}$ for any std dev $\geq \max \|\mathbf{s}_i\|$
 - Leaks nothing about S!
- Randomized nearest-plane [Babai,Klein]

- ▶ Given basis S, samples $D_{\mathcal{L},\mathbf{t}}$ for any std dev $\geq \max \|\mathbf{s}_i\|$
 - Leaks nothing about S!
- Randomized nearest-plane [Babai,Klein]

- ▶ Given basis S, samples $D_{\mathcal{L},\mathbf{t}}$ for any std dev $\geq \max \|\mathbf{s}_i\|$
 - Leaks nothing about S!
- Randomized nearest-plane [Babai,Klein]

[Klein]: std dev $\leq \min \|\tilde{\mathbf{s}}_i\| \Rightarrow$ solves CVP variant

- ▶ Given basis S, samples $D_{\mathcal{L},\mathbf{t}}$ for any std dev $\geq \max \|\mathbf{s}_i\|$
 - Leaks nothing about S!
- Randomized nearest-plane [Babai,Klein]

[Klein]: std dev $\leq \min \|\tilde{\mathbf{s}_i}\| \Rightarrow$ solves CVP variant

[This work]: std dev $\geq \max \|\tilde{\mathbf{s}_i}\| \Rightarrow \text{samples } D_{\mathcal{L},\mathbf{t}} \text{ exactly}^*$

Proposed by [Shamir84]:

- Proposed by [Shamir84]:
 - Master keys mpk, msk

- Proposed by [Shamir84]:
 - Master keys mpk, msk
 - With mpk: encrypt to ID "Alice" or "Bob" or . . .

- Proposed by [Shamir84]:
 - Master keys mpk, msk
 - With mpk: encrypt to ID "Alice" or "Bob" or . . .
 - With msk: extract sk_{Alice} or sk_{Bob} or . . .

- Proposed by [Shamir84]:
 - Master keys mpk, msk
 - With mpk: encrypt to ID "Alice" or "Bob" or . . .
 - With msk: extract sk_{Alice} or sk_{Bob} or . . .
- [BonehFranklin01]: bilinear pairings

- Proposed by [Shamir84]:
 - Master keys mpk, msk
 - With mpk: encrypt to ID "Alice" or "Bob" or . . .
 - With msk: extract sk_{Alice} or sk_{Bob} or . . .
- [BonehFranklin01]: bilinear pairings
- ▶ [Cocks01]: quadratic residuosity (mod N = pq)

- Proposed by [Shamir84]:
 - Master keys mpk, msk
 - With mpk: encrypt to ID "Alice" or "Bob" or . . .
 - With msk: extract sk_{Alice} or sk_{Bob} or . . .
- [BonehFranklin01]: bilinear pairings
- ▶ [Cocks01]: quadratic residuosity (mod N = pq)

	Lattice-based	QR-based [Cocks,BGH]
mpk	random lattice	$random\; N = p \cdot q$

- Proposed by [Shamir84]:
 - Master keys mpk, msk
 - With mpk: encrypt to ID "Alice" or "Bob" or . . .
 - With msk: extract sk_{Alice} or sk_{Bob} or . . .
- [BonehFranklin01]: bilinear pairings
- ► [Cocks01]: quadratic residuosity (mod N = pq)

	Lattice-based	QR-based [Cocks,BGH]
mpk	random lattice	$random\ N = p \cdot q$
msk	trapdoor basis	trapdoor p,q

- Proposed by [Shamir84]:
 - Master keys mpk, msk
 - With mpk: encrypt to ID "Alice" or "Bob" or . . .
 - With msk: extract sk_{Alice} or sk_{Bob} or . . .
- [BonehFranklin01]: bilinear pairings
- ▶ [Cocks01]: quadratic residuosity (mod N = pq)

	Lattice-based	QR-based [Cocks,BGH]
mpk	random lattice	random $N = p \cdot q$
msk	trapdoor basis	trapdoor p,q
Hash(ID)	uniform $\mathbf{y} \in \mathbb{R}^n$	uniform $y \in \mathit{QR}_N$

- Proposed by [Shamir84]:
 - Master keys mpk, msk
 - With mpk: encrypt to ID "Alice" or "Bob" or . . .
 - With msk: extract skAlice or skBob or ...
- [BonehFranklin01]: bilinear pairings
- ▶ [Cocks01]: quadratic residuosity (mod N = pq)

	Lattice-based	QR-based [Cocks,BGH]
mpk	random lattice	$random\ N = p \cdot q$
msk	trapdoor basis	trapdoor p,q
Hash(ID)	uniform $\mathbf{y} \in \mathbb{R}^n$	uniform $y \in QR_N$
sk_{ID}	$random \in f^{-1}(\mathbf{y})$	random \sqrt{y}

▶ For $\mathbf{v} \in \mathcal{L}^*$: $\langle \mathbf{v}, pk \rangle = \langle \mathbf{v}, sk \rangle \mod 1$

- For $\mathbf{v} \in \mathcal{L}^*$: $\langle \mathbf{v}, pk \rangle = \langle \mathbf{v}, sk \rangle \mod 1$
- ► For $\mathbf{w} \approx \mathbf{v}$: $\langle \mathbf{v}, pk \rangle \approx \langle \mathbf{w}, sk \rangle \mod 1$ "quasi"-agreement

- ▶ For $\mathbf{v} \in \mathcal{L}^*$: $\langle \mathbf{v}, pk \rangle = \langle \mathbf{v}, sk \rangle \mod 1$
- For $\mathbf{w} \approx \mathbf{v}$: $\langle \mathbf{v}, pk \rangle \approx \langle \mathbf{w}, sk \rangle \mod 1$ "quasi"-agreement
- Security: decoding w, a.k.a. "learning with errors"
 - Quantum worst-case connection [Regev]
 - Now: classical worst-case hardness [P]

1 Tighter sampling for random lattices?

- 1 Tighter sampling for random lattices?
- 2 Practical "plain model" signatures ?

- 1 Tighter sampling for random lattices?
- 2 Practical "plain model" signatures ?
- 3 Relate factoring to lattice problems?

- 1 Tighter sampling for random lattices?
- 2 Practical "plain model" signatures ?
- 3 Relate factoring to lattice problems?
- 4 "Essence" of quantum-immune crypto?

- 1 Tighter sampling for random lattices?
- 2 Practical "plain model" signatures?
- 3 Relate factoring to lattice problems?
- 4 "Essence" of quantum-immune crypto?

Thanks!

 \bigwedge

(Artwork courtesy of xkcd.org)