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* FHE [G'09,vDGHV'10,SV'11,BV'11ab,BGV’'12,B’12,. ..
* Multi-linear maps [GGH'13,CLT'13,...

]
]
]
]
]

» Most modern schemes are based on the SIS/LWE problems [A'96,R'05]

and/or their ring variants [M'02,PR'06,LM'06,LPR’10].
X SIS/LWE aren't quite practical: Q(n?) key sizes and runtimes
v Ring-based primitives are! O(n) complexity

)
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az < Ry , ba=as-s+er € Ry

» Error ("noise”) terms e(X) € R are “short.” What could this mean?

n—1
G(X) :Zerj — (60,61,...,6n_1) ezZ™.
=0

» Applications need (+, -)-combinations of errors to remain short,
so we can “decode” them modulo ¢. Significantly affects security.

le+ell<lel+lel Me-e'll < vn-llell - €.

(“Expansion factor” y/n is worst-case, often quite loose.)
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X They are rare — might make keys unnecessarily large in practice.
XX Many schemes cannot use them at all!
E.g., SIMD homom. encryption [SV'11] and applications [GHS'12abc]

» The mth cyclotomic ring: ‘R =Z[X]/Pm(X) ‘ where

0, (X) = [] (X —wl) €ZIX], wn=eVmec.
i€z,
Note: ®,,(X) divides (X™ — 1), has degree n = p(m) = deg(P,,).
“Power” Z-basis of Ris {1, X, X? ... X""1}.
> Examples: ®ori1(X) =14 X2, ®g(X) =1+ X3+ X6,

v’ Ring-LWE (appropriately defined) is hard in any cyclotomic [LPR'10]
... assuming problems on ideal lattices are quantum-hard in the worst case.
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The Form of Cyclotomic Polynomials

» For prime p,

e—1

Pp(X)=14+X+X*+ -+ XP1 and ®pe(X) = Op(XP" ).

Mod-®, (X) reduction is efficient; small(ish) expansion factor.
But still not enough: e.g., SIMD FHE likes m =3-7-19 - 73.
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The Form of Cyclotomic Polynomials

» For prime p,

Op(X) =14+ X+ X2+ + X1 and Dy (X) = Bp(XP ).
Mod-®, (X) reduction is efficient; small(ish) expansion factor.
But still not enough: e.g., SIMD FHE likes m =3-7-19 - 73.
» What about non-prime power m?
X P (X)=1-X+ X3 - X4+ X6 - X8+ X% X! 4+ x12
XX ®105(X): degree 48; 33 monomials with {—2, —1, 1}-coefficients
XXX ®3.7.19.73(X): highly irregular; large coeffs

X lrregular ®,,(X) induces cumbersome, slower operations modulo ®,,(X)

X Large expansion factors — up to super-polynomial n®(!) [Erdés'46]

X Provable & concrete security also degrade with expansion factor: pay twice!

5/12



Our Contributions

A toolkit of simple, fast algorithms and tight error analyses
for working with ring-LWE in arbitrary cyclotomics

6/12



Our Contributions

A toolkit of simple, fast algorithms and tight error analyses
for working with ring-LWE in arbitrary cyclotomics J

Fast Algorithms: ring operations (4, -); noise generation & decoding;
conversions among the best representations for each task.

= Runtimes: O(n) per prime divisor of m, or O(nlogn).

12



Our Contributions

A toolkit of simple, fast algorithms and tight error analyses
for working with ring-LWE in arbitrary cyclotomics J

Fast Algorithms: ring operations (4, -); noise generation & decoding;
conversions among the best representations for each task.

= Runtimes: O(n) per prime divisor of m, or O(nlogn).

Tight Analysis: same noise growth and worst-case hardness in
all cyclotomics; optimal noise tolerance in decoding.
—> No dependence on the form of m.

12



Our Contributions

A toolkit of simple, fast algorithms and tight error analyses
for working with ring-LWE in arbitrary cyclotomics J

Fast Algorithms: ring operations (4, -); noise generation & decoding;
conversions among the best representations for each task.
= Runtimes: O(n) per prime divisor of m, or O(nlogn).

Tight Analysis: same noise growth and worst-case hardness in

all cyclotomics; optimal noise tolerance in decoding.
—> No dependence on the form of m.

Key Ideas

@ In algorithms, use tensorial representations of ring elements.
v No reduction modulo ®,,(X) — in fact, don't need ®,,,(X) at all!

6/12



Our Contributions

A toolkit of simple, fast algorithms and tight error analyses
for working with ring-LWE in arbitrary cyclotomics J

Fast Algorithms: ring operations (4, -); noise generation & decoding;
conversions among the best representations for each task.
= Runtimes: O(n) per prime divisor of m, or O(nlogn).

Tight Analysis: same noise growth and worst-case hardness in
all cyclotomics; optimal noise tolerance in decoding.
—> No dependence on the form of m.

Key Ideas

@ In algorithms, use tensorial representations of ring elements.
v No reduction modulo ®,,(X) — in fact, don't need ®,,,(X) at all!

® In analysis, use canonical embedding to define geometry.

6/12



Our Contributions

A toolkit of simple, fast algorithms and tight error analyses
for working with ring-LWE in arbitrary cyclotomics

Fast Algorithms: ring operations (4, -); noise generation & decoding;
conversions among the best representations for each task.
= Runtimes: O(n) per prime divisor of m, or O(nlogn).

Tight Analysis: same noise growth and worst-case hardness in
all cyclotomics; optimal noise tolerance in decoding.
—> No dependence on the form of m.

Key Ideas

@ In algorithms, use tensorial representations of ring elements.
v No reduction modulo ®,,(X) — in fact, don't need ®,,,(X) at all!

® In analysis, use canonical embedding to define geometry.

© Use decoding basis of dual ideal RY for noise generation & decoding.
v/ Corresponds to the “true” definition of ring-LWE.
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> Recall: ®,(X) =1+ X + -+ XL and e (X) = @, (X7 ).

Ancient Theorem [Kummer, 1840s]

» Let m = [[,m, be the prime-power factorization of m.

Then the mth cyclotomic ring R = Z[X]/®,,,(X) is isomorphic to the
tensor product of all the myth cyclotomic rings:

R2Z[X1, Xo, .. ]/ (@, (X1), By (X2), ...

Isomorphism identifies X, with X"/

The Powerful Basis
> It's the natural Z-basis {X7' XJ*...} = ®£{Xg‘}, 0 < jo < p(my).

> It is not the “power” basis {1, X, X2,..., X?(™ =1} of Z[X]/®,(X).
E.g., form =15it's {X/} for j € {0,3,5,6,8,9,11, 14}.
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Tensorial decomposition with the powerful basis is
algebraically, computationally, and geometrically preferable to
Z[X]/®p(X) with the power basis.

Algebra: Exposes fine-grained structure of the ring and its
relationships with other cyclotomic rings.
E.g.: has applications in “ring-switching” [GHPS'12] and new
bootstrapping [AP'13] algorithms for FHE.

Algorithms: Efficiently reduces all operations to the prime-power case, by
dealing with each X, independently.

E.g.: simple, fast conversions to/from “evaluation (CRT)
representation,” via sequence of prime-power FFTs.

Geometry: Norms, singular values, Gram-Schmidt orthogonalization,
dual basis, etc. all behave well under tensoring.

E.g.. powerful basis is better-conditioned than power basis.
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P> Geometrically, associating elements with their coeff vectors is strange:
X7 +«— (0,...,0,1,0,...,0), (j=0,...,p—2)
XPt o (=1,-1,...,-1)
We want a basis-independent geometry.
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Define all geometric quantities using o: e.g., ||el|, := ||o(e)]|5-

Nice Features of the Canonical Embedding

v || X7, =1and || X7|,=+/p—1 forall 5.
v/ Under o, both 4 and - are coordinate-wise: o(a-b) = o(a) ® o(b).
Makes expansion very easy to analyze: e.g., ||a-bll, < |la| - [b]ls-

v Ring-LWE is provably hard with (spherical) Gaussian noise under o.

o2
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We call {d;} the decoding basis. (It also has a tensor form. . .)

> RV is a (fractional) ideal, and pRY C R C RY, with pRY ~ R.
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Dual Ideal RV and Decoding Basis

» In “true” ring-LWE, errors are Gaussian over R".

» In decryption, we need to recover e € R, given € = e mod qR".
How: represent € in decoding basis with Z,-coeffs, then “lift" to Z.

» For short e € RY (under o), coeffs in decoding basis {d;} are small:
e=) ejd; (6 €Z) = lejl = [{o(e), o(X7))] < |lell - v/n.

> Moreover, |e;| are optimally small given “density” of R,
because powerful basis {X7} is optimally short given density of R.

» By contrast, such optimal decoding is not possible for R/qR,
because R lacks optimally short elements for its density.

> Bottom line: using R" is actually beneficial in applications!

(And “advanced” applications benefit even more from its algebraic properties.)
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