
Public-Key Cryptosystems
from the

Worst-Case Shortest Vector Problem

Chris Peikert
SRI→ Georgia Tech

Impagliazzo’s World Workshop

1 / 16

This Talk

1 State of Lattice-Based Cryptography

2 Main Result: Public-Key Encryption based on GapSVP

3 Proof & Future Work

2 / 16

Shortest Vector Problem(s)

A lattice L ⊂ Rn having basis B = {b1, . . . ,bn} is:

L =
n∑

i=1

(Z · bi)

λ

b1

b2

Shortest Vector Problem (γ-GapSVP)
I Given B, decide: λ ≤ 1 or λ > γ ?

Unique SVP (γ-uSVP)
I Given B with ‘γ-unique’ shortest vector, find it.

3 / 16

Shortest Vector Problem(s)

A lattice L ⊂ Rn having basis B = {b1, . . . ,bn} is:

L =
n∑

i=1

(Z · bi)

λ

b1

b2

Shortest Vector Problem (γ-GapSVP)
I Given B, decide: λ ≤ 1 or λ > γ ?

Unique SVP (γ-uSVP)
I Given B with ‘γ-unique’ shortest vector, find it.

3 / 16

Shortest Vector Problem(s)

A lattice L ⊂ Rn having basis B = {b1, . . . ,bn} is:

L =
n∑

i=1

(Z · bi) λ

b1

b2

Shortest Vector Problem (γ-GapSVP)
I Given B, decide: λ ≤ 1 or λ > γ ?

Unique SVP (γ-uSVP)
I Given B with ‘γ-unique’ shortest vector, find it.

3 / 16

Shortest Vector Problem(s)

A lattice L ⊂ Rn having basis B = {b1, . . . ,bn} is:

L =
n∑

i=1

(Z · bi)

γ · λ
λ

b1

b2

Shortest Vector Problem (γ-GapSVP)
I Given B, decide: λ ≤ 1 or λ > γ ?

Unique SVP (γ-uSVP)
I Given B with ‘γ-unique’ shortest vector, find it.

3 / 16

Worst-Case Complexity

GapSVP

γ = 2(log n)1−ε

NP-hard∗

[Ajt98,. . . ,HR07]

√
n

∈ coNP
[GG98,AR05]

n

(some) crypto
[Ajt96,. . . ,

MR04,Reg05]

2∼n

∈ P
[LLL82,Sch87]

I For γ = poly(n), best algorithm is 2n time & space [AKS01]

uSVP

γ = ??

NP-hard

4
√

n

∈ coAM
[Cai98]

n1.5

crypto
[AD97/07,Reg03]

4 / 16

Worst-Case Complexity

GapSVP

γ = 2(log n)1−ε

NP-hard∗

[Ajt98,. . . ,HR07]

√
n

∈ coNP
[GG98,AR05]

n

(some) crypto
[Ajt96,. . . ,

MR04,Reg05]

2∼n

∈ P
[LLL82,Sch87]

I For γ = poly(n), best algorithm is 2n time & space [AKS01]

uSVP

γ = ??

NP-hard

4
√

n

∈ coAM
[Cai98]

n1.5

crypto
[AD97/07,Reg03]

4 / 16

Worst-Case Complexity

GapSVP

γ = 2(log n)1−ε

NP-hard∗

[Ajt98,. . . ,HR07]

√
n

∈ coNP
[GG98,AR05]

n

(some) crypto
[Ajt96,. . . ,

MR04,Reg05]

2∼n

∈ P
[LLL82,Sch87]

I For γ = poly(n), best algorithm is 2n time & space [AKS01]

uSVP

γ = ??

NP-hard

4
√

n

∈ coAM
[Cai98]

n1.5

crypto
[AD97/07,Reg03]

4 / 16

Taxonomy of Lattice-Based Crypto
‘minicrypt’

OWF [Ajt96,. . .]

ID schemes
[MV03,Lyu08]

Sigs
[LM08,GPV08]

‘CRYPTOMANIA’

PKE [AD97,Reg03,Reg05]

CCA [PW08]

ID-based [GPV08]

(Obl. tran. [PVW08], leakage [AGV09],

homom [G09], KDM [ACPS09], HIBE [P09])

+ GapSVP etc. hard + uSVP hard

+ GapSVP etc. quantum-hard

5 / 16

Taxonomy of Lattice-Based Crypto
‘minicrypt’

OWF [Ajt96,. . .]

ID schemes
[MV03,Lyu08]

Sigs
[LM08,GPV08]

‘CRYPTOMANIA’

PKE [AD97,Reg03,Reg05]

CCA [PW08]

ID-based [GPV08]

(Obl. tran. [PVW08], leakage [AGV09],

homom [G09], KDM [ACPS09], HIBE [P09])

+ GapSVP etc. hard

+ uSVP hard

+ GapSVP etc. quantum-hard

5 / 16

Taxonomy of Lattice-Based Crypto
‘minicrypt’

OWF [Ajt96,. . .]

ID schemes
[MV03,Lyu08]

Sigs
[LM08,GPV08]

‘CRYPTOMANIA’

PKE [AD97,Reg03,Reg05]

CCA [PW08]

ID-based [GPV08]

(Obl. tran. [PVW08], leakage [AGV09],

homom [G09], KDM [ACPS09], HIBE [P09])

+ GapSVP etc. hard

+ uSVP hard

+ GapSVP etc. quantum-hard

5 / 16

Taxonomy of Lattice-Based Crypto
‘minicrypt’

OWF [Ajt96,. . .]

ID schemes
[MV03,Lyu08]

Sigs
[LM08,GPV08]

‘CRYPTOMANIA’

PKE [AD97,Reg03,Reg05]

CCA [PW08]

ID-based [GPV08]

(Obl. tran. [PVW08], leakage [AGV09],

homom [G09], KDM [ACPS09], HIBE [P09])

+ GapSVP etc. hard

+ uSVP hard

+ GapSVP etc. quantum-hard

5 / 16

Taxonomy of Lattice-Based Crypto
‘minicrypt’

OWF [Ajt96,. . .]

ID schemes
[MV03,Lyu08]

Sigs
[LM08,GPV08]

‘CRYPTOMANIA’

PKE [AD97,Reg03,Reg05]

CCA [PW08]

ID-based [GPV08]

(Obl. tran. [PVW08], leakage [AGV09],

homom [G09], KDM [ACPS09], HIBE [P09])

+ GapSVP etc. hard + uSVP hard

+ GapSVP etc. quantum-hard
5 / 16

Learning With Errors
I Generalizes ‘learning parity with noise’: dim n, modulus q ≥ 2

I Search: find s ∈ Zn
q given ‘noisy random inner products’

a1 , b1 = 〈a1 , s〉+ x1 mod q

a2 , b2 = 〈a2 , s〉+ x2 mod q
...

Uniform ai ∈ Zn
q , Gaussian errors xi

α · q ≥
√

n
I Decision: distinguish from uniform (ai , bi)

State of the Art

(n/α)-GapSVP etc. ≤

quantum
[Reg05]

search-LWE ≤

prime q = poly(n)
[BFKL94,R05]

decision-LWE ≤

[R05,PW08,GPV08,
PVW08,AGV09,ACPS09,. . .]

crypto

6 / 16

Learning With Errors
I Generalizes ‘learning parity with noise’: dim n, modulus q ≥ 2

I Search: find s ∈ Zn
q given ‘noisy random inner products’

a1 , b1 ≈ 〈a1 , s〉 mod q

a2 , b2 ≈ 〈a2 , s〉 mod q
...

Uniform ai ∈ Zn
q , Gaussian errors xi

α · q ≥
√

n
I Decision: distinguish from uniform (ai , bi)

State of the Art

(n/α)-GapSVP etc. ≤

quantum
[Reg05]

search-LWE ≤

prime q = poly(n)
[BFKL94,R05]

decision-LWE ≤

[R05,PW08,GPV08,
PVW08,AGV09,ACPS09,. . .]

crypto

6 / 16

Learning With Errors
I Generalizes ‘learning parity with noise’: dim n, modulus q ≥ 2

I Search: find s ∈ Zn
q given ‘noisy random inner products’

a1 , b1 = 〈a1 , s〉+ x1 mod q

a2 , b2 = 〈a2 , s〉+ x2 mod q
...

Uniform ai ∈ Zn
q , Gaussian errors xi

α · q ≥
√

n

I Decision: distinguish from uniform (ai , bi)

State of the Art

(n/α)-GapSVP etc. ≤

quantum
[Reg05]

search-LWE ≤

prime q = poly(n)
[BFKL94,R05]

decision-LWE ≤

[R05,PW08,GPV08,
PVW08,AGV09,ACPS09,. . .]

crypto

6 / 16

Learning With Errors
I Generalizes ‘learning parity with noise’: dim n, modulus q ≥ 2

I Search: find s ∈ Zn
q given ‘noisy random inner products’

a1 , b1 = 〈a1 , s〉+ x1 mod q

a2 , b2 = 〈a2 , s〉+ x2 mod q
...

Uniform ai ∈ Zn
q , Gaussian errors xi

α · q ≥
√

n
I Decision: distinguish from uniform (ai , bi)

State of the Art

(n/α)-GapSVP etc. ≤

quantum
[Reg05]

search-LWE ≤

prime q = poly(n)
[BFKL94,R05]

decision-LWE ≤

[R05,PW08,GPV08,
PVW08,AGV09,ACPS09,. . .]

crypto

6 / 16

Learning With Errors
I Generalizes ‘learning parity with noise’: dim n, modulus q ≥ 2

I Search: find s ∈ Zn
q given ‘noisy random inner products’

a1 , b1 = 〈a1 , s〉+ x1 mod q

a2 , b2 = 〈a2 , s〉+ x2 mod q
...

Uniform ai ∈ Zn
q , Gaussian errors xi

α · q ≥
√

n
I Decision: distinguish from uniform (ai , bi)

State of the Art

(n/α)-GapSVP etc. ≤

quantum
[Reg05]

search-LWE ≤

prime q = poly(n)
[BFKL94,R05]

decision-LWE ≤

[R05,PW08,GPV08,
PVW08,AGV09,ACPS09,. . .]

crypto

6 / 16

Our Results

First public-key encryption based on classical GapSVP hardness

1 Classical reduction: GapSVP ≤ Learning With Errors

F Standard (n/α)-GapSVP: large LWE modulus q ≥ 2n

F ‘Improve ζ to (n/α)’-GapSVP: q ≈ ζ [= poly(n)]

2 LWE search = decision for large q [� poly(n)]

⇒ GapSVP-hardness of prior LWE-based crypto [Reg05,. . .]

3 New LWE-based chosen ciphertext-secure encryption

F Much simpler, milder assumption than prior CCA [PW08]

7 / 16

Our Results

First public-key encryption based on classical GapSVP hardness

1 Classical reduction: GapSVP ≤ Learning With Errors

F Standard (n/α)-GapSVP: large LWE modulus q ≥ 2n

F ‘Improve ζ to (n/α)’-GapSVP: q ≈ ζ [= poly(n)]

2 LWE search = decision for large q [� poly(n)]

⇒ GapSVP-hardness of prior LWE-based crypto [Reg05,. . .]

3 New LWE-based chosen ciphertext-secure encryption

F Much simpler, milder assumption than prior CCA [PW08]

7 / 16

Our Results

First public-key encryption based on classical GapSVP hardness

1 Classical reduction: GapSVP ≤ Learning With Errors

F Standard (n/α)-GapSVP: large LWE modulus q ≥ 2n

F ‘Improve ζ to (n/α)’-GapSVP: q ≈ ζ [= poly(n)]

2 LWE search = decision for large q [� poly(n)]

⇒ GapSVP-hardness of prior LWE-based crypto [Reg05,. . .]

3 New LWE-based chosen ciphertext-secure encryption

F Much simpler, milder assumption than prior CCA [PW08]

7 / 16

Our Results

First public-key encryption based on classical GapSVP hardness

1 Classical reduction: GapSVP ≤ Learning With Errors

F Standard (n/α)-GapSVP: large LWE modulus q ≥ 2n

F ‘Improve ζ to (n/α)’-GapSVP: q ≈ ζ [= poly(n)]

2 LWE search = decision for large q [� poly(n)]

⇒ GapSVP-hardness of prior LWE-based crypto [Reg05,. . .]

3 New LWE-based chosen ciphertext-secure encryption

F Much simpler, milder assumption than prior CCA [PW08]

7 / 16

Our Results

First public-key encryption based on classical GapSVP hardness

1 Classical reduction: GapSVP ≤ Learning With Errors

F Standard (n/α)-GapSVP: large LWE modulus q ≥ 2n

F ‘Improve ζ to (n/α)’-GapSVP: q ≈ ζ [= poly(n)]

2 LWE search = decision for large q [� poly(n)]

⇒ GapSVP-hardness of prior LWE-based crypto [Reg05,. . .]

3 New LWE-based chosen ciphertext-secure encryption

F Much simpler, milder assumption than prior CCA [PW08]

7 / 16

Our Results

First public-key encryption based on classical GapSVP hardness

1 Classical reduction: GapSVP ≤ Learning With Errors

F Standard (n/α)-GapSVP: large LWE modulus q ≥ 2n

F ‘Improve ζ to (n/α)’-GapSVP: q ≈ ζ [= poly(n)]

2 LWE search = decision for large q [� poly(n)]

⇒ GapSVP-hardness of prior LWE-based crypto [Reg05,. . .]

3 New LWE-based chosen ciphertext-secure encryption

F Much simpler, milder assumption than prior CCA [PW08]

7 / 16

[Regev05] Reduction to LWE

BDD

LWE

LWE

BDD on L:
d � λ/2

L∗

classical
8 / 16

[Regev05] Reduction to LWE

BDD BDD

LWE LWE

BDD on L:
d � λ/2

L∗ L∗

quantum

classical

classical

8 / 16

[Regev05] Reduction to LWE

BDD BDD

LWE LWE

BDD on L:
d � λ/2

L∗ L∗

quantum

quantum

classical

classical

8 / 16

[Regev05] Reduction to LWE

BDD BDD

LWE LWE

BDD on L:
d � λ/2

L∗ L∗

quantum

quantum

classical

classical

GapSVP
SIVP

8 / 16

Why Quantum?
I “Obvious” answer: iterative step

BDD
on L

L∗
quantum FT

I Another answer: to make use of BDD/LWE oracle

1 Choose some x ∈ L

2 Perturb to y ≈ x

3 Invoke oracle on y

4 Returns x —
we already knew that!

4 Quantum can
“uncompute” x

x y BDD
(LWE)

y

x

9 / 16

Why Quantum?
I “Obvious” answer: iterative step

BDD
on L

L∗
quantum FT

I Another answer: to make use of BDD/LWE oracle

1 Choose some x ∈ L

2 Perturb to y ≈ x

3 Invoke oracle on y

4 Returns x —
we already knew that!

4 Quantum can
“uncompute” x

x y BDD
(LWE)

y

x

9 / 16

Why Quantum?
I “Obvious” answer: iterative step

BDD
on L

L∗
quantum FT

I Another answer: to make use of BDD/LWE oracle

1 Choose some x ∈ L

2 Perturb to y ≈ x

3 Invoke oracle on y

4 Returns x —
we already knew that!

4 Quantum can
“uncompute” x

x y BDD
(LWE)

y

x

9 / 16

Why Quantum?
I “Obvious” answer: iterative step

BDD
on L

L∗
quantum FT

I Another answer: to make use of BDD/LWE oracle

1 Choose some x ∈ L

2 Perturb to y ≈ x

3 Invoke oracle on y

4 Returns x —
we already knew that!

4 Quantum can
“uncompute” x

x y BDD
(LWE)

y

x

9 / 16

Our Approach
New way of solving GapSVP in a reduction

“The Usual”

x y

BDD
(LWE)

x

y

IMAGINE

x y

BDD
(LWE)

??

y

Illegal BDD instance
⇓

Incorrect (& unknown!)
LWE distribution

SO WHAT!

When λ� d,
oracle cannot guess x

⇓
Distinguishes large λ

from small

I View as [GoldGold98] AM proof between reduction and oracle

10 / 16

Our Approach
New way of solving GapSVP in a reduction

“The Usual”

x y

BDD
(LWE)

x

y

IMAGINE

x y

BDD
(LWE)

??

y

Illegal BDD instance
⇓

Incorrect (& unknown!)
LWE distribution

SO WHAT!

When λ� d,
oracle cannot guess x

⇓
Distinguishes large λ

from small

I View as [GoldGold98] AM proof between reduction and oracle

10 / 16

Our Approach
New way of solving GapSVP in a reduction

“The Usual”

x y

BDD
(LWE)

x

y

IMAGINE

x y

BDD
(LWE)

??

y

Illegal BDD instance
⇓

Incorrect (& unknown!)
LWE distribution

SO WHAT!

When λ� d,
oracle cannot guess x

⇓
Distinguishes large λ

from small

I View as [GoldGold98] AM proof between reduction and oracle

10 / 16

Our Approach
New way of solving GapSVP in a reduction

“The Usual”

x y

BDD
(LWE)

x

y

IMAGINE

x y

BDD
(LWE)

??

y

Illegal BDD instance
⇓

Incorrect (& unknown!)
LWE distribution

SO WHAT!

When λ� d,
oracle cannot guess x

⇓
Distinguishes large λ

from small

I View as [GoldGold98] AM proof between reduction and oracle

10 / 16

Our Approach
New way of solving GapSVP in a reduction

“The Usual”

x y

BDD
(LWE)

x

y

IMAGINE

x y

BDD
(LWE)

??

y

Illegal BDD instance
⇓

Incorrect (& unknown!)
LWE distribution

SO WHAT!

When λ� d,
oracle cannot guess x

⇓
Distinguishes large λ

from small

I View as [GoldGold98] AM proof between reduction and oracle

10 / 16

Our Approach
New way of solving GapSVP in a reduction

“The Usual”

x y

BDD
(LWE)

x

y

IMAGINE

x y

BDD
(LWE)

??

y

Illegal BDD instance
⇓

Incorrect (& unknown!)
LWE distribution

SO WHAT!

When λ� d,
oracle cannot guess x

⇓
Distinguishes large λ

from small

I View as [GoldGold98] AM proof between reduction and oracle

10 / 16

Technical Obstacles

1 What about in BDD → LWE reduction?
(No quantum allowed!)

F Use [GPV08] sampling algorithm with ‘best available’ basis for L∗.

‘ζ-good’ basis⇒ LWE modulus q ≈ ζ.

(LLL-reduced basis is 2n-good.)

F ‘One shot’ (non-iterative) reduction

2 LWE search / decision equivalence?
(Normally requires prime q = poly(n). . .)

Option 1: crypto directly based on search-LWE

Option 2: search = decision for ‘smooth’ q and Gaussian error

11 / 16

Technical Obstacles

1 What about in BDD → LWE reduction?
(No quantum allowed!)

F Use [GPV08] sampling algorithm with ‘best available’ basis for L∗.

‘ζ-good’ basis⇒ LWE modulus q ≈ ζ.

(LLL-reduced basis is 2n-good.)

F ‘One shot’ (non-iterative) reduction

2 LWE search / decision equivalence?
(Normally requires prime q = poly(n). . .)

Option 1: crypto directly based on search-LWE

Option 2: search = decision for ‘smooth’ q and Gaussian error

11 / 16

Technical Obstacles

1 What about in BDD → LWE reduction?
(No quantum allowed!)

F Use [GPV08] sampling algorithm with ‘best available’ basis for L∗.

‘ζ-good’ basis⇒ LWE modulus q ≈ ζ.

(LLL-reduced basis is 2n-good.)

F ‘One shot’ (non-iterative) reduction

2 LWE search / decision equivalence?
(Normally requires prime q = poly(n). . .)

Option 1: crypto directly based on search-LWE

Option 2: search = decision for ‘smooth’ q and Gaussian error

11 / 16

Technical Obstacles

1 What about in BDD → LWE reduction?
(No quantum allowed!)

F Use [GPV08] sampling algorithm with ‘best available’ basis for L∗.

‘ζ-good’ basis⇒ LWE modulus q ≈ ζ.

(LLL-reduced basis is 2n-good.)

F ‘One shot’ (non-iterative) reduction

2 LWE search / decision equivalence?
(Normally requires prime q = poly(n). . .)

Option 1: crypto directly based on search-LWE

Option 2: search = decision for ‘smooth’ q and Gaussian error

11 / 16

Technical Obstacles

1 What about in BDD → LWE reduction?
(No quantum allowed!)

F Use [GPV08] sampling algorithm with ‘best available’ basis for L∗.

‘ζ-good’ basis⇒ LWE modulus q ≈ ζ.

(LLL-reduced basis is 2n-good.)

F ‘One shot’ (non-iterative) reduction

2 LWE search / decision equivalence?
(Normally requires prime q = poly(n). . .)

Option 1: crypto directly based on search-LWE

Option 2: search = decision for ‘smooth’ q and Gaussian error

11 / 16

Technical Obstacles

1 What about in BDD → LWE reduction?
(No quantum allowed!)

F Use [GPV08] sampling algorithm with ‘best available’ basis for L∗.

‘ζ-good’ basis⇒ LWE modulus q ≈ ζ.

(LLL-reduced basis is 2n-good.)

F ‘One shot’ (non-iterative) reduction

2 LWE search / decision equivalence?
(Normally requires prime q = poly(n). . .)

Option 1: crypto directly based on search-LWE

Option 2: search = decision for ‘smooth’ q and Gaussian error

11 / 16

Details of Reduction
Given any (“ζ-good”) B:

1 Choose e←
√

n · Bn

2 Let y = e mod B
3 (Get some x ∈ L from LWE oracle somehow. . .)
4 If y− x = e, output “large,” else output “small”

e

Analysis for λ ≤ 1:

Let 0 6= v ∈ L be shortest.

(
√

n · Bn) ∩ (v +
√

n · Bn) is a noticeable
fraction of

√
n · Bn.

⇒ Step 3 (no matter what it is!)
can’t guess original e.

12 / 16

Details of Reduction
Given any (“ζ-good”) B:

1 Choose e←
√

n · Bn

2 Let y = e mod B

3 (Get some x ∈ L from LWE oracle somehow. . .)
4 If y− x = e, output “large,” else output “small”

e
y

Analysis for λ ≤ 1:

Let 0 6= v ∈ L be shortest.

(
√

n · Bn) ∩ (v +
√

n · Bn) is a noticeable
fraction of

√
n · Bn.

⇒ Step 3 (no matter what it is!)
can’t guess original e.

12 / 16

Details of Reduction
Given any (“ζ-good”) B:

1 Choose e←
√

n · Bn

2 Let y = e mod B
3 (Get some x ∈ L from LWE oracle somehow. . .)

4 If y− x = e, output “large,” else output “small”

e
y

Analysis for λ ≤ 1:

Let 0 6= v ∈ L be shortest.

(
√

n · Bn) ∩ (v +
√

n · Bn) is a noticeable
fraction of

√
n · Bn.

⇒ Step 3 (no matter what it is!)
can’t guess original e.

12 / 16

Details of Reduction
Given any (“ζ-good”) B:

1 Choose e←
√

n · Bn

2 Let y = e mod B
3 (Get some x ∈ L from LWE oracle somehow. . .)
4 If y− x = e, output “large,” else output “small”

e
y

Analysis for λ ≤ 1:

Let 0 6= v ∈ L be shortest.

(
√

n · Bn) ∩ (v +
√

n · Bn) is a noticeable
fraction of

√
n · Bn.

⇒ Step 3 (no matter what it is!)
can’t guess original e.

12 / 16

Details of Reduction
Given any (“ζ-good”) B:

1 Choose e←
√

n · Bn

2 Let y = e mod B
3 (Get some x ∈ L from LWE oracle somehow. . .)
4 If y− x = e, output “large,” else output “small”

e
y

Analysis for λ ≤ 1:

Let 0 6= v ∈ L be shortest.

(
√

n · Bn) ∩ (v +
√

n · Bn) is a noticeable
fraction of

√
n · Bn.

⇒ Step 3 (no matter what it is!)
can’t guess original e.

12 / 16

Details of Reduction
Given any (“ζ-good”) B:

1 Choose e←
√

n · Bn

2 Let y = e mod B
3 (Get some x ∈ L from LWE oracle somehow. . .)
4 If y− x = e, output “large,” else output “small”

e
y

Analysis for λ ≤ 1:

Let 0 6= v ∈ L be shortest.

(
√

n · Bn) ∩ (v +
√

n · Bn) is a noticeable
fraction of

√
n · Bn.

⇒ Step 3 (no matter what it is!)
can’t guess original e.

12 / 16

Details of Reduction
Given any (“ζ-good”) B:

1 Choose e←
√

n · Bn

2 Let y = e mod B
3 (Get some x ∈ L from LWE oracle somehow. . .)
4 If y− x = e, output “large,” else output “small”

e
y

Analysis for λ ≤ 1:

Let 0 6= v ∈ L be shortest.

(
√

n · Bn) ∩ (v +
√

n · Bn) is a noticeable
fraction of

√
n · Bn.

⇒ Step 3 (no matter what it is!)
can’t guess original e.

12 / 16

Reduction: Step 3

Given “ζ-good” B and y = x + e for x = Bc ∈ L and ‖e‖ ≤
√

n.

To generate sample (a, b) from As,α for s = c mod q and q = ζ · (
√

n/α):

i Using B∗ = B−t, sample z← DL∗,ζ using [GPV08]

ii Write v = B∗z for z ∈ Zn. Output
a = z mod q and b ' 〈v, y〉 mod q

y
x

Analysis for λ > n/α:

I ζ ≥ q · (
√

n/λ) ⇒ uniform a ∈ Zn
q. [MR04]

I Condition on a. Then b = 〈v, x + e〉

= 〈B∗z,Bc〉+ 〈v, e〉 ' 〈a, s〉+ Dζ·‖e‖ mod q.

Finally, ζ · ‖e‖ ≤ α · q.

13 / 16

Reduction: Step 3

Given “ζ-good” B and y = x + e for x = Bc ∈ L and ‖e‖ ≤
√

n.

To generate sample (a, b) from As,α for s = c mod q and q = ζ · (
√

n/α):

i Using B∗ = B−t, sample z← DL∗,ζ using [GPV08]

ii Write v = B∗z for z ∈ Zn. Output
a = z mod q and b ' 〈v, y〉 mod q

y
x

Analysis for λ > n/α:

I ζ ≥ q · (
√

n/λ) ⇒ uniform a ∈ Zn
q. [MR04]

I Condition on a. Then b = 〈v, x + e〉

= 〈B∗z,Bc〉+ 〈v, e〉 ' 〈a, s〉+ Dζ·‖e‖ mod q.

Finally, ζ · ‖e‖ ≤ α · q.

13 / 16

Reduction: Step 3

Given “ζ-good” B and y = x + e for x = Bc ∈ L and ‖e‖ ≤
√

n.

To generate sample (a, b) from As,α for s = c mod q and q = ζ · (
√

n/α):

i Using B∗ = B−t, sample z← DL∗,ζ using [GPV08]

ii Write v = B∗z for z ∈ Zn. Output
a = z mod q and b ' 〈v, y〉 mod q

y
x

Analysis for λ > n/α:

I ζ ≥ q · (
√

n/λ) ⇒ uniform a ∈ Zn
q. [MR04]

I Condition on a. Then b = 〈v, x + e〉

= 〈B∗z,Bc〉+ 〈v, e〉 ' 〈a, s〉+ Dζ·‖e‖ mod q.

Finally, ζ · ‖e‖ ≤ α · q.

13 / 16

Reduction: Step 3

Given “ζ-good” B and y = x + e for x = Bc ∈ L and ‖e‖ ≤
√

n.

To generate sample (a, b) from As,α for s = c mod q and q = ζ · (
√

n/α):

i Using B∗ = B−t, sample z← DL∗,ζ using [GPV08]

ii Write v = B∗z for z ∈ Zn. Output
a = z mod q and b ' 〈v, y〉 mod q

y
x

Analysis for λ > n/α:

I ζ ≥ q · (
√

n/λ) ⇒ uniform a ∈ Zn
q. [MR04]

I Condition on a. Then b = 〈v, x + e〉

= 〈B∗z,Bc〉+ 〈v, e〉 ' 〈a, s〉+ Dζ·‖e‖ mod q.

Finally, ζ · ‖e‖ ≤ α · q.

13 / 16

Reduction: Step 3

Given “ζ-good” B and y = x + e for x = Bc ∈ L and ‖e‖ ≤
√

n.

To generate sample (a, b) from As,α for s = c mod q and q = ζ · (
√

n/α):

i Using B∗ = B−t, sample z← DL∗,ζ using [GPV08]

ii Write v = B∗z for z ∈ Zn. Output
a = z mod q and b ' 〈v, y〉 mod q

y
x

Analysis for λ > n/α:

I ζ ≥ q · (
√

n/λ) ⇒ uniform a ∈ Zn
q. [MR04]

I Condition on a. Then b = 〈v, x + e〉

= 〈B∗z,Bc〉+ 〈v, e〉 ' 〈a, s〉+ Dζ·‖e‖ mod q.

Finally, ζ · ‖e‖ ≤ α · q.

13 / 16

Reduction: Step 3

Given “ζ-good” B and y = x + e for x = Bc ∈ L and ‖e‖ ≤
√

n.

To generate sample (a, b) from As,α for s = c mod q and q = ζ · (
√

n/α):

i Using B∗ = B−t, sample z← DL∗,ζ using [GPV08]

ii Write v = B∗z for z ∈ Zn. Output
a = z mod q and b ' 〈v, y〉 mod q

y
x

Analysis for λ > n/α:

I ζ ≥ q · (
√

n/λ) ⇒ uniform a ∈ Zn
q. [MR04]

I Condition on a. Then b = 〈v, x + e〉

= 〈B∗z,Bc〉+ 〈v, e〉 ' 〈a, s〉+ Dζ·‖e‖ mod q.

Finally, ζ · ‖e‖ ≤ α · q.

13 / 16

Reducing Search to Decision

I Suppose D distinguishes (a ∈ Zn
q , b ≈ 〈a, s〉)← As,α from uniform.

I Let q = q1 · · · qt [� poly(n)] for distinct (1/α) ≤ qi ≤ poly(n).

Find s: Chinese remaindering & “smoothing”
I To test if s1 = 0 mod qi :

(a , b) 7→ (a + r · e1 , b) for r ← (q/qi) · Zqi

I If yes, maps As,α to itself. If not, maps As,α to uniform ?

Gaussians of width αq ≥ (q/qi) separated by (q/qi)

⇒ uniform∗ by smoothing bounds [MicReg04]

I (NB: for general error dists, hybrid argument over qi’s fails.)

14 / 16

Reducing Search to Decision

I Suppose D distinguishes (a ∈ Zn
q , b ≈ 〈a, s〉)← As,α from uniform.

I Let q = q1 · · · qt [� poly(n)] for distinct (1/α) ≤ qi ≤ poly(n).

Find s: Chinese remaindering & “smoothing”
I To test if s1 = 0 mod qi :

(a , b) 7→ (a + r · e1 , b) for r ← (q/qi) · Zqi

I If yes, maps As,α to itself. If not, maps As,α to uniform ?

Gaussians of width αq ≥ (q/qi) separated by (q/qi)

⇒ uniform∗ by smoothing bounds [MicReg04]

I (NB: for general error dists, hybrid argument over qi’s fails.)

14 / 16

Reducing Search to Decision

I Suppose D distinguishes (a ∈ Zn
q , b ≈ 〈a, s〉)← As,α from uniform.

I Let q = q1 · · · qt [� poly(n)] for distinct (1/α) ≤ qi ≤ poly(n).

Find s: Chinese remaindering & “smoothing”
I To test if s1 = 0 mod qi :

(a , b) 7→ (a + r · e1 , b) for r ← (q/qi) · Zqi

I If yes, maps As,α to itself. If not, maps As,α to uniform ?

Gaussians of width αq ≥ (q/qi) separated by (q/qi)

⇒ uniform∗ by smoothing bounds [MicReg04]

I (NB: for general error dists, hybrid argument over qi’s fails.)

14 / 16

Reducing Search to Decision

I Suppose D distinguishes (a ∈ Zn
q , b ≈ 〈a, s〉)← As,α from uniform.

I Let q = q1 · · · qt [� poly(n)] for distinct (1/α) ≤ qi ≤ poly(n).

Find s: Chinese remaindering & “smoothing”
I To test if s1 = 0 mod qi :

(a , b) 7→ (a + r · e1 , b) for r ← (q/qi) · Zqi

I If yes, maps As,α to itself. If not, maps As,α to uniform ?

Gaussians of width αq ≥ (q/qi) separated by (q/qi)

⇒ uniform∗ by smoothing bounds [MicReg04]

I (NB: for general error dists, hybrid argument over qi’s fails.)

14 / 16

Reducing Search to Decision

I Suppose D distinguishes (a ∈ Zn
q , b ≈ 〈a, s〉)← As,α from uniform.

I Let q = q1 · · · qt [� poly(n)] for distinct (1/α) ≤ qi ≤ poly(n).

Find s: Chinese remaindering & “smoothing”
I To test if s1 = 0 mod qi :

(a , b) 7→ (a + r · e1 , b) for r ← (q/qi) · Zqi

I If yes, maps As,α to itself. If not, maps As,α to uniform !

Gaussians of width αq ≥ (q/qi) separated by (q/qi)

⇒ uniform∗ by smoothing bounds [MicReg04]

I (NB: for general error dists, hybrid argument over qi’s fails.)

14 / 16

Reducing Search to Decision

I Suppose D distinguishes (a ∈ Zn
q , b ≈ 〈a, s〉)← As,α from uniform.

I Let q = q1 · · · qt [� poly(n)] for distinct (1/α) ≤ qi ≤ poly(n).

Find s: Chinese remaindering & “smoothing”
I To test if s1 = 0 mod qi :

(a , b) 7→ (a + r · e1 , b) for r ← (q/qi) · Zqi

I If yes, maps As,α to itself. If not, maps As,α to uniform !

Gaussians of width αq ≥ (q/qi) separated by (q/qi)

⇒ uniform∗ by smoothing bounds [MicReg04]

I (NB: for general error dists, hybrid argument over qi’s fails.)

14 / 16

Chosen-Ciphertext Security

Intuitive Definition [RS91,DDN91,NY95]

I Encryption conceals message, even given decryption oracle

Elementary Construction

I Follows “witness-recovering decryption” approach [PW08].

I Define gA(s, x) = Ats + x.
Can generate A with “trapdoor” for g−1

A [GGH97,Ajt99,AP09]

I Distinguish gA1(s, x1), . . . , gAk(s, xk) [same s!] ⇐⇒ solve LWE
So gA1 , . . . , gAk pseudorandom under ‘correlated inputs’ [RS09]

I Correlation-secure injective TDF⇒ CCA-secure encryption
But much care needed to make gA “chosen-output secure.”

15 / 16

Chosen-Ciphertext Security

Intuitive Definition [RS91,DDN91,NY95]

I Encryption conceals message, even given decryption oracle

Elementary Construction
I Follows “witness-recovering decryption” approach [PW08].

I Define gA(s, x) = Ats + x.
Can generate A with “trapdoor” for g−1

A [GGH97,Ajt99,AP09]

I Distinguish gA1(s, x1), . . . , gAk(s, xk) [same s!] ⇐⇒ solve LWE
So gA1 , . . . , gAk pseudorandom under ‘correlated inputs’ [RS09]

I Correlation-secure injective TDF⇒ CCA-secure encryption
But much care needed to make gA “chosen-output secure.”

15 / 16

Chosen-Ciphertext Security

Intuitive Definition [RS91,DDN91,NY95]

I Encryption conceals message, even given decryption oracle

Elementary Construction
I Follows “witness-recovering decryption” approach [PW08].

I Define gA(s, x) = Ats + x.
Can generate A with “trapdoor” for g−1

A [GGH97,Ajt99,AP09]

I Distinguish gA1(s, x1), . . . , gAk(s, xk) [same s!] ⇐⇒ solve LWE
So gA1 , . . . , gAk pseudorandom under ‘correlated inputs’ [RS09]

I Correlation-secure injective TDF⇒ CCA-secure encryption
But much care needed to make gA “chosen-output secure.”

15 / 16

Chosen-Ciphertext Security

Intuitive Definition [RS91,DDN91,NY95]

I Encryption conceals message, even given decryption oracle

Elementary Construction
I Follows “witness-recovering decryption” approach [PW08].

I Define gA(s, x) = Ats + x.
Can generate A with “trapdoor” for g−1

A [GGH97,Ajt99,AP09]

I Distinguish gA1(s, x1), . . . , gAk(s, xk) [same s!] ⇐⇒ solve LWE
So gA1 , . . . , gAk pseudorandom under ‘correlated inputs’ [RS09]

I Correlation-secure injective TDF⇒ CCA-secure encryption
But much care needed to make gA “chosen-output secure.”

15 / 16

Chosen-Ciphertext Security

Intuitive Definition [RS91,DDN91,NY95]

I Encryption conceals message, even given decryption oracle

Elementary Construction
I Follows “witness-recovering decryption” approach [PW08].

I Define gA(s, x) = Ats + x.
Can generate A with “trapdoor” for g−1

A [GGH97,Ajt99,AP09]

I Distinguish gA1(s, x1), . . . , gAk(s, xk) [same s!] ⇐⇒ solve LWE
So gA1 , . . . , gAk pseudorandom under ‘correlated inputs’ [RS09]

I Correlation-secure injective TDF⇒ CCA-secure encryption
But much care needed to make gA “chosen-output secure.”

15 / 16

Epilogue

1 Using our main approach & other ideas, [LyuMic09] showed

(γ
√

n)-GapSVP ≤ γ-uSVP ≤ crypto [AjtaiDwork97,Regev03]

“Unifies” two styles of cryptosystems [AD97,Reg03] and [Reg05,. . .]
under (almost) same assumption.

2 Open: classical, iterative reduction to LWE

Ought to solve GapSVP, SIVP, etc. for small q = poly(n)

3 Open: complexity of ‘Improve ζ to γ’-GapSVP?

NP-hard for nontrivial ζ? Better algorithms?

16 / 16

Epilogue

1 Using our main approach & other ideas, [LyuMic09] showed

(γ
√

n)-GapSVP ≤ γ-uSVP ≤ crypto [AjtaiDwork97,Regev03]

“Unifies” two styles of cryptosystems [AD97,Reg03] and [Reg05,. . .]
under (almost) same assumption.

2 Open: classical, iterative reduction to LWE

Ought to solve GapSVP, SIVP, etc. for small q = poly(n)

3 Open: complexity of ‘Improve ζ to γ’-GapSVP?

NP-hard for nontrivial ζ? Better algorithms?

16 / 16

Epilogue

1 Using our main approach & other ideas, [LyuMic09] showed

(γ
√

n)-GapSVP ≤ γ-uSVP ≤ crypto [AjtaiDwork97,Regev03]

“Unifies” two styles of cryptosystems [AD97,Reg03] and [Reg05,. . .]
under (almost) same assumption.

2 Open: classical, iterative reduction to LWE

Ought to solve GapSVP, SIVP, etc. for small q = poly(n)

3 Open: complexity of ‘Improve ζ to γ’-GapSVP?

NP-hard for nontrivial ζ? Better algorithms?

16 / 16

Epilogue

1 Using our main approach & other ideas, [LyuMic09] showed

(γ
√

n)-GapSVP ≤ γ-uSVP ≤ crypto [AjtaiDwork97,Regev03]

“Unifies” two styles of cryptosystems [AD97,Reg03] and [Reg05,. . .]
under (almost) same assumption.

2 Open: classical, iterative reduction to LWE

Ought to solve GapSVP, SIVP, etc. for small q = poly(n)

3 Open: complexity of ‘Improve ζ to γ’-GapSVP?

NP-hard for nontrivial ζ? Better algorithms?

16 / 16

