Public-Key Cryptosystems
from the
Worst-Case Shortest Vector Problem

Chris Peikert
SRI — Georgia Tech

Impagliazzo’s World Workshop

1/16

This Talk

© State of Lattice-Based Cryptography

® Main Result: Public-Key Encryption based on GapSVP

©® Proof & Future Work

2/16

Shortest Vector Problem(s)

A lattice £ C R" having basis B = {by,...,b,} is:

L = zn:(Z -bi) *
i=1

3/16

Shortest Vector Problem(s)

A lattice £ C R" having basis B = {by,...,b,} is:

L = zn:(Z -bi) :
i=1

Shortest Vector Problem (y-GapSVP)

> Given B, decide: A<1 or A>~7?

3/16

Shortest Vector Problem(s)

A lattice £ C R" having basis B = {by,...,b,} is:

L = > (Z-b) & A/ .
i=1

Shortest Vector Problem (y-GapSVP)
> Given B, decide: A<1 or A>~7?

3/16

Shortest Vector Problem(s)

A lattice £ C R" having basis B = {by,...,b,} is:

Shortest Vector Problem (y-GapSVP)
> Given B, decide: A<1 or A>~7?

Unique SVP (y-uSVP)

» Given B with ‘y-unique’ shortest vector, find it.

3/16

Worst-Case Complexity

GapSVP

— 2(logn)1_E \/ﬁ n Pl
| | |
I I I I
NP-hard* € coNP (some) crypto cP
[Ajt98,...,HR07] [GG98,AR05] [Ajt96,... ., [LLL82,Sch87]
MRO04,Reg05]

4/16

Worst-Case Complexity

GapSVP

7 = o(logn)'~¢ Vn n oo
| | |
I I I I
NP-hard* € coNP (some) crypto eP
[Ajt98,...,HR07] [GG98,AR05] [Ajt96,... ., [LLL82,Sch87]
MRO04,Reg05]

» For v = poly(n), best algorithm is 2" time & space [AKS01]

4/16

Worst-Case Complexity

GapSVP

7 = o(logn)'~¢ Vn n oo
| | |
I I I I
NP-hard* € coNP (some) crypto eP
[Ajt98,...,HR07] [GG98,AR05] [Ajt96,... ., [LLL82,Sch87]
MRO04,Reg05]

» For v = poly(n), best algorithm is 2" time & space [AKS01]

v

’y = l?l? ,C/;i 111.5
| | |
NP-hard € coAM crypto
[Cai98] [AD97/07,Reg03]

\

4/16

Taxonomy of Lattice-Based Crypto
‘minicrypt’

= B

OWF [Ajt96....]

e

Sigs
[LM08,GPV08]

ID schemes
[MVO03,Lyu08]

5/16

Taxonomy of Lattice-Based Crypto
‘minicrypt’

= B

OWF [Ajt96....]

e

Sigs
[LM08,GPV08]

ID schemes
[MVO03,Lyu08]

1z GapSVP etc. hard

5/16

Taxonomy of Lattice-Based Crypto
‘minicrypt’ ‘CRYPTOMANIA’

2 B
T

OWF [Ajt986,...]
PKE [AD97,Reg03,Reg05]

- {}
J " 3
p 7 +

Sigs
[LM08,GPV08]

ID schemes

[MVO03,Lyu08] ID-based [GPV08]

1 GapSVP etc. hard

5/16

Taxonomy of Lattice-Based Crypto

‘minicrypt’

= B

OWF [Ajt96....]

e

Sigs
[LM08,GPV08]

ID schemes
[MVO03,Lyu08]

i GapSVP etc. hard

‘CRYPTOMANIA’

e

PKE [AD97,Reg03,Reg05]

ID-based [GPV08]

(Obl. tran. [PVWO08], leakage [AGV09],
homom [G09], KDM [ACPS09], HIBE [P09])

5/16

Taxonomy of Lattice-Based Crypto

‘minicrypt’

= B

OWF [Ajt96....]

e

Sigs
[LM08,GPV08]

ID schemes
[MVO03,Lyu08]

i GapSVP etc. hard

‘CRYPTOMANIA’

e

PKE [AD97,Reg03,Reg05]

ID-based [GPV08]

(Obl. tran. [PVWO08], leakage [AGV09],
homom [G09], KDM [ACPS09], HIBE [P09])

= USVP hard
ww GapSVP etc. quantum-hard

5/16

Learning With Errors

» Generalizes ‘learning parity with noise’: dim n, modulus g > 2

6/16

Learning With Errors
» Generalizes ‘learning parity with noise’: dim n, modulus g > 2

> Search: find s € Zj given ‘noisy random inner products’
a)) b1%<al)S> mOdq

a , b2 ~ <32 ’ S> mod q

6/16

Learning With Errors
» Generalizes ‘learning parity with noise’: dim n, modulus g > 2

> Search: find s € Zj given ‘noisy random inner products’

a b1:<a1 , S>+X1 modq

a , by=(ay,s)+x modg ‘
Uniform a; € Z , Gaussian errors x;
q

vl ||‘
a-q>+\/n

6/16

Learning With Errors
» Generalizes ‘learning parity with noise’: dim n, modulus g > 2

> Search: find s € Zj given ‘noisy random inner products’

a b1:<a1 , S>+X1 modq

a , by=(ay,s)+x modg ‘
Uniform a; € Z , Gaussian errors x;
q

vl ||‘
a-q>+\/n

» Decision: distinguish from uniform (a, , b;)

6/16

Learning With Errors
» Generalizes ‘learning parity with noise’: dim n, modulus g > 2

> Search: find s € Zj given ‘noisy random inner products’

a b1:<a1 , S>+X1 modq

> /n

a , by=(ay,s)+x modg ‘
Uniform a; € Z , Gaussian errors x;
q

vl ||‘
a .

» Decision: distinguish from uniform (a, , b;)

State of the Art

(n/a)-GapSVP etc. < search-LWE <

1 1 1
L 1

quantum prime g = poly(n) [R05,PW08,GPV08,
[Reg05] [BFKL94,R05] PVW08,AGV09,ACPS09,...]

decision-LWE < crypto

6/16

Our Results

First public-key encryption based on classical GapSVP hardness J

7/16

Our Results

First public-key encryption based on classical GapSVP hardness J

© Classical reduction: GapSVP < Learning With Errors

7/16

Our Results

First public-key encryption based on classical GapSVP hardness]

© Classical reduction: GapSVP < Learning With Errors
* Standard (n/«)-GapSVP: large LWE modulus g > 2"

7/16

Our Results

First public-key encryption based on classical GapSVP hardness]

© Classical reduction: GapSVP < Learning With Errors

* Standard (n/«)-GapSVP: large LWE modulus g > 2"
* ‘Improve ¢ to (n/a)’-GapSVP: g~ ({ [=poly(n)]

/16

Our Results

First public-key encryption based on classical GapSVP hardness]

© Classical reduction: GapSVP < Learning With Errors

* Standard (n/«)-GapSVP: large LWE modulus g > 2"
* ‘Improve ¢ to (n/a)’-GapSVP: g~ [=poly(n)]

©® LWE search = decision for large ¢ [> poly(n)]

= GapSVP-hardness of prior LWE-based crypto [Reg05....]

/16

Our Results

First public-key encryption based on classical GapSVP hardness]

© Classical reduction: GapSVP < Learning With Errors

* Standard (n/«)-GapSVP: large LWE modulus g > 2"
* ‘Improve ¢ to (n/a)’-GapSVP: g~ [=poly(n)]

® LWE search = decision for large ¢ | > poly(n) |

= GapSVP-hardness of prior LWE-based crypto [Reg05....]

©® New LWE-based chosen ciphertext-secure encryption

* Much simpler, milder assumption than prior CCA [PW08]

/16

[Regev05] Reduction to LWE

o
[
7]
@,
o
=

LWE

BDD)

8/16

[Regev05] Reduction to LWE

© ©
®
BDD on £: ® © ® ©
d<A2 g T O ®
® AN ®
@% v _
AN l

r

[eoISSE|0
[eoISSE|0

LWE LWE

8/16

[Regev05] Reduction to LWE

®
® ® ©
BDD on £: ® © ®
d< N2 g T N
® P
%%Q\)

(2
2% l X

r

[eoISSE|0
[eoISSE|0

LWE LWE

8/16

[Regev05] Reduction to LWE
® ©)

®
BDD on £: ©
d<r? o © O] ©

N
@® 9%\ ;
2\

AN l

7

[eoISSE|0
[eoISSE|0

GapSVP
LWE LWE SIVP

8/16

Why Quantum?

> “Obvious” answer: iterative step

BDD © ® © quantum FT

9/16

Why Quantum?

> “Obvious” answer: iterative step

» Another answer: to make use of BDD/LWE oracle

@ Choosesomex e L

@ Perturbtoy ~ x @

©® Invoke oracle on y @ Y | BDD
O | (LWE)

9/16

Why Quantum?

> “Obvious” answer: iterative step

» Another answer: to make use of BDD/LWE oracle

@ Choosesomex e L

@ Perturbtoy ~ x @
©® Invoke oracle on y @ y | BDD
O Returns x — @ -
we already knew that! @ |
X

9/16

Why Quantum?

> “Obvious” answer: iterative step

» Another answer: to make use of BDD/LWE oracle

@ Choosesomex e L

@ Perturbtoy ~ x @

©® Invoke oracle on y @ Y | BDD
—

O Returns x — @ (LWE)

we already knew that! @

wo—

v Quantum can
“uncompute” x

9/16

Our Approach

New way of solving GapSVP in a reduction J

10/16

Our Approach

New way of solving GapSVP in a reduction J

e
@le

BDD
(LWE)

l
X

10/16

Our Approach
New way of solving GapSVP in a reduction J

“The Usual” IMAGINE

vl vl
BDD BDD
(LWE) (LWE)

10/16

Our Approach
New way of solving GapSVP in a reduction J

“The Usual” IMAGINE

@ L lllegal BDD instance
() N .

Incorrect (& unknown!)
LWE distribution

yl yl
BDD BDD
(LWE) (LWE)

10/16

Our Approach

New way of solving GapSVP in a reduction |

“The Usual” IMAGINE
lllegal BDD instance

O u

@ @w} Incorrect (.& gnkpown!)
@ @ “Q““‘ LWE distribution
g '’ ‘

SO WHAT!
vl When \ < d,
BDD oracle cannot guess x
LWE U
il () Distinguishes large A
! v from small
X ??

10/16

Our Approach
New way of solving GapSVP in a reduction)

“The Usual” IMAGINE
@ Ly llegal BDD instance
I
@ ' Incorrect (& unknown!)

@ @ . ﬂ““‘ LWE distribution

SO WHAT!
vl vl When A < d,
BDD oracle cannot guess x
LWE LWE R
() () Distinguishes large A
! v from small
X ??

> View as [GoldGold98] AM proof between reduction and oracle

10/16

Technical Obstacles

© What about in [BDD —] reduction?

(No quantum allowed!)

11/16

Technical Obstacles

© What about in [BDD —] reduction?

(No quantum allowed!)

* Use [GPV08] sampling algorithm with ‘best available’ basis for £*.

11/16

Technical Obstacles

© What about in [BDD —] reduction?

(No quantum allowed!)

* Use [GPV08] sampling algorithm with ‘best available’ basis for £*.

‘C-good’ basis = LWE modulus ¢ =~ (. J

(LLL-reduced basis is 2"-good.)

11/16

Technical Obstacles

© What about in [BDD —] reduction?

(No quantum allowed!)

* Use [GPV08] sampling algorithm with ‘best available’ basis for £*.

‘C-good’ basis = LWE modulus ¢ =~ (. |

(LLL-reduced basis is 2"-good.)

* ‘One shot’ (non-iterative) reduction

11/16

Technical Obstacles

© What about in [BDD —] reduction?

(No quantum allowed!)

* Use [GPV08] sampling algorithm with ‘best available’ basis for £*.

‘C-good’ basis = LWE modulus ¢ =~ (. |

(LLL-reduced basis is 2"-good.)

* ‘One shot’ (non-iterative) reduction

@® LWE search / decision equivalence?
(Normally requires prime g = poly(n)...)

11/16

Technical Obstacles

© What about in [BDD —] reduction?

(No quantum allowed!)

* Use [GPV08] sampling algorithm with ‘best available’ basis for £*.

‘C-good’ basis = LWE modulus ¢ =~ (. |

(LLL-reduced basis is 2"-good.)

* ‘One shot’ (non-iterative) reduction

@® LWE search / decision equivalence?
(Normally requires prime ¢ = poly(n)...)

Option 1: crypto directly based on search-LWE

Option 2: search = decision for ‘smooth’ ¢ and Gaussian error

11/16

Details of Reduction
Given any (‘¢-good’) B:
© Choose e — /n- B,

12/16

Details of Reduction
Given any (‘¢-good’) B:

© Choose e — /n- B,

O Lety =emodB

12/16

Details of Reduction
Given any (‘¢-good’) B:
© Choose e — /n- B,
O Lety =emodB
©® (Get some x € £ from LWE oracle somehow.. .)

12/16

Details of Reduction
Given any (‘¢-good’) B:
© Choose e — /n- B,
O Lety =emodB
©® (Get some x € £ from LWE oracle somehow.. .)
O Ify — x = e, output “large,” else output “small”

12/16

Details of Reduction
Given any (‘¢-good’) B:
© Choose e — /n- B,
O Lety =emodB
©® (Get some x € £ from LWE oracle somehow.. .)
O Ify — x = e, output “large,” else output “small”

Analysis for A < 1:

Let 0 # v € L be shortest.

12/16

Details of Reduction
Given any (‘¢-good’) B:

© Choose e — /n- B,

O Lety =emodB

©® (Get some x € £ from LWE oracle somehow.. .)
O Ify — x = e, output “large,” else output “small”

Analysis for \ < 1:

Let 0 # v € £ be shortest.

(vn-B,)N(v+ /n-B,) is a noticeable
fraction of \/n - B,,.

12/16

Details of Reduction
Given any (‘¢-good’) B:
© Choose e — /n- B,
O Lety =emodB
©® (Get some x € £ from LWE oracle somehow.. .)
O Ify — x = e, output “large,” else output “small”

Analysis for A < 1:

Let 0 # v € L be shortest.

1 (vn-B,)N(v+ /n-B,) is a noticeable
Lo fraction of \/n - B,.
. = Step 3 (no matter what it is!)

can’t guess original e.

12/16

Reduction: Step 3

Given “¢-good”Bandy =x +eforx =Bec c L and |e]| < y/n.

13/16

Reduction: Step 3

Given “¢(-good”B andy = x +e for x = Be € £ and |le|| < /n.
To generate sample (a, b) from A, for s = e¢mod g and ¢ = ¢ - (v/n/a):

13/16

Reduction: Step 3

Given “(-good” B andy =x +eforx = Bc € £ and |le| < y/n.

To generate sample (a, b) from A, for s = e¢mod g and ¢ = ¢ - (v/n/a):
© Using B* = B~/, sample z < D~ ¢ using [GPV08]

13/16

Reduction: Step 3

Given “(-good” B andy =x +eforx = Bc € £ and |le| < y/n.
To generate sample (a, b) from A, for s = e¢mod g and ¢ = ¢ - (v/n/a):
© Using B* = B~/, sample z < D~ ¢ using [GPV08]
@ Write v = B*z for z € Z". Output
a=zmodg and b~ (v,y) modgq

13/16

Reduction: Step 3

Given “(-good” B andy =x +eforx = Bc € £ and |le| < y/n.
To generate sample (a, b) from A, for s = e¢mod g and ¢ = ¢ - (v/n/a):
© Using B* = B~/, sample z < D~ ¢ using [GPV08]
@ Write v = B*z for z € Z". Output
a=zmodg and b~ (v,y) modgq

. Analysis for A\ > n/a:
@ > (>gq-(v/n/A) = uniforma € Zj. [MR04]

13/16

Reduction: Step 3

Given “(-good” B andy =x +eforx = Bc € £ and |le| < y/n.
To generate sample (a, b) from A, for s = e¢mod g and ¢ = ¢ - (v/n/a):
© Using B* = B~/, sample z < D~ ¢ using [GPV08]
@ Write v = B*z for z € Z". Output
a=zmodg and b~ (v,y) modgq

. Analysis for A\ > n/a:
S ® > ¢ >gq-(v/n/)) = uniforma € Z!. [MRo4]
.) » Condition on a. Then b = (v,x + e)

= (B*z,Bc) + (v, e) > (a,s) + D¢, || mod g.

Finally, ¢ - |le|| < a - g.

13/16

Reducing Search to Decision

» Suppose D distinguishes (a € Z" | b =~ (a,s)) <« As, from uniform.
q b

14/16

Reducing Search to Decision

» Suppose D distinguishes (a € Z" | b =~ (a,s)) <« As, from uniform.
q b

> Letg=gqi---q:[> poly(n)] for distinct (1/a) < g; < poly(n).

14/16

Reducing Search to Decision

> Suppose D distinguishes (a € Zj , b ~ (a,s)) < As o from uniform.
> Letg=gqi---q:[> poly(n)] for distinct (1/a) < g; < poly(n).

Find s: Chinese remaindering & “smoothing”

> Totestif s; = 0mod g; :

(a,b)—(a+r-e,b) for r—(q/q) 2

14/16

Reducing Search to Decision

> Suppose D distinguishes (a € Zj , b ~ (a,s)) < As o from uniform.

> Letg=gqi---q:[> poly(n)] for distinct (1/a) < g; < poly(n).

Find s: Chinese remaindering & “smoothing”

> Totestif s; = 0mod g; :
(a,b)—(a+r-e,b) for r—(q/q) 2

> If yes, maps A, ,, to itself. If not, maps A; ., to uniform ?

14/16

Reducing Search to Decision

> Suppose D distinguishes (a € Zj , b ~ (a,s)) < As o from uniform.
> Letg=gq;---q/ [> poly(n)] fordistinct (1/a) < ¢; < poly(n).
> Totestif s; = 0mod g; :

(a,b)—(a+r-e,b) for r—(q/q) 2
> If yes, maps A, to itself. If not, maps A; ., to uniform !

Gaussians of width ag > (q/q;) separated by (¢/q;)

= uniform* by smoothing bounds [MicReg04]

14/16

Reducing Search to Decision

> Suppose D distinguishes (a € Zj , b ~ (a,s)) < As o from uniform.
> Letg=gqi---q:[> poly(n)] for distinct (1/a) < g; < poly(n).

Find s: Chinese remaindering & “smoothing”

> Totestif s; = 0mod g; :
(a,b)—(a+r-e,b) for r—(q/q) 2

> If yes, maps A, to itself. If not, maps A; ., to uniform !
Gaussians of width ag > (q/q;) separated by (¢/q;)

= uniform* by smoothing bounds [MicReg04]

> (NB: for general error dists, hybrid argument over g;’s fails.)

14/16

Chosen-Ciphertext Security

Intuitive Definition [RS91,DDN91,NY95]
» Encryption conceals message, even given decryption oracle

15/16

Chosen-Ciphertext Security

Intuitive Definition [RS91,DDN91,NY95]
» Encryption conceals message, even given decryption oracle

Elementary Construction

> Follows “withess-recovering decryption” approach [PW08].

15/16

Chosen-Ciphertext Security

Intuitive Definition [RS91,DDN91,NY95]
» Encryption conceals message, even given decryption oracle

Elementary Construction

> Follows “withess-recovering decryption” approach [PW08].

> Define ga(s,x) = A’s + x.
Can generate A with “trapdoor” for g, [GGH97,Ajt99,AP0g]

15/16

Chosen-Ciphertext Security

Intuitive Definition [RS91,DDN91,NY95]
» Encryption conceals message, even given decryption oracle

Elementary Construction

> Follows “withess-recovering decryption” approach [PW08].

> Define ga(s,x) = A’s + x.
Can generate A with “trapdoor” for g;l [GGH97,Ajt99,AP09]

» Distinguish ga, (s,x1),...,8a,(s,Xx) [sames!]] <= solve LWE
SO ga,,-..,8a, pseudorandom under ‘correlated inputs’ [RS09]

15/16

Chosen-Ciphertext Security

Intuitive Definition [RS91,DDN91,NY95]
» Encryption conceals message, even given decryption oracle

Elementary Construction

> Follows “withess-recovering decryption” approach [PW08].

> Define ga(s,x) = A’s + x.
Can generate A with “trapdoor” for g, [GGH97,Ajt99,AP0g]

» Distinguish ga, (s, x1),...,8a,(s,Xx) [sames!]] <= solve LWE
SO ga,,-..,8a, pseudorandom under ‘correlated inputs’ [RS09]

» Correlation-secure injective TDF = CCA-secure encryption
But much care needed to make g5 “chosen-output secure.”

15/16

Epilogue

© Using our main approach & other ideas, [LyuMic09] showed

(v4/n)-GapSVP < ~-uSVP| < crypto [AjtaiDwork97,Regev03]

16/16

Epilogue

© Using our main approach & other ideas, [LyuMic09] showed

(v4/n)-GapSVP < ~-uSVP| < crypto [AjtaiDwork97,Regev03]

“Unifies” two styles of cryptosystems [AD97,Reg03] and [Reg05.. . .]
under (almost) same assumption.

16/16

Epilogue

© Using our main approach & other ideas, [LyuMic09] showed

(v4/n)-GapSVP < ~-uSVP

< crypto [AjtaiDwork97,Regev03]

“Unifies” two styles of cryptosystems [AD97,Reg03] and [Reg05.. . .]

under (almost) same assumption.

@ Open: classical, iterative reduction to LWE

Ought to solve GapSVP, SIVP, etc. for small ¢ = poly(n)

16/16

Epilogue

© Using our main approach & other ideas, [LyuMic09] showed

(v4/n)-GapSVP < ~-uSVP

< crypto [AjtaiDwork97,Regev03]

“Unifies” two styles of cryptosystems [AD97,Reg03] and [Reg05.. . .]

under (almost) same assumption.

@ Open: classical, iterative reduction to LWE

Ought to solve GapSVP, SIVP, etc. for small ¢ = poly(n)

©® Open: complexity of ‘Improve ¢ to v’-GapSVP?

NP-hard for nontrivial (? Better algorithms?

16/16

