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This Talk

© State of Lattice-Based Cryptography

® Main Result: Public-Key Encryption based on GapSVP

©® Proof & Future Work
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Shortest Vector Problem(s)

A lattice £ C R" having basis B = {by,...,b,} is:

Shortest Vector Problem (y-GapSVP)
> Given B, decide: A<1 or A>~7?

Unique SVP (y-uSVP)

» Given B with ‘y-unique’ shortest vector, find it.
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e

PKE [AD97,Reg03,Reg05]

ID-based [GPV08]

(Obl. tran. [PVWO08], leakage [AGV09],
homom [G09], KDM [ACPS09], HIBE [P09])

= USVP hard
ww GapSVP etc. quantum-hard
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Learning With Errors
» Generalizes ‘learning parity with noise’: dim n, modulus g > 2

> Search: find s € Zj given ‘noisy random inner products’

a b1:<a1 , S>+X1 modq

> /n

a , by=(ay,s)+x modg ‘
Uniform a; € Z , Gaussian errors x;
q

vl ||‘
a .

» Decision: distinguish from uniform (a, , b;)

State of the Art

(n/a)-GapSVP etc. < search-LWE <

1 1 1
L 1

quantum prime g = poly(n) [R05,PW08,GPV08,
[Reg05] [BFKL94,R05] PVW08,AGV09,ACPS09,...]

decision-LWE < crypto
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Our Results

First public-key encryption based on classical GapSVP hardness ]

© Classical reduction: GapSVP < Learning With Errors

* Standard (n/«)-GapSVP: large LWE modulus g > 2"
* ‘Improve ¢ to (n/a)’-GapSVP: g~ [=poly(n)]

® LWE search = decision for large ¢ | > poly(n) |

= GapSVP-hardness of prior LWE-based crypto [Reg05....]

©® New LWE-based chosen ciphertext-secure encryption

* Much simpler, milder assumption than prior CCA [PW08]
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Why Quantum?

> “Obvious” answer: iterative step

» Another answer: to make use of BDD/LWE oracle

@ Choosesomex e L

@ Perturbtoy ~ x @

©® Invoke oracle on y @ Y | BDD
—

O Returns x — @ (LWE)

we already knew that! @

wo—

v Quantum can
“uncompute” x
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Our Approach
New way of solving GapSVP in a reduction )

“The Usual” IMAGINE
@ Ly llegal BDD instance
I
@ ' Incorrect (& unknown!)

@ @ . ﬂ““‘ LWE distribution

SO WHAT!
vl vl When A < d,
BDD oracle cannot guess x
LWE LWE R
( ) ( ) Distinguishes large A
! v from small
X ??

> View as [GoldGold98] AM proof between reduction and oracle
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Technical Obstacles

© What about in [BDD — ] reduction?

(No quantum allowed!)

* Use [GPV08] sampling algorithm with ‘best available’ basis for £*.

‘C-good’ basis = LWE modulus ¢ =~ (. |

(LLL-reduced basis is 2"-good.)

* ‘One shot’ (non-iterative) reduction

@® LWE search / decision equivalence?
(Normally requires prime ¢ = poly(n)...)

Option 1: crypto directly based on search-LWE

Option 2: search = decision for ‘smooth’ ¢ and Gaussian error
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Details of Reduction
Given any (‘¢-good’) B:
© Choose e — /n- B,
O Lety =emodB
©® (Get some x € £ from LWE oracle somehow.. .)
O Ify — x = e, output “large,” else output “small”

Analysis for A < 1:

Let 0 # v € L be shortest.

1 (vn-B,)N(v+ /n-B,) is a noticeable
Lo fraction of \/n - B,.
. = Step 3 (no matter what it is!)

can’t guess original e.
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Reduction: Step 3

Given “(-good” B andy =x +eforx = Bc € £ and |le| < y/n.
To generate sample (a, b) from A, for s = e¢mod g and ¢ = ¢ - (v/n/a):
© Using B* = B~/, sample z < D~ ¢ using [GPV08]
@ Write v = B*z for z € Z". Output
a=zmodg and b~ (v,y) modgq

. Analysis for A\ > n/a:
S ® > ¢ >gq-(v/n/)) = uniforma € Z!. [MRo4]
. ) » Condition on a. Then b = (v,x + e)

= (B*z,Bc) + (v, e) > (a,s) + D¢, || mod g.

Finally, ¢ - |le|| < a - g.
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> Suppose D distinguishes (a € Zj , b ~ (a,s)) < As o from uniform.
> Letg=gqi---q:[ > poly(n) ] for distinct (1/a) < g; < poly(n).

Find s: Chinese remaindering & “smoothing”

> Totestif s; = 0mod g; :
(a,b)—(a+r-e,b) for r—(q/q) 2

> If yes, maps A, to itself. If not, maps A; ., to uniform !
Gaussians of width ag > (q/q;) separated by (¢/q;)

= uniform* by smoothing bounds [MicReg04]

> (NB: for general error dists, hybrid argument over g;’s fails.)
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Chosen-Ciphertext Security

Intuitive Definition [RS91,DDN91,NY95]
» Encryption conceals message, even given decryption oracle

Elementary Construction

> Follows “withess-recovering decryption” approach [PW08].

> Define ga(s,x) = A’s + x.
Can generate A with “trapdoor” for g, [GGH97,Ajt99,AP0g]

» Distinguish ga, (s, x1),...,8a,(s,Xx) [sames!]] <= solve LWE
SO ga,,-..,8a, pseudorandom under ‘correlated inputs’ [RS09]

» Correlation-secure injective TDF = CCA-secure encryption
But much care needed to make g5 “chosen-output secure.”
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(v4/n)-GapSVP < ~-uSVP

< crypto [AjtaiDwork97,Regev03]

“Unifies” two styles of cryptosystems [AD97,Reg03] and [Reg05.. . .]

under (almost) same assumption.

@ Open: classical, iterative reduction to LWE

Ought to solve GapSVP, SIVP, etc. for small ¢ = poly(n)

©® Open: complexity of ‘Improve ¢ to v’-GapSVP?

NP-hard for nontrivial (? Better algorithms?
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