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Notation

> Let RO /... /R®) /RN /7 be a tower of cyclotomic ring extensions.
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> Let RO /... /R®) /RN /7 be a tower of cyclotomic ring extensions.

P> Let's go slower.
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Cyclotomic Rings
> Define Oy = Z[(x], where (i has order k (so ¢ = 1).

* O =Z[1] =Z. Z-basis {1}.
* Oy =Z[-1] =Z.
* Oy 272 2 Z[X]/(1 + X?), Z-basis {1, (4}
* O3 =7

[

G =2 ZIX]/(1+ X + X?), Z-basis {1,(3}.
] /(A + X + X%+ X3+ X*), Z-basis {1,¢, (% ¢}

@ For prime p, O, 2 Z[X]/(1 + X + - + XP71); {1,¢,...,¢P72

N~

Py (X)

® For prime power p¢, Ope = Z[X]/((bp(XPe_l)); {1,¢,.. .7<<P(pe)—1}.

© For distinct primes p1,pa, . ..

e;—1 eg—1

1
Opeiper.. ZLX1, Xo, . /(@ (X7 ), @pp(X57 )s--0):




Cyclotomic Extensions

» If k| K/, can view R = Z[(}] as a subring of R’ = Z[(}], via

k' [k)

Gk — C,E, (still has order k)
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Cyclotomic Extensions
» If k| k', can view R = Z[(] as a subring of R’ = Z[(}/], via
G GO0

> Example: tower of quadratic extensions Oy /Oy o/ -+ /O4/ZL:

C]g = Ck/2 Ok = Ok/Q[Ck] (’)k/2—basis B]; = {1, Ck}

(still has order k)

C=0 Os = O4[Gs] Oy-basis B, = {1,¢s)

G=0 Oy = O2[(4) Oy-basis B) = {1, (4}

G =1 Oy = Z[G) = Z Z-basis B) = {1}
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Cyclotomic Extensions
» If k| k', can view R = Z[(] as a subring of R’ = Z[(}/], via

G C,g“//k). (still has order k)

> Example: tower of quadratic extensions Oy /Oy o/ -+ /O4/ZL:

C]g = Ck/2 Ok = Ok/Q[Ck] (’)k/z—basis B],C = {1, Ck}

C=0 Os = O4[Gs] Oy-basis B, = {1,¢s)
G =¢ Oy = O2]C4] Os-basis B = {1, (4}
=1 Op = Z[Go) = Z Z-basis B = {1}

» “Product” Z-basis of O:
By = B;-Bk/Q :B,Q-B;C/Q‘--Bé

6
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Cyclotomic Extensions
» If k| k', can view R = Z[(] as a subring of R’ = Z[(}/], via

G C,g“//k). (still has order k)

> Example: tower of quadratic extensions Oy /Oy o/ -+ /O4/ZL:

C]g = Ck/2 Ok = Ok/Q[Ck] (’)k/z—basis B],C = {1, Ck}

C=0 Os = O4[Gs] Oy-basis B, = {1,¢s)
G =¢ Oy = O2]C4] Os-basis B = {1, (4}
=1 Op = Z[Go) = Z Z-basis B = {1}

» “Product” Z-basis of O:
By i= By Brjy = By - Byjo--- By = {1,¢, ¢, ..., (VP71

6
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Cyclotomic Extensions: Trace

» If k| k', can view R = Z[(] as a subring of R’ = Z[(}/], via

G > c,if“'/’“).

» The trace Tr = Trp/)p: R — Ris a “universal” R-linear function:

(still has order k)

@ R-linear: for any r; € Rand 7} € I,
Tr(ry vy +re-75) =11 - Tr(r}) + ro - Tr(rh).
@ Universal: any R-linear function L: R’ — R can be written as
L(z) = Tr(r}, - x)
for some r; depending only on L.

» Any R-linear function is uniquely defined by its values on an
R-basis {0} of R/, and vice versa:

Tr (ZJ: T - b;> = Zj: rj - Tr(b}).
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Homomorphic Encryption over Rings [LPR'10,BV'11,BGV'12]
> Let R:= O, e.g., Z[X]/(1 + X*/2) for k a power of 2.
Denote R, := R/qR = Z,[X]/(1+ X*/2) for any integer q.

» Plaintext ring is Ry, ciphertext ring is R, for some ¢ > 2.
» Encryption of i € Ry under s € R is some ¢ = (cg,c1) € Rg satisfying
co+ci-s~dp (modgqR).

* Thanks to this relation we can do + and x homomorphically.

* Semantic security follows from hardness of ring-LWE over R
< (quantum) worst-case hardness of approx-SVP on ideal lattices in R.

» “Unpacked” plaintext p € Zy C Ry (just a constant polynomial).

“Packed” plaintext uses more of Ry, e.g., multiple “slots” [SV'11].
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Ring Switching

Theorem [GHPS'12]

» For any cyclotomic rings R’'/R, we can homomorphically evaluate
* any R-linear L: Ry — Ry (i.e., map ' € RS to = L(i') € Ry)
* by mapping the ciphertext ¢’ over R’ to some c over R,

* assuming hardness of R-LWE.

» “Fresh” ciphertexts need small noise = large ring degree for security.

P> Noise increases as we do homomorphic operations, so we can securely
switch to smaller ring dimension, yielding smaller ciphertexts and
faster operations.

» Also important for minimizing complexity of decryption for
bootstrapping (cf. “dimension reduction” [BV'11]).

> We'll see another cool application later...
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» For any cyclotomic rings R’'/R, we can homomorphically evaluate
* any R-linear L: Ry, — Ry (i.e., map p/ € R to u = L(i') € Ry)
* by mapping the ciphertext ¢’ over R’ to some c over R,

* assuming hardness of R-LWE.

» Proof: Given ¢’ = (¢, c)), let ¢; = Tr(r], - ).
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» For any cyclotomic rings R’'/R, we can homomorphically evaluate
* any R-linear L: Ry, — Ry (i.e., map p/ € R to u = L(i') € Ry)
* by mapping the ciphertext ¢’ over R’ to some c over R,
* assuming hardness of R-LWE.

» Proof: Given ¢’ = (¢, c)), let ¢; = Tr(r], - ).

chy+s-cy~- 4 (modqR)

= Tr(r}, - ¢f) + Tr(s -7 - c})

Q

N N N

“Tr(ry, - 1) (mod ¢R)

= co+s-c1~%-pu (mod qR).

> First "key-switch” from s’ € R’ to s € R.



Ring Switching

Theorem [GHPS'12]

» For any cyclotomic rings R’'/R, we can homomorphically evaluate
* any R-linear L: Ry, — Ry (i.e., map p/ € R to u = L(i') € Ry)
* by mapping the ciphertext ¢’ over R’ to some c over R,
* assuming hardness of R-LWE.

» Proof: Given ¢’ = (¢, c)), let ¢; = Tr(r], - ).

chy+s-cy~- 4 (modqR)

Q

N N N

= Tr(r}, - ¢f) + Tr(s -7 - c}) “Tr(ry, - 1) (mod ¢R)

= co+s-c1~%-pu (mod qR).

> First "key-switch” from s’ € R’ to s € R.
Theorem: R’-LWE with secret in R is as hard as R-LWE.
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A cryptographic “holy grail.”
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Fully Homomorphic Encryption [RAD'78,Gen’09]

> FHE lets you do this:

—)[Eval(f, )]—)

where | f(u)| and decryption time don't depend on |f].

A cryptographic “holy grail.”

» Naturally occurring schemes are “somewhat homomorphic” (SHE):
they can only evaluate functions of an a priori bounded depth.

as () S BT ) i
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Bootstrapping: SHE — FHE [Gen'09]

» Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext , allowing further homomorphic operations.
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Bootstrapping: SHE — FHE [Gen'09]

» Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext , allowing further homomorphic operations.

(]

* The only known way of obtaining unbounded FHE.
* Goal: Efficiency! Minimize depth d and size s of decryption “circuit.”

* Most efficient SHEs [BGV'12] can evaluate in time O(d - s - \).

P Intensive study, many techniques
[G'09,GH'11a,GH’11b,GHS'12b,AP'13,BV'14,AP'14], but
still very inefficient — the main bottleneck in FHE, by far.

» Prior asymptotically efficient methods on “packed” ciphertexts
[GHS'12a,GHS'12b] are very complex, and are practically worse than
asymptotically slower methods.
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Milestones in Bootstrapping
[Gen'09]: O(A*) runtime
[BGV'12]: O()A2) runtime, or O(\) amortized over \ ciphertexts
Mainly via improved SHE homomorphic capacity.

Amortized method requires “exotic” rings, emulating Zo
arithmetic in Z,,.

[GHS'12b]: O()) runtime, for “packed” plaintexts. Declare victory?

Dec circuit [GHS’Z.l|2a] [ Bootstrapping]
mod @, (X) compiler Procedure

X Log-depth mod-®,,,(X) circuit is complex, w/large hidden constants.
XX [GHS'12a] compiler is very complex, w/large polylog overhead.

13 /22
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Practical bootstrapping algorithms with quasi-linear O(/\) runtimes:

@ For “unpacked” (single-bit) plaintexts:
v Extremely simple!
v Uses only power-of-2 cyclotomic rings (fast, easy to implement).
* Cf. [BGV'12]: O(\) amortized across A ciphertexts, exotic rings.

@® For “packed” (many-bit) plaintexts:

* Based on an enhancement of ring-switching to non-subrings.

v/ Seems quite practical, avoids both main inefficiencies of [GHS'12b]:
no homomorphic reduction modulo ®,,,(X), no generic compilation.

v/ Special purpose, completely algebraic description — no “circuits.”

v Decouples the algebraic structure of SHE plaintext ring from the ring
structure needed for bootstrapping.

14 /22
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Bootstrapping Packed Ciphertexts: Overview

@ Prepare: view ¢ as a “noiseless” encryption of plaintext
v=co+c1 ‘s:Zvj-bj € R,. (Z-basis {b;} of R)
J
Recall: v~ § -y, so p=[v]:=3;]vj]-bj € Ra.

® Homomorphically map Zg-coeffs v; to “Zg-slots” of certain ring S,:

Zvj-bjGRq — Zvj-cjesq.

(Change of basis, analogous to homomorphic DFT.)
© Batch-round: homom'ly apply |-] on all Zg-slots at once [SV'11]:
Z’Uj “Cj € Sq — ZL’UJ'—‘ 1Cj € Ss.
® Homomorphically reverse-map Zs-slots back to B-coeffs:

ZLUJW‘C]'ESQ — ZLUﬂ’ijMERQ.

(Akin to homomorphic DFT™.)
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Algebra: Slots and CRT Sets
> Let 1 = fg|l1|fa| -~ (all odd), and S = O, = Z[¢,,].
So we have a cyclotomic tower S /SG=1 /... /7,

» In S = 5@ 2 factors into distinct prime ideals, like so:
S = Oy, P11 P12 P13 P21 P22 P23
| ~N S ~N |
s = o, P1 P2

| \ /

Z =0, 2
> By Chinese Rem Thm, Sy = (P, (S/p;) via natural homomorphism.
“CRT set:” C' = {c¢;} C Ss.t.c; =1 (mod p;), =0 (mod p;).
Map v; € Za +— v; - ¢; € S2 embeds Zs into jth “slot” of Ss.
» Can factor C; = C! - Ci_1: let ¢, = 1 (mod p, 1), = 0 (mod py 4s).
> Similarly for S, = €D, (S/p;gq).
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Mapping Coeffs to Slots: Overview
» Choose S so that S, has > n = deg(R/Z) Zgslots, via:

(vj) € Zy — Zvj-cj mod ¢

for an appropriate CRT set C' = {¢;} C S of size n.
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Mapping Coeffs to Slots: Overview
» Choose S so that S, has > n = deg(R/Z) Zgslots, via:
(vj) € Zy — Zvj -¢j mod ¢
for an appropriate CRT set C' = {¢;} C S of size n.
» Our goal: homomorphically map > v;-b; € Ry — > vj-¢j € 5.
Equivalently, evaluate the Z-linear map L: R — S defined by
L(bj) = ¢;.
» Ring-switching lets us evaluate any R’-linear map L: R — R’

... but only for a subring R’ C R.

Goal for Remainder of Talk

> Extend ring-switching to (efficiently) handle Z-linear maps L: R — S.
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Algebra: Combining Cyclotomic Rings
> Let R= 0y, S = Oy. Let d = ged(k, £) and m = lem(k, £).
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Algebra: Combining Cyclotomic Rings
» Let R= 0, S=0y. Let d = ged(k,?) and m = lem(k, 7).

T=R+S=0,, ("compositum™)

/\

\S
/

E=RNS=0,

» For any E-linear L: R — S, there is an S-linear L: 7' — S that
agrees with L on R.

» Proof: define L by L(r-s)=L(r)-s € S.
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Enhanced Ring-Switching: First Attempt
> Let R=0}, S = O, be s.t. ged(k, £) = 1, lem(k, £) = kL.
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Enhanced Ring-Switching: First Attempt
» Let R= 0y, S = Oy bes.t. ged(k,l) =1, lem(k, 0) = kL.

(lnducy

» To homom'’ly eval. Z-linear L: R — S on an encryption of v € R,
@ Trivially embed ciphertext R — T (still encrypts v).
® Homomorphically apply S-linear L: T'— S using ring-switching.
¢ We now have an encryption of L(v) = L(v) !

XX Problem: degree of T is quadratic, therefore so is runtime & space.

This is inherent if we treat L as a generic Z-linear map!
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Enhanced Ring-Switching, Efficiently

Key Ideas
» The Z-linear L: R — S given by L(b;) = ¢; is “highly structured,”
because B, C' are product sets.
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Key Ideas

» The Z-linear L: R — S given by L(b;) = ¢; is “highly structured,”
because B, C' are product sets.

» Gradually map B to C through a sequence of “hybrid rings” H®,
via E(-linear functions that each send a factor of B to one of C.
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Enhanced Ring-Switching, Efficiently

Key Ideas

» The Z-linear L: R — S given by L(b;) = ¢; is “highly structured,”
because B, C' are product sets.

» Gradually map B to C through a sequence of “hybrid rings’” H,
via E(-linear functions that each send a factor of B to one of C.

» Ensure small compositums 7 = HE=1 + HO) via large ged's:
replace prime factors of k£ with those of /, one at a time.

BCR=H®O ------------- () -oommomoo oo s -S> C

nduced/ nduced/

EM

%
/
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Toy Example
» R = g, basis B= B - Bj ={1,(s}-{1,}.
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Toy Example
» R = g, basis B= B - Bj ={1,(s}-{1,}.
» S =0r713 CRT set C =C% - C); = {c1,c2} - {c], ch, A}

By-By B G Bop Bz oo
C Os fix Bfl C Our fix Cé C Or.43
04 07

» In general, switch through < log(deg(R/Z)) = log(\) hybrid rings,

one for each prime factor of k.
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Final Thoughts

» Gradually converting B to C' via hybrid rings is roughly analogous to
a log-depth FFT butterfly network.
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Final Thoughts

» Gradually converting B to C' via hybrid rings is roughly analogous to
a log-depth FFT butterfly network.

» Technique should also be useful for homomorphically evaluating other
signal-processing transforms having “sparse decompositions.”

» Practical implementation and evaluation are underway.

Thanks!
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