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Pseudorandom Functions [ccm's4]

o A family of functions F = {F : {0,1}* — B} such that, given
adaptive query access,

F,+ F ~ Random U

by by

T Fs(ﬂfz) o X U(CL‘Z)
77

@ Lots of applications in symmetric key cryptography: encryption,
message authentication, friend or foe identification, ...

(Thanks to Seth MacFarlane for the adversary)
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@ Goldreich-Goldwasser-Micali [GGM'84]
e Based on any (doubling) PRG: Fs(z1,...,2k) = Gz, (- (G4, (8)) -+ +)



Cooking a (Provably Secure) PRF

@ Goldreich-Goldwasser-Micali [GGM'84]
e Based on any (doubling) PRG: Fs(z1,...,2k) = Gz, (- (G4, (8)) -+ +)

© Number-theoretic direct constructions [NR'97, NRR'00]
e Framework: exponentiate to a product of (secret) exponents

e Security from number-theoretic assumptions (DDH, factoring, ...)
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@ Goldreich-Goldwasser-Micali [GGM'84]
e Based on any (doubling) PRG: Fs(z1,...,2k) = Gz, (- (G4, (8)) -+ +)

© Number-theoretic direct constructions [NR'97, NRR'00]
e Framework: exponentiate to a product of (secret) exponents

e Security from number-theoretic assumptions (DDH, factoring, ...)

© Lattice-based direct constructions [BPR'12]
o Framework: round a product of (secret) matrices/ring elements

e Security from lattice assumptions (LWE, worst-case lattice problems)
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e Can efficiently compute Fsi¢(x) from Fys(z) and Fi(x)

@ Applications:
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Key-Homomorphic Pseudorandom Functions

Key Homomorphism
e Can efficiently compute Fsi(z) from Fy(x) and Fi(z)

@ Applications: distribute the operation of a Key Distribution Center,
symmetric-key proxy re-encryption, updatable encryption, and PRFs
secure against related-key attacks [BC'10,LMR'14]

© DDHe-based construction [NPR'99]
e Security in the random oracle model

@ Lattice-based construction [BLMR'13]
e Security in the standard model; construction and proof similar to
[BPR'12] rounded-subset-product construction
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Key-Homomorphic Pseudorandom Functions

Key Homomorphism
e Can efficiently compute Fsi(z) from Fy(x) and Fi(z)

@ Applications: distribute the operation of a Key Distribution Center,
symmetric-key proxy re-encryption, updatable encryption, and PRFs
secure against related-key attacks [BC'10,LMR'14]

© DDHe-based construction [NPR'99]
e Security in the random oracle model

@ Lattice-based construction [BLMR'13]
e Security in the standard model; construction and proof similar to
[BPR'12] rounded-subset-product construction

e Main drawback: has huge parameters, keys, and runtimes

@ [BPR'12] also gives (non-KH) PRFs having much better parameters,
with slightly worse (still polylog) depth

@ Can we obtain similar tradeoffs for KH-PRFs?
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* New KH-PRFs (from lattices):
e Polylog O(1) depth (still)
e Quasi-optimal O()) key sizes
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Our Results

* New KH-PRFs (from lattices):
e Polylog O(1) depth (still)
o Quasi-optimal O(X) key sizes
First sublinear-depth PRFs (KH or otherwise) with O()\) key size!

Reference | Key Pub Params Time/Bit

[BLMR'13] | A3 [A3] A% A A% [N
This work | A [A] A2 )] A [A]

Figure : For input length A\ with 2* security under standard assumptions.
Log factors omitted. Ring-based constructions appear in [brackets].
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e Polylog O(1) depth (still)
o Quasi-optimal O()) key sizes
First sublinear-depth PRFs (KH or otherwise) with O()\) key size!

Reference | Key Pub Params Time/Bit
[BLMR'13] | A3 [A3] A6 [\ A% N3]
This work | A [A] A2 [A] A [A]

Figure : For input length A\ with 2* security under standard assumptions.
Log factors omitted. Ring-based constructions appear in [brackets].

* New proof technique that may be useful elsewhere
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* New KH-PRFs (from lattices):
e Polylog O(1) depth (still)
o Quasi-optimal O(X) key sizes
First sublinear-depth PRFs (KH or otherwise) with O()\) key size!

Reference | Key Pub Params Time/Bit
[BLMR'13] | A3 [A3] A6 [\ A% N3]
This work | A [A] A2 [A] A [A]

Figure : For input length A\ with 2* security under standard assumptions.
Log factors omitted. Ring-based constructions appear in [brackets].

* New proof technique that may be useful elsewhere

Full version: http://eprint.iacr.org/2014/074
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e “Somewhat key-homomorphic:" Fg(x) + Fy(z) € Fsye(z) + {0, £1}"



Boneh et al. KH-PRF Construction [BLMR'13]

@ Secret key s € Z7, pub params By, By € {0,1}™*", input x € {0,1}*

% 1
bl D
=1 P
2

e “Somewhat key-homomorphic:" Fg(x) + Fy(z) € Fsye(z) + {0, £1}"

@ Proof strategy: introduce “short” error which “rounds away”

k

k
S
Fs(x) = s-”Bi ~ |(sBy +e. ”BZ
s() \‘ P x—‘p ( 1 1) z

1=2

R i
T3
Sfl,'l

x2

T
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Boneh et al. KH-PRF Construction [BLMR'13]

@ Secret key s € Z7, pub params By, By € {0,1}™*", input x € {0,1}*

% 1
bl D
=1 P
2

e “Somewhat key-homomorphic:" Fg(x) + Fy(z) € Fsye(z) + {0, £1}"

@ Proof strategy: introduce “short” error which “rounds away”

o k k
.S Fs(r) = |s- IIB%—‘ ~ (sByy +e4)- I | B,
L =1 P

/$3
T2

Qo

k
Sz - HBJ r..o~ s, ], =U)
L =2

p
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Boneh et al. KH-PRF Construction [BLMR'13]

@ Secret key s € Z7, pub params By, By € {0,1}™*", input x € {0,1}*

k
Fy(z) = {s : HB@—‘
=1

1

p (o

2

e “Somewhat key-homomorphic:" Fg(x) + Fy(z) € Fsye(z) + {0, £1}"

@ Proof strategy: introduce “short” error which “rounds away”

Fs(x)

/$3
T2

c
~

k k

S - H Bxi—‘ 2 (sBg, +€4,)- H B,
, NI

L =1 P

X LWE approx factor grows exponentially in input length £.

Banerjee and Peikert (Georgia Tech)
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e “Gadget” Zg-matrix G [MP'12]:

Square
{0, 1}-matrix



Gadget and Bit-Decomposition

e “Gadget” Zg-matrix G [MP'12]:

Any
Square

ZLq-matrix
{0, 1}-matrix

@ A ubiquitous tool in lattice cryptography: FHE [BV'11,GSW'13,AP'14],
CCA/IBE/ABE/FHS [MP’'12,BGG™'14,GVW'14]
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For matrices Ag, Ay, full binary tree T and z € {0,1}/71, define Ap(z):

To Ap(z) :=A, for|T|=1
T o

ENAN

Ty

Ar(zi|2,) = Ary(z) - G HAL(2,))




Our Construction
For matrices Ag, A1, full binary tree T and z € {0, 1}/71, define Ap(z):

To Ap(z) :=A, for|T|=1
T o

/i

2

Ar(zi|2,) = Ary(z) - G HAL(2,))

Ty

@ Public parameters: matrices Ag, A1, full binary tree T’

e Function Fj on |T'|-bit input = defined as

Fs(z) = [s- Ar(2)],

v
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Our Construction
For matrices Ag, A1, full binary tree T and z € {0, 1}/71, define Ap(z):

To Ap(z) :=A, for|T|=1
T o

/i

2

Ar(zi|2,) = Ary(z) - G HAL(2,))

Ty

@ Public parameters: matrices Ag, A1, full binary tree T’

e Function Fj on |T'|-bit input = defined as
Fs(z) = [s- Ar(2)],

@ Somewhat KH just as in [BLMR'13]. Same applications!

v
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Parameters and Parallelism

@ Sequentiality s(T'): the “right depth” of T
e Circuit depth of PRF is proportional to s(T)

e Expansion e(T'): the “left depth” of T'
o LWE approx factor is exponential in e(T)

@ Max input length = max # leaves = (eis)
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Parameters and Parallelism

e Sequentiality s(T): the “right depth” of T

e Circuit depth of PRF is proportional to s(T')
@ Expansion e(7T): the "left depth” of T’

e LWE approx factor is exponential in e(T)
o Max input length = max # leaves = (“1*)

Instantiations

e(T) s(T) Key Params
A—1 1 A? A9
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Parameters and Parallelism

e Sequentiality s(T): the “right depth” of T

e Circuit depth of PRF is proportional to s(T')
@ Expansion e(7T): the "left depth” of T’

e LWE approx factor is exponential in e(T)
o Max input length = max # leaves = (“1*)

Instantiations

e(T) s(T) Key Params
A—1 1 A AO
1 A—1 A A2
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Parameters and Parallelism

e Sequentiality s(T): the “right depth” of T

e Circuit depth of PRF is proportional to s(T')
@ Expansion e(7T): the "left depth” of T’

e LWE approx factor is exponential in e(T)
o Max input length = max # leaves = (“1*)

Instantiations

e(T) s(T) Key Params
A—1 1 A? A9
1 A—1 A A2
~logy(A) ~logy(A) | A X2
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v/ New ldea: u=s- G + v for uniform, independent s and v € P(QG).

Fy(2) = [s- Aqy - G (Ag (3D) -],

>
S
2

(s Agy +ey) 'G_I(ATl (371))) e
——

= ~ [, - G AR @3D) ],




v/ New ldea: u=s- G + v for uniform, independent s and v € P(QG).

T Fy(z) = s~ Age - G (A7 (30)) -],

(s Agy +ey) 'G_I(ATl (371))) e
——

>
S
Qe




Proof ldea

New ldea: u =s- G + v for uniform, independent s and v € P(G).
T .

/1\

A A T (s Agy +€1,) -G AR (Z)) - --

T €9 Uz

é Lu;p[] : Gil(ATl (SU_1>)) . ‘—|P

Fy(z) = |5~ Agy - GTH (AT (30)) - ']p

Qe

= LSI() : AT1 (‘7?1)) : Gil(AT2(x—2>)) S A 7 Gil(ATl (LU—1>)) o '—‘p

= LSI(] : AT’(‘T_1>H T Hx—c)l) + Vg - G_I(ATl(H)) T '—|p
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Proof ldea

New ldea: u =s- G + v for uniform, independent s and v € P(G).
T .

/1\

A A T (s Agy +€1,) -G AR (Z)) - --

T €9 Uz

é Lu;p[] : Gil(ATl (SU_1>)) . ‘—|P

Fy(z) = |5~ Agy - GTH (AT (30)) - ']p

Qe

= LSI() : AT1 (‘7?1)) : Gil(AT2(x—2>)) S A 7 Gil(ATl (LU—1>)) o '—‘p
= LSI(] ’ AT’('T_{H T ||55_c>1) + Va - G_I(ATl(H)) o '—|p

A sz + Voo G A, (Z1)) - - - + other v termswp & U(x). |
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@ New KH-PRFs from lattices: quasi-optimal key sizes, polylog depth

@ New proof technique
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Conclusions

@ New KH-PRFs from lattices: quasi-optimal key sizes, polylog depth

@ New proof technique

The Last Word [Mun'07]

int

get RandomNumber ()

return 4. // chosen by fair dice roll.
J quaranteed to be random.

(Image source: http://xkcd.com/221/)
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