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Pseudorandom Functions [GGM’84]

A family of functions F = {Fs : {0, 1}k → B} such that, given
adaptive query access,

Fs ← F Random Uc
≈

6 ? 6 ?
xi Fs(xi) xi U(xi)

??

Lots of applications in symmetric key cryptography: encryption,
message authentication, friend or foe identification, . . .
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(Thanks to Seth MacFarlane for the adversary)



Cooking a (Provably Secure) PRF

1 Goldreich-Goldwasser-Micali [GGM’84]

Based on any (doubling) PRG: Fs(x1, . . . , xk) = Gxk
(· · · (Gx1

(s)) · · · )

2 Number-theoretic direct constructions [NR’97, NRR’00]

Framework: exponentiate to a product of (secret) exponents

Security from number-theoretic assumptions (DDH, factoring, . . . )

3 Lattice-based direct constructions [BPR’12]

Framework: round a product of (secret) matrices/ring elements

Security from lattice assumptions (LWE, worst-case lattice problems)
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Key-Homomorphic Pseudorandom Functions

Key Homomorphism

Can efficiently compute Fs+t(x) from Fs(x) and Ft(x)

Applications:

distribute the operation of a Key Distribution Center,
symmetric-key proxy re-encryption, updatable encryption, and PRFs
secure against related-key attacks [BC’10,LMR’14]

1 DDH-based construction [NPR’99]

Security in the random oracle model

2 Lattice-based construction [BLMR’13]

Security in the standard model; construction and proof similar to
[BPR’12] rounded-subset-product construction

Main drawback: has huge parameters, keys, and runtimes

[BPR’12] also gives (non-KH) PRFs having much better parameters,
with slightly worse (still polylog) depth

Can we obtain similar tradeoffs for KH-PRFs?
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Our Results

? New KH-PRFs (from lattices):

Polylog Õ(1) depth (still)

Quasi-optimal Õ(λ) key sizes

First sublinear-depth PRFs (KH or otherwise) with Õ(λ) key size!

Reference Key Pub Params Time/Bit

[BLMR’13] λ3 [λ3] λ6 [λ4] λ5 [λ3]

This work λ [λ] λ2 [λ] λω [λ]

Figure : For input length λ with 2λ security under standard assumptions.
Log factors omitted. Ring-based constructions appear in [brackets].

? New proof technique that may be useful elsewhere

Full version: http://eprint.iacr.org/2014/074
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Boneh et al. KH-PRF Construction [BLMR’13]

Secret key s ∈ Znq , pub params B0,B1 ∈ {0, 1}n×n, input x ∈ {0, 1}k

Fs(x) =

⌊
s ·

k∏
i=1

Bxi

⌉
p

0

1

2

“Somewhat key-homomorphic:” Fs(x) + Ft(x) ∈ Fs+t(x) + {0,±1}n

Proof strategy: introduce “short” error which “rounds away”

t t tq q q
�
�

x2

x3

xk
Fs(x) =

⌊
s ·

k∏
i=1

Bxi

⌉
p

s
≈

(sBx1 + ex1)︸ ︷︷ ︸
sx1

·
k∏
i=2

Bxi


p

c
≈

⌊
sx1 ·

k∏
i=2

Bxi

⌉
p

c
≈ . . .

c
≈ bsxep = U(x)

7 LWE approx factor grows exponentially in input length k.
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Gadget and Bit-Decomposition

“Gadget” Zq-matrix G [MP’12]:

qA G G−1(A)=

Any

Zq-matrix Square

{0, 1}-matrix

A ubiquitous tool in lattice cryptography: FHE [BV’11,GSW’13,AP’14],
CCA/IBE/ABE/FHS [MP’12,BGG+’14,GVW’14]
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Our Construction

For matrices A0,A1, full binary tree T and x ∈ {0, 1}|T |, define AT (x):

dT
x

��
�

HH
H
dT

T.l
T.rxl
xr

�
�
�

A
A
A

�
�
�
�

A
A
A
A

AT (x) := Ax for |T | = 1

AT (xl‖xr) := AT.l(xl) ·G−1(AT.r(xr))

New KH-PRF Construction

Public parameters: matrices A0,A1, full binary tree T

Function Fs on |T |-bit input x defined as

Fs(x) = bs ·AT (x)ep

Somewhat KH just as in [BLMR’13]. Same applications!
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Parameters and Parallelism

Sequentiality s(T ): the “right depth” of T

Circuit depth of PRF is proportional to s(T )

Expansion e(T ): the “left depth” of T

LWE approx factor is exponential in e(T )

Max input length = max # leaves =
(
e+s
s

)

�
�

�
�

�
�

#
##

S
S

S
S

C
C

c
cc

s = 2

, e = 2

tt tt t t tt t

�
�
S
St t

Instantiations

e(T ) s(T ) Key Params

λ− 1 1 λ3 λ6

1 λ− 1 λ λ2

≈ log4(λ) ≈ log4(λ) λ λ2
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e(T ) s(T ) Key Params

λ− 1 1 λ3 λ6

1 λ− 1 λ λ2

≈ log4(λ) ≈ log4(λ) λ λ2
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Proof Idea

3 New Idea: u = s ·G+ v for uniform, independent s and v ∈ P(G).

t t
�
�A
A

�
�
A
Ax0
−→x1
T1

T t tq q q
�
�A
A

A
A

�
�
A
A
�
�
A
A

−→x2

−→xd
T2

Td

Fs(x) =
⌊
s ·Ax0 ·G−1(AT1(

−→x1)) · · ·
⌉
p

s
≈

(s ·Ax0 + ex0)︸ ︷︷ ︸
ux0

·G−1(AT1(
−→x1)) · · ·


p

c
≈
⌊
ux0 ·G−1(AT1(

−→x1)) · · ·
⌉
p

=
⌊
sx0 ·AT1(

−→x1) ·G−1(AT2(
−→x2)) · · ·+ vx0 ·G−1(AT1(

−→x1)) · · ·
⌉
p

=
⌊
sx0 ·AT ′(−→x1‖ · · · ‖−→xd) + vx0 ·G−1(AT1(

−→x1)) · · ·
⌉
p

· · ·
c
≈
⌊
sx + vx0G

−1(AT1(
−→x1)) · · ·+ other v terms

⌉
p

s
≈ U(x). �
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Conclusions

Our main contributions

New KH-PRFs from lattices: quasi-optimal key sizes, polylog depth

New proof technique

The Last Word [Mun’07]
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