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LWE is Hard (... maybe even for quantum!)

worst case .
lattice problems ST search-LWE ST decision-LWE < crypto

(quantum [R’05]) [BFKL93,R’05]

P (Also some classical hardness for search-LWE [P’'09])
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> Public Key Encryption [R'05,PVW08]
CCA-Secure PKE (w/o RO) [PW'08,P'09]

> |dentity-Based Encryption (in RO model) [GPV'08]
Hierarchical ID-Based Encryption (w/o RO) [CHKP’10,ABB’10]

UC Oblivious Transfer [PvW’08]

Leakage Resilience [AGV'09,DGKPV'10,GKPV’10,ADNSWW'10,...]
Circular/KDM-Secure Encryption [ACPS09,BHHI'10]
Quadratic-Formula Homomorphic Encryption [GHV’10]
Bi-Deniable Encryption [OP’10]

and more. ..
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LWE is Efficient (...sort of)

> Getting one extra
pseudorandom scalar requires

| an n-dim inner product
(—a—) (S) te =0€Zs » Ganamortize each a over

many secrets s;, but still

O(n) work per scalar output.

> Public key crypto schemes have rather large keys:

pk = A’ , b | ?Qn)

> Can fix A for all users, but at best, still Q(n?) work to encrypt &
decrypt an n-bit message
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Wishful Thinking...
» Get n pseudorandom

| | | | :
n scalars from just one
= Z
(a * T * T l‘) <% (cheap) product operation?

» How to define the product ‘+’ so that distribution is pseudorandom?
* Careful: w/ small error, coordinate-wise multiplication is not secure!

» ‘%’ = Multiplication in a polynomial ring: e.g., Z,[x]/(x" + 1).
Very fast and practical with FFT / NTT: nlogn operations mod g.
> Similar ring structures appear in heuristic NTRU scheme [HPS'9g],

in compact one-way / CR hash functions [Mic’02,PR'06,LM08,...],
and in fully homomorphic encryption [Gen'09].
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Our Results

@ Definition: a suitable ‘compact’ version of LWE called Ring-LWE
© Two main theorems:

worst case on - _ qoarch Ring-LWE < decision Ring-LWE
ideal lattices ¥ T

(quantum, any ring of ints) (classical, any cyclotomic ring)

* Concurrently & using different techniques, [SSTX'09] proved a
qualitatively weaker version of our first (quantum) reduction.

(Specifically: hardness for bounded # of samples in a specific ring.)

* Pseudorandomness is new, and important for crypto & efficiency.
Proof requires very different techniques than for standard LWE.

@ A ‘cookbook’ for porting LWE-based schemes to Ring-LWE, plus
an entirely new & even more efficient PKE scheme.
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LWE Over a Ring

> Example: ring | R, = Z4[x]/(x" + 1) |for n = 2 and ¢ = 1 mod 2n.

* Elements may be viewed as dim < n polynomials with Z, coeffs. ..

* ...o0r as vectors in Zy.

polynomial ‘+ <«+— vector addition
polynomial ‘x’ <+— ‘anti-cyclic convolution’

» Search: find the secret s € R, given:
Error vectors

» Decision: distinguish (a; , b;) from uniform (a; , b;).

al<—Rq R b1231XS+61€Rq
az<—Rq , b2232X5+62€Rq
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A New Kind of LWE Cryptosystem
> Secret key: ‘short’s € R,. Publickey: (a, b=a xs+e)

» Encrypt m € {0, 1}": choose ‘short’ t € R,. Output ciphertext

(cl,e0) =(axt+e ,bxtte +m.[%])
~(axt,axsxt +m-[1])

» Decrypt: recover m from ¢, —¢; x s.

v

» Works just like subset-sum encryption [LPS'10] and ... ElIGamal ?!?
But only O(n) key size, Enc, Dec for n-bit message.

Proof of CPA Security

© Public key (a,b) ~. (a,b) by decision Ring-LWE
(even for ‘short’ s [ACPS’'09])

@ Ciphertext (c;,¢2) =, (¢, ¢2), again by decision Ring-LWE
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For any large enough ¢, solving search Ring-LWE
is as hard as quantumly solving poly(n)-approx SVP
in any (worst-case) ideal lattice from the ring.

> Proof follows the outline of [Regev'05] for LWE & arbitrary lattices.

Quantum component used as ‘black-box;’ only classical part
needs adaptation to the ring setting.

» New reduction technique for ‘clearing the ideal’ (Z/¢Z — R/qR),
in an ‘algebra-preserving’ way.

Uses Chinese remainder theorem and theory of duality for ideals.
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A Word on Ideal Lattices

» Recall example ring R = Z[x]/(x" + 1) for n = 2F.
> Anideal Z C R is closed under + and —, and under x with R.

To get ideal lattices, embed R and its ideals into Ly. How?
> [HPS'98,M'02,PR’06,LM’06,G’09,...]: ‘coefficient embedding’

a(x) =ap+ayx+--- +a,_ X (ag,...,an—1) € Z"
+ is coordinate-wise, but analyzing x is cumbersome (esp. for rv’s)
> [Minkowski'18??,...]: ‘canonical embedding.’ Let w = exp(wi/n):
alx) —  (aw"),aW?,..., aW™ ) e
Both + and x are coordinate-wise! Nice geometric behavior.

» Modulo any prime ¢ = 1 mod 2n, (x" + 1) has n roots w?~! € Z,.
For Ring-LWE schemes, this gives an embedding into Zj.
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Pseudorandomness of Ring-LWE

Solving decision Ring-LWE in R, = Z,[x]/(x" + 1)
(for any poly(n)-bounded prime g = 1 mod 2n)
is as hard as solving search Ring-LWE.

Proof Outline

Given: O distinguishes samples (a,b ~ a x s) from uniform (a, b).
Goal: Find s € R,. Equivalent to finding s(w¥~!) € Z, forj=1,...,n.
© Hybrid argument: randomize b(w') € Z,, then (b(w'),b(w?)), ...
Then O must distinguish relative to some w?~!.
® Using O, guess-and-check to find s(w*~!) € Z, (ala[BFKL93,R05]).

© How to find other s(w¥~!)? Couldn’t O be useless on other roots?
Map w — wk permutes roots of ¥ + 1. Can send each to w1

(Math jargon: use the automorphism (Galois) group of the cyclotomic number field.)
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» In any cyclotomic ring, Ring-LWE is pseudorandom if ideal lattice
problems are (quantumly) hard in the worst case.

» Ring-LWE allows for much more compact and efficient encryption
schemes than standard LWE.

E.g., PKE in O(1) work per message bit.

» Main open direction: develop new kinds of constructions unlike
those based on standard LWE (e.g., fully homomorphic PKE?)

» Questions? More details? Find me here:
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