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The ‘Learning With Errors’ Problem [Regev’05]

I Parameters: dimension n, prime modulus q = poly(n).

I Search: find secret s ∈ Zn
q given many ‘noisy inner products’

√
n ≤ error� q

(After enough uniform ai’s, secret s is uniquely determined w/hp.)

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard (. . . maybe even for quantum!)

worst case
lattice problems ≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05]

decision-LWE ≤ crypto

I (Also some classical hardness for search-LWE [P’09])
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LWE is Versatile
What kinds of crypto can we do with LWE?

I Public Key Encryption [R’05,PVW’08]

CCA-Secure PKE (w/o RO) [PW’08,P’09]

I Identity-Based Encryption (in RO model) [GPV’08]

Hierarchical ID-Based Encryption (w/o RO) [CHKP’10,ABB’10]

UC Oblivious Transfer [PVW’08]

Leakage Resilience [AGV’09,DGKPV’10,GKPV’10,ADNSWW’10,. . . ]

Circular/KDM-Secure Encryption [ACPS’09,BHHI’10]

Quadratic-Formula Homomorphic Encryption [GHV’10]

Bi-Deniable Encryption [OP’10]

and more. . .
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LWE is Efficient (. . . sort of)

(
a

)|s
|

+ e = b ∈ Zq

I Getting one extra
pseudorandom scalar requires
an n-dim inner product

I Can amortize each a over
many secrets si, but still
Õ(n) work per scalar output.

I Public key crypto schemes have rather large keys:

pk =


...

At

...


︸ ︷︷ ︸

n

,


...
b
...


Ω(n)

I Can fix A for all users, but at best, still Ω̃(n2) work to encrypt &
decrypt an n-bit message
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Wishful Thinking. . . |a
|

 ?

|s
|

+

|e
|

 =

 |b
|

 ∈ Zn
q

I Get n pseudorandom
scalars from just one
(cheap) product operation?

Question
I How to define the product ‘?’ so that distribution is pseudorandom?

F Careful: w/ small error, coordinate-wise multiplication is not secure!

Answer
I ‘?’ = Multiplication in a polynomial ring: e.g., Zq[x]/(xn + 1).

Very fast and practical with FFT / NTT: n log n operations mod q.

I Similar ring structures appear in heuristic NTRU scheme [HPS’98],
in compact one-way / CR hash functions [Mic’02,PR’06,LM’06,. . . ],

and in fully homomorphic encryption [Gen’09].
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Our Results

0 Definition: a suitable ‘compact’ version of LWE called Ring-LWE

1 Two main theorems:

worst case on
ideal lattices

≤

(quantum, any ring of ints)

search Ring-LWE ≤

(classical, any cyclotomic ring)

decision Ring-LWE

F Concurrently & using different techniques, [SSTX’09] proved a
qualitatively weaker version of our first (quantum) reduction.
(Specifically: hardness for bounded # of samples in a specific ring.)

F Pseudorandomness is new, and important for crypto & efficiency.
Proof requires very different techniques than for standard LWE.

2 A ‘cookbook’ for porting LWE-based schemes to Ring-LWE, plus
an entirely new & even more efficient PKE scheme.
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LWE Over a Ring
I Example: ring Rq = Zq[x]/(xn + 1) for n = 2k and q = 1 mod 2n.

F Elements may be viewed as dim < n polynomials with Zq coeffs. . .
F . . . or as vectors in Zn

q.

polynomial ‘+’ ←→ vector addition

polynomial ‘×’ ←→ ‘anti-cyclic convolution’

I Search: find the secret s ∈ Rq, given:

a1 ← Rq , b1 = a1 × s + e1 ∈ Rq

a2 ← Rq , b2 = a2 × s + e2 ∈ Rq

...

Error vectors

I Decision: distinguish (ai , bi) from uniform (ai , bi).
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A New Kind of LWE Cryptosystem
I Secret key: ‘short’ s ∈ Rq. Public key: (a , b = a× s + e)

I Encrypt m ∈ {0, 1}n: choose ‘short’ t ∈ Rq. Output ciphertext

(c1, c2) = (a× t + e1 , b× t + e2 + m · [q
2 ])

≈ (a× t , a× s× t + m · [q
2 ])

I Decrypt: recover m from c2 − c1 × s.

I Works just like subset-sum encryption [LPS’10] and . . . ElGamal ?!?

But only Õ(n) key size, Enc, Dec for n-bit message.

Proof of CPA Security

1 Public key (a,b) ≈c (a,b) by decision Ring-LWE
(even for ‘short’ s [ACPS’09])

2 Ciphertext (c1, c2) ≈c (c1, c2), again by decision Ring-LWE
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Hardness of Search Ring-LWE

Theorem 1
For any large enough q, solving search Ring-LWE

is as hard as quantumly solving poly(n)-approx SVP
in any (worst-case) ideal lattice from the ring.

I Proof follows the outline of [Regev’05] for LWE & arbitrary lattices.

Quantum component used as ‘black-box;’ only classical part
needs adaptation to the ring setting.

I New reduction technique for ‘clearing the ideal’ (I/qI 7→ R/qR),
in an ‘algebra-preserving’ way.

Uses Chinese remainder theorem and theory of duality for ideals.
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A Word on Ideal Lattices
I Recall example ring R = Z[x]/(xn + 1) for n = 2k.
I An ideal I ⊆ R is closed under + and −, and under × with R.

To get ideal lattices, embed R and its ideals into Rn. How?

I [HPS’98,M’02,PR’06,LM’06,G’09,. . . ]: ‘coefficient embedding’

a(x) = a0 + a1x + · · ·+ an−1xn−1 7→ (a0, . . . , an−1) ∈ Zn

+ is coordinate-wise, but analyzing × is cumbersome (esp. for rv’s)

I [Minkowski’18??,. . . ]: ‘canonical embedding.’ Let ω = exp(πi/n):

a(x) 7→ (a(ω1) , a(ω3) , . . . , a(ω2n−1)) ∈ Cn

Both + and × are coordinate-wise! Nice geometric behavior.

I Modulo any prime q = 1 mod 2n, (xn + 1) has n roots ω2i−1 ∈ Zq.
For Ring-LWE schemes, this gives an embedding into Zn

q.

10 / 12



A Word on Ideal Lattices
I Recall example ring R = Z[x]/(xn + 1) for n = 2k.
I An ideal I ⊆ R is closed under + and −, and under × with R.

To get ideal lattices, embed R and its ideals into Rn. How?

I [HPS’98,M’02,PR’06,LM’06,G’09,. . . ]: ‘coefficient embedding’

a(x) = a0 + a1x + · · ·+ an−1xn−1 7→ (a0, . . . , an−1) ∈ Zn

+ is coordinate-wise, but analyzing × is cumbersome (esp. for rv’s)

I [Minkowski’18??,. . . ]: ‘canonical embedding.’ Let ω = exp(πi/n):

a(x) 7→ (a(ω1) , a(ω3) , . . . , a(ω2n−1)) ∈ Cn

Both + and × are coordinate-wise! Nice geometric behavior.

I Modulo any prime q = 1 mod 2n, (xn + 1) has n roots ω2i−1 ∈ Zq.
For Ring-LWE schemes, this gives an embedding into Zn

q.

10 / 12



A Word on Ideal Lattices
I Recall example ring R = Z[x]/(xn + 1) for n = 2k.
I An ideal I ⊆ R is closed under + and −, and under × with R.

To get ideal lattices, embed R and its ideals into Rn. How?
I [HPS’98,M’02,PR’06,LM’06,G’09,. . . ]: ‘coefficient embedding’

a(x) = a0 + a1x + · · ·+ an−1xn−1 7→ (a0, . . . , an−1) ∈ Zn

+ is coordinate-wise, but analyzing × is cumbersome (esp. for rv’s)

I [Minkowski’18??,. . . ]: ‘canonical embedding.’ Let ω = exp(πi/n):

a(x) 7→ (a(ω1) , a(ω3) , . . . , a(ω2n−1)) ∈ Cn

Both + and × are coordinate-wise! Nice geometric behavior.

I Modulo any prime q = 1 mod 2n, (xn + 1) has n roots ω2i−1 ∈ Zq.
For Ring-LWE schemes, this gives an embedding into Zn

q.

10 / 12



A Word on Ideal Lattices
I Recall example ring R = Z[x]/(xn + 1) for n = 2k.
I An ideal I ⊆ R is closed under + and −, and under × with R.

To get ideal lattices, embed R and its ideals into Rn. How?
I [HPS’98,M’02,PR’06,LM’06,G’09,. . . ]: ‘coefficient embedding’

a(x) = a0 + a1x + · · ·+ an−1xn−1 7→ (a0, . . . , an−1) ∈ Zn

+ is coordinate-wise, but analyzing × is cumbersome (esp. for rv’s)

I [Minkowski’18??,. . . ]: ‘canonical embedding.’ Let ω = exp(πi/n):

a(x) 7→ (a(ω1) , a(ω3) , . . . , a(ω2n−1)) ∈ Cn

Both + and × are coordinate-wise! Nice geometric behavior.

I Modulo any prime q = 1 mod 2n, (xn + 1) has n roots ω2i−1 ∈ Zq.
For Ring-LWE schemes, this gives an embedding into Zn

q.

10 / 12



A Word on Ideal Lattices
I Recall example ring R = Z[x]/(xn + 1) for n = 2k.
I An ideal I ⊆ R is closed under + and −, and under × with R.

To get ideal lattices, embed R and its ideals into Cn. How?
I [HPS’98,M’02,PR’06,LM’06,G’09,. . . ]: ‘coefficient embedding’

a(x) = a0 + a1x + · · ·+ an−1xn−1 7→ (a0, . . . , an−1) ∈ Zn

+ is coordinate-wise, but analyzing × is cumbersome (esp. for rv’s)

I [Minkowski’18??,. . . ]: ‘canonical embedding.’ Let ω = exp(πi/n):

a(x) 7→ (a(ω1) , a(ω3) , . . . , a(ω2n−1)) ∈ Cn

Both + and × are coordinate-wise! Nice geometric behavior.

I Modulo any prime q = 1 mod 2n, (xn + 1) has n roots ω2i−1 ∈ Zq.
For Ring-LWE schemes, this gives an embedding into Zn

q.

10 / 12



A Word on Ideal Lattices
I Recall example ring R = Z[x]/(xn + 1) for n = 2k.
I An ideal I ⊆ R is closed under + and −, and under × with R.

To get ideal lattices, embed R and its ideals into Cn. How?
I [HPS’98,M’02,PR’06,LM’06,G’09,. . . ]: ‘coefficient embedding’

a(x) = a0 + a1x + · · ·+ an−1xn−1 7→ (a0, . . . , an−1) ∈ Zn

+ is coordinate-wise, but analyzing × is cumbersome (esp. for rv’s)

I [Minkowski’18??,. . . ]: ‘canonical embedding.’ Let ω = exp(πi/n):

a(x) 7→ (a(ω1) , a(ω3) , . . . , a(ω2n−1)) ∈ Cn

Both + and × are coordinate-wise! Nice geometric behavior.

I Modulo any prime q = 1 mod 2n, (xn + 1) has n roots ω2i−1 ∈ Zq.
For Ring-LWE schemes, this gives an embedding into Zn

q.

10 / 12



A Word on Ideal Lattices
I Recall example ring R = Z[x]/(xn + 1) for n = 2k.
I An ideal I ⊆ R is closed under + and −, and under × with R.

To get ideal lattices, embed R and its ideals into Zn
q. How?

I [HPS’98,M’02,PR’06,LM’06,G’09,. . . ]: ‘coefficient embedding’

a(x) = a0 + a1x + · · ·+ an−1xn−1 7→ (a0, . . . , an−1) ∈ Zn

+ is coordinate-wise, but analyzing × is cumbersome (esp. for rv’s)

I [Minkowski’18??,. . . ]: ‘canonical embedding.’ Let ω = exp(πi/n):

a(x) 7→ (a(ω1) , a(ω3) , . . . , a(ω2n−1)) ∈ Cn

Both + and × are coordinate-wise! Nice geometric behavior.

I Modulo any prime q = 1 mod 2n, (xn + 1) has n roots ω2i−1 ∈ Zq.
For Ring-LWE schemes, this gives an embedding into Zn

q.

10 / 12



Pseudorandomness of Ring-LWE
Theorem 2

Solving decision Ring-LWE in Rq = Zq[x]/(xn + 1)

(for any poly(n)-bounded prime q = 1 mod 2n)

is as hard as solving search Ring-LWE.

Proof Outline
Given: O distinguishes samples (a,b ≈ a× s) from uniform (a,b).
Goal: Find s ∈ Rq. Equivalent to finding s(ω2j−1) ∈ Zq for j = 1, . . . , n.

1 Hybrid argument: randomize b(ω1) ∈ Zq, then (b(ω1),b(ω3)), . . .
Then O must distinguish relative to some ω2i−1.

2 Using O, guess-and-check to find s(ω2i−1) ∈ Zq (a la [BFKL’93,R’05]).

3 How to find other s(ω2j−1)? Couldn’t O be useless on other roots?
Map ω 7→ ωk permutes roots of xn + 1. Can send each to ω2i−1.

(Math jargon: use the automorphism (Galois) group of the cyclotomic number field.)
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Summary and Conclusions
I In any cyclotomic ring, Ring-LWE is pseudorandom if ideal lattice

problems are (quantumly) hard in the worst case.

I Ring-LWE allows for much more compact and efficient encryption
schemes than standard LWE.
E.g., PKE in Õ(1) work per message bit.

I Main open direction: develop new kinds of constructions unlike
those based on standard LWE (e.g., fully homomorphic PKE?)

I Questions? More details? Find me here:
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