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Agenda

® Ring-LWE and its hardness from ideal lattices

® Open questions
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2010 Ring-LWE: efficient encryption, worst-case hardness 0
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» Search: find secret s € Zj given many ‘noisy inner products’
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Vn < error < q

» Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard (... maybe even for quantum!)

worst case < < . < crvoto
lattice problems _7 search-LWE _7 decision-LWE < cryp

(quantum [R'05]) [BFKL'93,R'05,...]

» Also a classical reduction for search-LWE [P'09,BLPRS'13]
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Public Key Encryption and Oblivious Transfer [R'05,PVW'08]
Actively Secure PKE (w/o RO) [PW'08,P'09,MP'12]
Identity-Based Encryption (in RO model) [GPV'08]
Hierarchical ID-Based Encryption (w/o RO) [CHKP'10,ABB'10]

Leakage-Resilient Crypto  [AGV'09,DGKPV’'10,GKPV'10,ADNSWW'10,. ..

]
Fully Homomorphic Encryption [BV'11,BGV'12,GSW'13,...]
Attribute-Based Encryption [AFV'11,GVW'13,BGG+'14,. . .]
Symmetric-Key Primitives [BPR'12,BMLR'13,BP'14,...]
Other Exotic Encryption [ACPS'09,BHHI'10,0P'10,. . .]

the list goes on. ..
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LWE is (Sort Of) Efficient

P Getting one pseudorandom
scalar requires an n-dim inner
product mod ¢

(ai)|s|+e=0b€Z¢ Can amortize each a; over many
: secrets s;, but still O(n) work
per scalar output.

» Cryptosystems have rather large keys:

pk = A ) b Q(n)

n

» Can fix A for all users, but still > n? work to encrypt & decrypt an
n-bit message

6
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Wishful Thinking. . .

> Get n pseudorandom scalars
from just one (cheap)

a; |x|s|+| e = b: | e z? .
! _ ! h 1 product operation?

» How to define the product ‘x' so that (a;, b;) is pseudorandom?

» Careful! With small error, coordinate-wise multiplication is insecure!

Answer
» ‘%' = multiplication in a polynomial ring: e.g., Z4[X]/(X™ +1).

Fast and practical with FFT: nlogn operations mod q.

» Same ring structures used in NTRU cryptosystem [HPS'9g],
& in compact one-way / CR hash functions [Mic'02,PR'06,LM'06,. .. ]
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LWE Over Rings, Over Simplified

> Let‘R =ZIX]/(X™"+1) ‘ for n a power of two, and | R, = R/qR

* Elements of R, are deg < n polynomials with mod-g coefficients

* Operations in R, are very efficient using FFT-like algorithms

» Search: find secret ring element s(X) € R,, given:

am Ry , bi=a1-s+e €Ry
ar <+ Ry , ba=as-s+e € Ry
a3 Ry , by=as-s+es€ Ry (e; € R are ‘small’)

Note: (a;,b;) are uniformly random subject to

» Decision: distinguish (a; , b;) from uniform (a; , b;) € Ry X Ry

(with noticeable advantage)
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(classical,
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Hardness of Ring-LWE

» Two main theorems (reductions):

s SR e s 2 g e

on ideal lattices in R 5 5
(quantum, (classical,
any R = Ok) any cyclotomic R)

@ If you can find s given (a; , b;), then you can find approximately
shortest vectors in any ideal lattice in R (using a quantum algorithm).

@ If you can distinguish (a; , b;) from (a; , b;), then you can find s.
» Then:

decision R-LWE < lots of crypto J

* If you can break the crypto, then you can distinguish (a; , b;) from
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» Say R =Z[X]/(X™ + 1) for power-of-two n. (Or R=0k.)
» Anideal Z C R is closed under + and —, and under - with R.

To get ideal lattices, embed R and its ideals into R™. How?
® 'Obvious’ answer: ‘coefficient embedding’

a0+a1X—i—-'-—|—an_1X"—1€R — (ao,...,an_l)GZ"
+ is coordinate-wise, but analyzing - is cumbersome.

@® [Minkowski]: ‘canonical embedding.’ Let w = exp(wi/n) € C, so roots
of X" + 1 are w!,w?,...,w?™ 1. Embed:

a(X)eR +— (aw!),alw?),..., aw? 1) eC"

Both 4+ and - are coordinate-wise.

(NB: LWE error distribution is Gaussian in canonical embedding.)
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Ideal Lattices

» Say R =Z[X]/(X? +1). Embeddings map X + =i.
» 7 =(X—2,-3X +1) is an ideal in R.

(Approximate) Shortest Vector Problem

» Given (an arbitrary basis of) an arbitrary ideal Z C R,
find a nearly shortest nonzero a € 7.

11 /16
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Hardness of Search Ring-LWE

For any large enough ¢, solving search R-LWE

is as hard as quantumly solving poly(n)-approx SVP

in any (worst-case) ideal lattice in R = O

> Proof follows the template of [Regev'05] for LWE & arbitrary lattices.
Quantum component used as ‘black-box;" only classical part needs

adaptation to the ring setting.

> Main technique: ‘clearing ideals’ while preserving R-module structure:

T/¢T — R/qR,
7V/qZ" +~ RY/qR".

Uses Chinese remainder theorem and theory of duality for ideals.
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Theorem 2
Solving decision R-LWE in any cyclotomic R = Z[(p] = Z[X] /@ (X)
(for any poly(n)-bounded prime ¢ = 1 mod m)
is as hard as solving search R-LWE.

| A\

Facts Used in the Proof
» Zg has order ¢ — 1 = 0 mod m, so has an element w of order m.

» Modulo ¢, ®,,,(X) has n = ¢(m) roots w’, for j € Z,.

» So there is a ring isomorphism R, & Zy given by

a(X) € Ry (a(w’) )jeZ:n € Zy.

\
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Solving decision Ring-LWE in R, = Zq[X]/ Py, (X)
is as hard as solving search Ring-LWE.

Proof Sketch

Given: O distinguishes samples (a,b ~ a - s) from uniform (a,b).

Goal: Find s € R, given samples (a,b~ a - s).

® Equivalent to finding s(w’) € Z, for all j € Z7,.

® Hybrid argument: randomize one b(w’) € Z; or two; or three; or ...
Then O must distinguish relative to some w?".

® Using O, guess-and-check to find s(w?") € Z,.

© How to find other s(w’)? Couldn't O be useless at other roots?

w — wk (k € ZF,) permutes roots of ®,,(X), and preserves error.

So send each w’ to w/", and use O to find s(w).
14 /14
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Finding short vectors is what appears hard.
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“cyclotomic fields, used for Ring-LWE, are uniquely protected against
the attacks presented in this paper”
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* Despite abundant ring structure (e.g., subfields, Galois), no substantial
improvement over attacks on general lattices.

* Next up: attacks on a specialized variant: given a principal ideal 7
guaranteed to have an “unusually short” generator, find it.

* These conditions are extremely rare for general ideals, so (worst-case)
approx-R-SVP is unaffected.
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