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A Brief, Selective History of Lattice Cryptography

1996 Ajtai’s worst-case/average-case reduction, one-way function
& public-key encryption (very inefficient)

1996 NTRU efficient ring-based encryption (heuristic security)

2002 Micciancio’s ring-based one-way function
with worst-case hardness (no encryption)

2005 Regev’s LWE: encryption with worst-case hardness
(inefficient)

2008– Countless applications of LWE (still inefficient)

2010 Ring-LWE: efficient encryption, worst-case hardness ()
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Learning With Errors [Regev’05]

I Parameters: dimension n, modulus q = poly(n).

I Search: find secret s ∈ Zn
q given many ‘noisy inner products’

√
n ≤ error� q

I Decision: distinguish (A , b) from uniform (A , b)

LWE is Hard (. . . maybe even for quantum!)

worst case
lattice problems

≤

(quantum [R’05])

search-LWE ≤

[BFKL’93,R’05,. . . ]

decision-LWE ≤ crypto

I Also a classical reduction for search-LWE [P’09,BLPRS’13]
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LWE is Versatile

What kinds of crypto can we do with LWE?

Public Key Encryption and Oblivious Transfer [R’05,PVW’08]

Actively Secure PKE (w/o RO) [PW’08,P’09,MP’12]

Identity-Based Encryption (in RO model) [GPV’08]

Hierarchical ID-Based Encryption (w/o RO) [CHKP’10,ABB’10]

Leakage-Resilient Crypto [AGV’09,DGKPV’10,GKPV’10,ADNSWW’10,. . . ]

Fully Homomorphic Encryption [BV’11,BGV’12,GSW’13,. . . ]

Attribute-Based Encryption [AFV’11,GVW’13,BGG+’14,. . . ]

Symmetric-Key Primitives [BPR’12,BMLR’13,BP’14,. . . ]

Other Exotic Encryption [ACPS’09,BHHI’10,OP’10,. . . ]

the list goes on. . .
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LWE is (Sort Of) Efficient

(
· · · ai · · ·

)
...
s
...

+ e = b ∈ Zq

I Getting one pseudorandom
scalar requires an n-dim inner
product mod q

I Can amortize each ai over many
secrets sj , but still Õ(n) work
per scalar output.

I Cryptosystems have rather large keys:

pk =


...
A
...


︸ ︷︷ ︸

n

,


...
b
...


Ω(n)

I Can fix A for all users, but still ≥ n2 work to encrypt & decrypt an
n-bit message
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Wishful Thinking. . .


...
ai
...

?


...
s
...

+


...
ei
...

 =


...
bi
...

 ∈ Zn
q

I Get n pseudorandom scalars
from just one (cheap)
product operation?

Question
I How to define the product ‘?’ so that (ai,bi) is pseudorandom?

I Careful! With small error, coordinate-wise multiplication is insecure!

Answer
I ‘?’ = multiplication in a polynomial ring: e.g., Zq[X]/(Xn + 1).

Fast and practical with FFT: n log n operations mod q.

I Same ring structures used in NTRU cryptosystem [HPS’98],

& in compact one-way / CR hash functions [Mic’02,PR’06,LM’06,. . . ]
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LWE Over Rings, Over Simplified

I Let R = Z[X]/(Xn + 1) for n a power of two, and Rq = R/qR

F Elements of Rq are deg < n polynomials with mod-q coefficients

F Operations in Rq are very efficient using FFT-like algorithms

I Search: find secret ring element s(X) ∈ Rq, given:

a1 ← Rq , b1 = a1 · s+ e1 ∈ Rq

a2 ← Rq , b2 = a2 · s+ e2 ∈ Rq

a3 ← Rq , b3 = a3 · s+ e3 ∈ Rq

...

(ei ∈ R are ‘small’)

Note: (ai, bi) are uniformly random subject to bi − ai · s ≈ 0

I Decision: distinguish (ai , bi) from uniform (ai , bi) ∈ Rq ×Rq

(with noticeable advantage)
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Hardness of Ring-LWE

I Two main theorems (reductions):

worst-case approx-SVP
on ideal lattices in R

≤

(quantum,
any R = OK)

search R-LWE ≤

(classical,
any cyclotomic R)

decision R-LWE

1 If you can find s given (ai , bi), then you can find approximately
shortest vectors in any ideal lattice in R (using a quantum algorithm).

2 If you can distinguish (ai , bi) from (ai , bi), then you can find s.

I Then:

decision R-LWE ≤ lots of crypto

F If you can break the crypto, then you can distinguish (ai , bi) from
(ai , bi). . .
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Ideal Lattices

I Say R = Z[X]/(Xn + 1) for power-of-two n. (Or R = OK .)

I An ideal I ⊆ R is closed under + and −, and under · with R.

To get ideal lattices, embed R and its ideals into Rn. How?

1 ‘Obvious’ answer: ‘coefficient embedding’

a0 + a1X + · · ·+ an−1X
n−1 ∈ R 7→ (a0, . . . , an−1) ∈ Zn

+ is coordinate-wise, but analyzing · is cumbersome.

2 [Minkowski]: ‘canonical embedding.’ Let ω = exp(πi/n) ∈ C, so roots
of Xn + 1 are ω1, ω3, . . . , ω2n−1. Embed:

a(X) ∈ R 7→ (a(ω1) , a(ω3) , . . . , a(ω2n−1)) ∈ Cn

Both + and · are coordinate-wise.

(NB: LWE error distribution is Gaussian in canonical embedding.)
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Ideal Lattices

I Say R = Z[X]/(X2 + 1). Embeddings map X 7→ ±i.

I I = 〈X − 2,−3X + 1〉 is an ideal in R.

σ(1) = (1, 1)σ(X) = (i,−i)

σ(X − 2)

σ(−3X + 1)

(Approximate) Shortest Vector Problem

I Given (an arbitrary basis of) an arbitrary ideal I ⊆ R,
find a nearly shortest nonzero a ∈ I.
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Hardness of Search Ring-LWE

Theorem 1

For any large enough q, solving search R-LWE

is as hard as quantumly solving poly(n)-approx SVP

in any (worst-case) ideal lattice in R = OK .

I Proof follows the template of [Regev’05] for LWE & arbitrary lattices.

Quantum component used as ‘black-box;’ only classical part needs
adaptation to the ring setting.

I Main technique: ‘clearing ideals’ while preserving R-module structure:

I/qI 7→ R/qR,

I∨/qI∨ 7→ R∨/qR∨.

Uses Chinese remainder theorem and theory of duality for ideals.
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Hardness of Decision Ring-LWE

Theorem 2

Solving decision R-LWE in any cyclotomic R = Z[ζm] ∼= Z[X]/Φm(X)

(for any poly(n)-bounded prime q = 1 mod m)

is as hard as solving search R-LWE.

Facts Used in the Proof
I Z∗q has order q − 1 = 0 mod m, so has an element ω of order m.

I Modulo q, Φm(X) has n = ϕ(m) roots ωj , for j ∈ Z∗m.

I So there is a ring isomorphism Rq
∼= Zn

q given by

a(X) ∈ Rq 7→
(
a(ωj)

)
j∈Z∗

m
∈ Zn

q .
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Hardness of Decision Ring-LWE

Theorem 2

Solving decision Ring-LWE in Rq = Zq[X]/Φm(X)
is as hard as solving search Ring-LWE.

Proof Sketch

Given: O distinguishes samples (a , b ≈ a · s) from uniform (a , b).

Goal: Find s ∈ Rq, given samples (a , b ≈ a · s).

1 Equivalent to finding s(ωj) ∈ Zq for all j ∈ Z∗m.

2 Hybrid argument: randomize one b(ωj) ∈ Zq; or two; or three; or . . .

Then O must distinguish relative to some ωj∗ .

3 Using O, guess-and-check to find s(ωj∗) ∈ Zq.

4 How to find other s(ωj)? Couldn’t O be useless at other roots?

ω 7→ ωk (k ∈ Z∗m) permutes roots of Φm(X), and preserves error.

So send each ωj to ωj∗ , and use O to find s(ωj).
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Open Problems: Reductions

1 Search-R-LWE is quantumly at least as hard as approx-R-SVP.
Is there a classical reduction?

F [P’09] reduces GapSVP (i.e., estimate λ1(L)) on general lattices to
plain-LWE, classically.

F But estimating λ1(L) is trivially easy on ideal lattices!
Finding short vectors is what appears hard.

2 Search- and decision-R-LWE are equivalent in cyclotomic R.
Does this hold in other kinds of rings?

F Yes, for any Galois number field (identical proof).

F Probably not, for carefully constructed rings S, moduli q, and errors!

Decision-S-LWE easily broken, but search unaffected. [EHL’14,ELOS’15]

“cyclotomic fields, used for Ring-LWE, are uniquely protected against
the attacks presented in this paper”
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Open Problems: Attacks

1 We know approx-R-SVP ≤ R-LWE (quantumly). Other direction?

Can we solve R-LWE using an oracle for approx-R-SVP?

F R-LWE samples (ai, bi)i=1,...,` don’t readily translate to ideals in R.

F They do yield a BDD instance on an R-module lattice:

L =
{

(vi) : vi = ai · z (mod qR)
}
⊆ R`

2 How hard/easy is approx-R-SVP, anyway? (In cyclotomics etc.)

F Despite abundant ring structure (e.g., subfields, Galois), no substantial
improvement over attacks on general lattices.

F Next up: attacks on a specialized variant: given a principal ideal I
guaranteed to have an “unusually short” generator, find it.

F These conditions are extremely rare for general ideals, so (worst-case)
approx-R-SVP is unaffected.
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