
Trapdoors for Lattices:
Simpler, Tighter, Faster, Smaller

Daniele Micciancio1 Chris Peikert2

1UC San Diego

2Georgia Tech

IBM Research
8 September 2011

1 / 17

Lattice-Based Cryptography

N
= p · q

y =
gx mod p

me mod N

e(ga, gb)

=⇒

Why?

I Simple & efficient: linear, highly parallel operations

I Resist quantum attacks (so far)

I Secure under worst-case hardness assumptions [Ajtai’96,. . .]

I Solve ‘holy grail’ problems like FHE [Gentry’09,. . .]

(Images courtesy xkcd.org) 2 / 17

Lattice-Based Cryptography

N
= p · q

y =
gx mod p

me mod N

e(ga, gb)

=⇒

Why?

I Simple & efficient: linear, highly parallel operations

I Resist quantum attacks (so far)

I Secure under worst-case hardness assumptions [Ajtai’96,. . .]

I Solve ‘holy grail’ problems like FHE [Gentry’09,. . .]

(Images courtesy xkcd.org) 2 / 17

Lattice-Based Cryptography

N
= p · q

y =
gx mod p

me mod N

e(ga, gb)

=⇒

Why?

I Simple & efficient: linear, highly parallel operations

I Resist quantum attacks (so far)

I Secure under worst-case hardness assumptions [Ajtai’96,. . .]

I Solve ‘holy grail’ problems like FHE [Gentry’09,. . .]

(Images courtesy xkcd.org) 2 / 17

Lattice-Based One-Way Functions
I Public key

[
· · · A · · ·

]
∈ Zn×m

q for q = poly(n), m = Ω(n log q).

fA(x) = Ax mod q ∈ Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = stA + et mod q ∈ Zm
q

(“short” e, injective)

OWF if LWE hard [Regev’05,P’09]

3 / 17

Lattice-Based One-Way Functions
I Public key

[
· · · A · · ·

]
∈ Zn×m

q for q = poly(n), m = Ω(n log q).

fA(x) = Ax mod q ∈ Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = stA + et mod q ∈ Zm
q

(“short” e, injective)

OWF if LWE hard [Regev’05,P’09]

3 / 17

Lattice-Based One-Way Functions
I Public key

[
· · · A · · ·

]
∈ Zn×m

q for q = poly(n), m = Ω(n log q).

fA(x) = Ax mod q ∈ Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = stA + et mod q ∈ Zm
q

(“short” e, injective)

OWF if LWE hard [Regev’05,P’09]

3 / 17

Lattice-Based One-Way Functions
I Public key

[
· · · A · · ·

]
∈ Zn×m

q for q = poly(n), m = Ω(n log q).

fA(x) = Ax mod q ∈ Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = stA + et mod q ∈ Zm
q

(“short” e, injective)

OWF if LWE hard [Regev’05,P’09]

I Lattice interpretation: Λ⊥(A) = {x ∈ Zm : fA(x) = Ax = 0 mod q}

O

(0, q)

(q, 0)

3 / 17

Lattice-Based One-Way Functions
I Public key

[
· · · A · · ·

]
∈ Zn×m

q for q = poly(n), m = Ω(n log q).

fA(x) = Ax mod q ∈ Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = stA + et mod q ∈ Zm
q

(“short” e, injective)

OWF if LWE hard [Regev’05,P’09]

I Lattice interpretation: Λ⊥(A) = {x ∈ Zm : fA(x) = Ax = 0 mod q}

O

(0, q)

(q, 0)

x

3 / 17

Lattice-Based One-Way Functions
I Public key

[
· · · A · · ·

]
∈ Zn×m

q for q = poly(n), m = Ω(n log q).

fA(x) = Ax mod q ∈ Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . .]

gA(s, e) = stA + et mod q ∈ Zm
q

(“short” e, injective)

OWF if LWE hard [Regev’05,P’09]

I fA, gA in forward direction yield CRHFs, CPA-secure encryption
. . . and not much else.

3 / 17

Trapdoor Inversion
I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x′) = Ax′ mod q:

sample random x← f−1
A (u)

with prob ∝ exp(−‖x‖2/s2).

Invert gA(s, e) = stA + et mod q:

find the unique preimage s
(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of Λ⊥(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

4 / 17

Trapdoor Inversion
I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x′) = Ax′ mod q:

sample random x← f−1
A (u)

with prob ∝ exp(−‖x‖2/s2).

Invert gA(s, e) = stA + et mod q:

find the unique preimage s
(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of Λ⊥(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

4 / 17

Trapdoor Inversion
I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x′) = Ax′ mod q:

sample random x← f−1
A (u)

with prob ∝ exp(−‖x‖2/s2).

Invert gA(s, e) = stA + et mod q:

find the unique preimage s
(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of Λ⊥(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

4 / 17

Trapdoor Inversion
I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x′) = Ax′ mod q:

sample random x← f−1
A (u)

with prob ∝ exp(−‖x‖2/s2).

Invert gA(s, e) = stA + et mod q:

find the unique preimage s
(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of Λ⊥(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]

O

4 / 17

Applications of Strong Trapdoors
Canonical App: [GPV’08] Signatures
I pk = A, sk = short basis for A, random oracle H : {0, 1}∗ → Zn

q.

I Sign(m): let u = H(m) and output Gaussian x← f−1
A (u)

I Verify(m, x): check fA(x) = Ax = H(m) and x “short enough”

I Security: finding “short enough” preimages in fA must be hard

5 / 17

Applications of Strong Trapdoors
Canonical App: [GPV’08] Signatures
I pk = A, sk = short basis for A, random oracle H : {0, 1}∗ → Zn

q.

I Sign(m): let u = H(m) and output Gaussian x← f−1
A (u)

I Verify(m, x): check fA(x) = Ax = H(m) and x “short enough”

I Security: finding “short enough” preimages in fA must be hard

5 / 17

Applications of Strong Trapdoors
Canonical App: [GPV’08] Signatures
I pk = A, sk = short basis for A, random oracle H : {0, 1}∗ → Zn

q.

I Sign(m): let u = H(m) and output Gaussian x← f−1
A (u)

I Verify(m, x): check fA(x) = Ax = H(m) and x “short enough”

I Security: finding “short enough” preimages in fA must be hard

5 / 17

Applications of Strong Trapdoors
Canonical App: [GPV’08] Signatures
I pk = A, sk = short basis for A, random oracle H : {0, 1}∗ → Zn

q.

I Sign(m): let u = H(m) and output Gaussian x← f−1
A (u)

I Verify(m, x): check fA(x) = Ax = H(m) and x “short enough”

I Security: finding “short enough” preimages in fA must be hard

5 / 17

Applications of Strong Trapdoors
Canonical App: [GPV’08] Signatures
I pk = A, sk = short basis for A, random oracle H : {0, 1}∗ → Zn

q.

I Sign(m): let u = H(m) and output Gaussian x← f−1
A (u)

I Verify(m, x): check fA(x) = Ax = H(m) and x “short enough”

I Security: finding “short enough” preimages in fA must be hard

Other “Black-Box” Applications of f−1, g−1

I Standard model signatures [CHKP’10,R’10,B’10]

I CCA-secure encryption [PW’08,P’09]

I (Hierarchical) ID-based encryption [GPV’08,CHKP’10,ABB’10a,ABB’10b]

I Much more:
[PVW’08,PV’08,GHV’10,GKV’10,BF’10a,BF’10b,OPW’11,AFV’11,ABVVW’11,. . .]

5 / 17

Applications of Strong Trapdoors
Canonical App: [GPV’08] Signatures
I pk = A, sk = short basis for A, random oracle H : {0, 1}∗ → Zn

q.

I Sign(m): let u = H(m) and output Gaussian x← f−1
A (u)

I Verify(m, x): check fA(x) = Ax = H(m) and x “short enough”

I Security: finding “short enough” preimages in fA must be hard

Some Drawbacks. . .
7 Generating A w/ short basis is complicated and slow [Ajtai’99,AP’09]

7 Known algorithms trade quality for efficiency

g−1
A : [Babai’86] (tight,iterative,fp) vs [Babai’86] (looser,parallel,offline)

f−1
A : [Klein’01,GPV’08] (ditto) vs [P’10] (ditto)

5 / 17

Applications of Strong Trapdoors
Canonical App: [GPV’08] Signatures
I pk = A, sk = short basis for A, random oracle H : {0, 1}∗ → Zn

q.

I Sign(m): let u = H(m) and output Gaussian x← f−1
A (u)

I Verify(m, x): check fA(x) = Ax = H(m) and x “short enough”

I Security: finding “short enough” preimages in fA must be hard

Some Drawbacks. . .
7 Generating A w/ short basis is complicated and slow [Ajtai’99,AP’09]

7 Known algorithms trade quality for efficiency

g−1
A : [Babai’86] (tight,iterative,fp) vs [Babai’86] (looser,parallel,offline)

f−1
A : [Klein’01,GPV’08] (ditto) vs [P’10] (ditto)

5 / 17

Applications of Strong Trapdoors
Canonical App: [GPV’08] Signatures
I pk = A, sk = short basis for A, random oracle H : {0, 1}∗ → Zn

q.

I Sign(m): let u = H(m) and output Gaussian x← f−1
A (u)

I Verify(m, x): check fA(x) = Ax = H(m) and x “short enough”

I Security: finding “short enough” preimages in fA must be hard

Some Drawbacks. . .
7 Generating A w/ short basis is complicated and slow [Ajtai’99,AP’09]

7 Known algorithms trade quality for efficiency

g−1
A : [Babai’86] (tight,iterative,fp) vs [Babai’86] (looser,parallel,offline)

f−1
A : [Klein’01,GPV’08] (ditto) vs [P’10] (ditto)

5 / 17

Taming the Parameters

n
{[
· · · A · · ·

]
︸ ︷︷ ︸

m

fA(x) = Ax
O

1 Trapdoor construction yields some lattice dim m = Ω(n log q).

2 Basis “quality” ≈ lengths of basis vectors ≈ Gaussian std dev s.

3 Dimension m, std dev s =⇒ preimage length β = ‖x‖ ≈ s
√

m.

4 Choose n, q so that finding β-bounded preimages is hard.

4 Better dimension m & quality s
=⇒ “win-win-win” in security-keysize-runtime

6 / 17

Taming the Parameters

n
{[
· · · A · · ·

]
︸ ︷︷ ︸

m

fA(x) = Ax
O

1 Trapdoor construction yields some lattice dim m = Ω(n log q).

2 Basis “quality” ≈ lengths of basis vectors ≈ Gaussian std dev s.

3 Dimension m, std dev s =⇒ preimage length β = ‖x‖ ≈ s
√

m.

4 Choose n, q so that finding β-bounded preimages is hard.

4 Better dimension m & quality s
=⇒ “win-win-win” in security-keysize-runtime

6 / 17

Taming the Parameters

n
{[
· · · A · · ·

]
︸ ︷︷ ︸

m

fA(x) = Ax
O

1 Trapdoor construction yields some lattice dim m = Ω(n log q).

2 Basis “quality” ≈ lengths of basis vectors ≈ Gaussian std dev s.

3 Dimension m, std dev s =⇒ preimage length β = ‖x‖ ≈ s
√

m.

4 Choose n, q so that finding β-bounded preimages is hard.

4 Better dimension m & quality s
=⇒ “win-win-win” in security-keysize-runtime

6 / 17

Taming the Parameters

n
{[
· · · A · · ·

]
︸ ︷︷ ︸

m

fA(x) = Ax
O

1 Trapdoor construction yields some lattice dim m = Ω(n log q).

2 Basis “quality” ≈ lengths of basis vectors ≈ Gaussian std dev s.

3 Dimension m, std dev s =⇒ preimage length β = ‖x‖ ≈ s
√

m.

4 Choose n, q so that finding β-bounded preimages is hard.

4 Better dimension m & quality s
=⇒ “win-win-win” in security-keysize-runtime

6 / 17

Taming the Parameters

n
{[
· · · A · · ·

]
︸ ︷︷ ︸

m

fA(x) = Ax
O

1 Trapdoor construction yields some lattice dim m = Ω(n log q).

2 Basis “quality” ≈ lengths of basis vectors ≈ Gaussian std dev s.

3 Dimension m, std dev s =⇒ preimage length β = ‖x‖ ≈ s
√

m.

4 Choose n, q so that finding β-bounded preimages is hard.

4 Better dimension m & quality s
=⇒ “win-win-win” in security-keysize-runtime

6 / 17

Taming the Parameters

n
{[
· · · A · · ·

]
︸ ︷︷ ︸

m

fA(x) = Ax
O

1 Trapdoor construction yields some lattice dim m = Ω(n log q).

2 Basis “quality” ≈ lengths of basis vectors ≈ Gaussian std dev s.

3 Dimension m, std dev s =⇒ preimage length β = ‖x‖ ≈ s
√

m.

4 Choose n, q so that finding β-bounded preimages is hard.

4 Better dimension m & quality s
=⇒ “win-win-win” in security-keysize-runtime

6 / 17

Our Contributions
New “strong” trapdoor generation and inversion algorithms:

4 Very simple & fast
F Generation: one matrix mult. No HNF or inverses (cf. [A’99,AP’09])
F Inversion: practical, parallel, & mostly offline
F No more efficiency-vs-quality tradeoff

4 Tighter parameters m and s
F Asymptotically optimal with small constant factors
F Ex improvement: 32x in dim m, 25x in quality s⇒ 67x in keysize

4 New kind of trapdoor — not a basis! (But just as powerful.)

F Half the dimension of a basis⇒ 4x size improvement
F Delegation: size grows as O(dim), versus O(dim2) [CHKP’10]

4 More efficient applications (beyond “black-box” improvements)

7 / 17

Our Contributions
New “strong” trapdoor generation and inversion algorithms:

4 Very simple & fast
F Generation: one matrix mult. No HNF or inverses (cf. [A’99,AP’09])
F Inversion: practical, parallel, & mostly offline
F No more efficiency-vs-quality tradeoff

4 Tighter parameters m and s
F Asymptotically optimal with small constant factors
F Ex improvement: 32x in dim m, 25x in quality s⇒ 67x in keysize

4 New kind of trapdoor — not a basis! (But just as powerful.)

F Half the dimension of a basis⇒ 4x size improvement
F Delegation: size grows as O(dim), versus O(dim2) [CHKP’10]

4 More efficient applications (beyond “black-box” improvements)

7 / 17

Our Contributions
New “strong” trapdoor generation and inversion algorithms:

4 Very simple & fast
F Generation: one matrix mult. No HNF or inverses (cf. [A’99,AP’09])
F Inversion: practical, parallel, & mostly offline
F No more efficiency-vs-quality tradeoff

4 Tighter parameters m and s
F Asymptotically optimal with small constant factors
F Ex improvement: 32x in dim m, 25x in quality s⇒ 67x in keysize

4 New kind of trapdoor — not a basis! (But just as powerful.)

F Half the dimension of a basis⇒ 4x size improvement
F Delegation: size grows as O(dim), versus O(dim2) [CHKP’10]

4 More efficient applications (beyond “black-box” improvements)

7 / 17

Our Contributions
New “strong” trapdoor generation and inversion algorithms:

4 Very simple & fast
F Generation: one matrix mult. No HNF or inverses (cf. [A’99,AP’09])
F Inversion: practical, parallel, & mostly offline
F No more efficiency-vs-quality tradeoff

4 Tighter parameters m and s
F Asymptotically optimal with small constant factors
F Ex improvement: 32x in dim m, 25x in quality s⇒ 67x in keysize

4 New kind of trapdoor — not a basis! (But just as powerful.)

F Half the dimension of a basis⇒ 4x size improvement
F Delegation: size grows as O(dim), versus O(dim2) [CHKP’10]

4 More efficient applications (beyond “black-box” improvements)

7 / 17

Our Contributions
New “strong” trapdoor generation and inversion algorithms:

4 Very simple & fast
F Generation: one matrix mult. No HNF or inverses (cf. [A’99,AP’09])
F Inversion: practical, parallel, & mostly offline
F No more efficiency-vs-quality tradeoff

4 Tighter parameters m and s
F Asymptotically optimal with small constant factors
F Ex improvement: 32x in dim m, 25x in quality s⇒ 67x in keysize

4 New kind of trapdoor — not a basis! (But just as powerful.)

F Half the dimension of a basis⇒ 4x size improvement
F Delegation: size grows as O(dim), versus O(dim2) [CHKP’10]

4 More efficient applications (beyond “black-box” improvements)

7 / 17

Concrete Parameter Improvements

Before [AP’09] Now (fast f−1) Improvement

Dim m
slow f−1: > 5n log q 2n log q (

s
≈)

2.5 – log q
fast f−1: > n log2 q n(1 + log q) (

c
≈)

Quality s
slow f−1: 20

√
n log q

1.6
√

n log q 12.5 – 10
√

log q
fast f−1: 16

√
n log2 q

Example parameters for (ring-based) GPV signatures:

n q δ to break pk size (bits)

Before (fast f−1) 436 232 1.007 ≈ 17× 106

Now 284 224 1.007 ≈ 360× 103

Bottom line: ≈ 45-fold improvement in key size.

8 / 17

Concrete Parameter Improvements

Before [AP’09] Now (fast f−1) Improvement

Dim m
slow f−1: > 5n log q 2n log q (

s
≈)

2.5 – log q
fast f−1: > n log2 q n(1 + log q) (

c
≈)

Quality s
slow f−1: 20

√
n log q

1.6
√

n log q 12.5 – 10
√

log q
fast f−1: 16

√
n log2 q

Example parameters for (ring-based) GPV signatures:

n q δ to break pk size (bits)

Before (fast f−1) 436 232 1.007 ≈ 17× 106

Now 284 224 1.007 ≈ 360× 103

Bottom line: ≈ 45-fold improvement in key size.

8 / 17

Concrete Parameter Improvements

Before [AP’09] Now (fast f−1) Improvement

Dim m
slow f−1: > 5n log q 2n log q (

s
≈)

2.5 – log q
fast f−1: > n log2 q n(1 + log q) (

c
≈)

Quality s
slow f−1: 20

√
n log q

1.6
√

n log q 12.5 – 10
√

log q
fast f−1: 16

√
n log2 q

Example parameters for (ring-based) GPV signatures:

n q δ to break pk size (bits)

Before (fast f−1) 436 232 1.007 ≈ 17× 106

Now 284 224 1.007 ≈ 360× 103

Bottom line: ≈ 45-fold improvement in key size.
8 / 17

Overview of Methods

1 Design a fixed, public lattice defined by “gadget” G.

Give fast, parallel, offline algorithms for f−1
G , g−1

G .

2 Randomize G↔ A via a “nice” unimodular transformation.

(The transformation is the trapdoor!)

3 Reduce f−1
A , g−1

A to f−1
G , g−1

G plus pre-/post-processing.

9 / 17

Overview of Methods

1 Design a fixed, public lattice defined by “gadget” G.

Give fast, parallel, offline algorithms for f−1
G , g−1

G .

2 Randomize G↔ A via a “nice” unimodular transformation.

(The transformation is the trapdoor!)

3 Reduce f−1
A , g−1

A to f−1
G , g−1

G plus pre-/post-processing.

9 / 17

Overview of Methods

1 Design a fixed, public lattice defined by “gadget” G.

Give fast, parallel, offline algorithms for f−1
G , g−1

G .

2 Randomize G↔ A via a “nice” unimodular transformation.

(The transformation is the trapdoor!)

3 Reduce f−1
A , g−1

A to f−1
G , g−1

G plus pre-/post-processing.

9 / 17

Step 1: Gadget G and Inversion Algorithms
I Let q = 2k. Define 1-by-k “parity check” vector

g :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q .

I Invert LWE function gg : Zq × Zk → Zk
q

gg(s, e) := s · g + e =
[
s + e0 2s + e1 · · · 2k−1s + ek−1

]
mod q.

F Get lsb(s), ek−1 from 2k−1s + ek−1. Then get next bit of s, etc.
Works exactly when e ∈ [− q

4 ,
q
4)k.

F OR round to q
8 -multiple and lookup in size-q3 table.

F OR a hybrid of the two approaches.

I Sample Gaussian preimage for u = fg(x) := 〈g, x〉 mod q.

F For i← 0, . . . , k − 1: choose xi ← (2Z + u), let u← (u− xi)/2 ∈ Z.

F OR presample many x← Zk and store in ‘buckets’ fg(x) for later.

F OR a hybrid of the two approaches.

10 / 17

Step 1: Gadget G and Inversion Algorithms
I Let q = 2k. Define 1-by-k “parity check” vector

g :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q .

I Invert LWE function gg : Zq × Zk → Zk
q

gg(s, e) := s · g + e =
[
s + e0 2s + e1 · · · 2k−1s + ek−1

]
mod q.

F Get lsb(s), ek−1 from 2k−1s + ek−1. Then get next bit of s, etc.
Works exactly when e ∈ [− q

4 ,
q
4)k.

F OR round to q
8 -multiple and lookup in size-q3 table.

F OR a hybrid of the two approaches.

I Sample Gaussian preimage for u = fg(x) := 〈g, x〉 mod q.

F For i← 0, . . . , k − 1: choose xi ← (2Z + u), let u← (u− xi)/2 ∈ Z.

F OR presample many x← Zk and store in ‘buckets’ fg(x) for later.

F OR a hybrid of the two approaches.

10 / 17

Step 1: Gadget G and Inversion Algorithms
I Let q = 2k. Define 1-by-k “parity check” vector

g :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q .

I Invert LWE function gg : Zq × Zk → Zk
q

gg(s, e) := s · g + e =
[
s + e0 2s + e1 · · · 2k−1s + ek−1

]
mod q.

F Get lsb(s), ek−1 from 2k−1s + ek−1. Then get next bit of s, etc.
Works exactly when e ∈ [− q

4 ,
q
4)k.

F OR round to q
8 -multiple and lookup in size-q3 table.

F OR a hybrid of the two approaches.

I Sample Gaussian preimage for u = fg(x) := 〈g, x〉 mod q.

F For i← 0, . . . , k − 1: choose xi ← (2Z + u), let u← (u− xi)/2 ∈ Z.

F OR presample many x← Zk and store in ‘buckets’ fg(x) for later.

F OR a hybrid of the two approaches.

10 / 17

Step 1: Gadget G and Inversion Algorithms
I Let q = 2k. Define 1-by-k “parity check” vector

g :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q .

I Invert LWE function gg : Zq × Zk → Zk
q

gg(s, e) := s · g + e =
[
s + e0 2s + e1 · · · 2k−1s + ek−1

]
mod q.

F Get lsb(s), ek−1 from 2k−1s + ek−1. Then get next bit of s, etc.
Works exactly when e ∈ [− q

4 ,
q
4)k.

F OR round to q
8 -multiple and lookup in size-q3 table.

F OR a hybrid of the two approaches.

I Sample Gaussian preimage for u = fg(x) := 〈g, x〉 mod q.

F For i← 0, . . . , k − 1: choose xi ← (2Z + u), let u← (u− xi)/2 ∈ Z.

F OR presample many x← Zk and store in ‘buckets’ fg(x) for later.

F OR a hybrid of the two approaches.

10 / 17

Step 1: Gadget G and Inversion Algorithms
I Let q = 2k. Define 1-by-k “parity check” vector

g :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q .

I Invert LWE function gg : Zq × Zk → Zk
q

gg(s, e) := s · g + e =
[
s + e0 2s + e1 · · · 2k−1s + ek−1

]
mod q.

F Get lsb(s), ek−1 from 2k−1s + ek−1. Then get next bit of s, etc.
Works exactly when e ∈ [− q

4 ,
q
4)k.

F OR round to q
8 -multiple and lookup in size-q3 table.

F OR a hybrid of the two approaches.

I Sample Gaussian preimage for u = fg(x) := 〈g, x〉 mod q.

F For i← 0, . . . , k − 1: choose xi ← (2Z + u), let u← (u− xi)/2 ∈ Z.

F OR presample many x← Zk and store in ‘buckets’ fg(x) for later.

F OR a hybrid of the two approaches.

10 / 17

Step 1: Gadget G and Inversion Algorithms
I Let q = 2k. Define 1-by-k “parity check” vector

g :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q .

I Invert LWE function gg : Zq × Zk → Zk
q

gg(s, e) := s · g + e =
[
s + e0 2s + e1 · · · 2k−1s + ek−1

]
mod q.

F Get lsb(s), ek−1 from 2k−1s + ek−1. Then get next bit of s, etc.
Works exactly when e ∈ [− q

4 ,
q
4)k.

F OR round to q
8 -multiple and lookup in size-q3 table.

F OR a hybrid of the two approaches.

I Sample Gaussian preimage for u = fg(x) := 〈g, x〉 mod q.

F For i← 0, . . . , k − 1: choose xi ← (2Z + u), let u← (u− xi)/2 ∈ Z.

F OR presample many x← Zk and store in ‘buckets’ fg(x) for later.

F OR a hybrid of the two approaches.

10 / 17

Step 1: Gadget G and Inversion Algorithms
I Let q = 2k. Define 1-by-k “parity check” vector

g :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q .

I Invert LWE function gg : Zq × Zk → Zk
q

gg(s, e) := s · g + e =
[
s + e0 2s + e1 · · · 2k−1s + ek−1

]
mod q.

F Get lsb(s), ek−1 from 2k−1s + ek−1. Then get next bit of s, etc.
Works exactly when e ∈ [− q

4 ,
q
4)k.

F OR round to q
8 -multiple and lookup in size-q3 table.

F OR a hybrid of the two approaches.

I Sample Gaussian preimage for u = fg(x) := 〈g, x〉 mod q.
F For i← 0, . . . , k − 1: choose xi ← (2Z + u), let u← (u− xi)/2 ∈ Z.

F OR presample many x← Zk and store in ‘buckets’ fg(x) for later.

F OR a hybrid of the two approaches.

10 / 17

Step 1: Gadget G and Inversion Algorithms
I Let q = 2k. Define 1-by-k “parity check” vector

g :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q .

I Invert LWE function gg : Zq × Zk → Zk
q

gg(s, e) := s · g + e =
[
s + e0 2s + e1 · · · 2k−1s + ek−1

]
mod q.

F Get lsb(s), ek−1 from 2k−1s + ek−1. Then get next bit of s, etc.
Works exactly when e ∈ [− q

4 ,
q
4)k.

F OR round to q
8 -multiple and lookup in size-q3 table.

F OR a hybrid of the two approaches.

I Sample Gaussian preimage for u = fg(x) := 〈g, x〉 mod q.
F For i← 0, . . . , k − 1: choose xi ← (2Z + u), let u← (u− xi)/2 ∈ Z.

F OR presample many x← Zk and store in ‘buckets’ fg(x) for later.

F OR a hybrid of the two approaches.

10 / 17

Step 1: Gadget G and Inversion Algorithms
I Let q = 2k. Define 1-by-k “parity check” vector

g :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q .

I Invert LWE function gg : Zq × Zk → Zk
q

gg(s, e) := s · g + e =
[
s + e0 2s + e1 · · · 2k−1s + ek−1

]
mod q.

F Get lsb(s), ek−1 from 2k−1s + ek−1. Then get next bit of s, etc.
Works exactly when e ∈ [− q

4 ,
q
4)k.

F OR round to q
8 -multiple and lookup in size-q3 table.

F OR a hybrid of the two approaches.

I Sample Gaussian preimage for u = fg(x) := 〈g, x〉 mod q.
F For i← 0, . . . , k − 1: choose xi ← (2Z + u), let u← (u− xi)/2 ∈ Z.

F OR presample many x← Zk and store in ‘buckets’ fg(x) for later.

F OR a hybrid of the two approaches.

10 / 17

Step 1: Gadget G and Inversion Algorithms
I Another view: for g =

[
1 2 · · · 2k−1

]
the lattice Λ⊥(g) has basis

S =


2
−1 2

−1
. . .

2
−1 2

 ∈ Zk×k, with S̃ = 2 · Ik.

The iterative inversion algorithms for fg, gg are special cases of the
(randomized) “nearest-plane” algorithm [Babai’86,Klein’01,GPV’08].

I Define G = In ⊗ g =


· · · g · · ·

· · · g · · ·
. . .

· · · g · · ·

 ∈ Zn×nk
q .

Now f−1
G , g−1

G reduce to n parallel (and offline) calls to f−1
g , g−1

g .

Also applies to H ·G for any invertible H ∈ Zn×n
q .

11 / 17

Step 1: Gadget G and Inversion Algorithms
I Another view: for g =

[
1 2 · · · 2k−1

]
the lattice Λ⊥(g) has basis

S =


2
−1 2

−1
. . .

2
−1 2

 ∈ Zk×k, with S̃ = 2 · Ik.

The iterative inversion algorithms for fg, gg are special cases of the
(randomized) “nearest-plane” algorithm [Babai’86,Klein’01,GPV’08].

I Define G = In ⊗ g =


· · · g · · ·

· · · g · · ·
. . .

· · · g · · ·

 ∈ Zn×nk
q .

Now f−1
G , g−1

G reduce to n parallel (and offline) calls to f−1
g , g−1

g .

Also applies to H ·G for any invertible H ∈ Zn×n
q .

11 / 17

Step 1: Gadget G and Inversion Algorithms
I Another view: for g =

[
1 2 · · · 2k−1

]
the lattice Λ⊥(g) has basis

S =


2
−1 2

−1
. . .

2
−1 2

 ∈ Zk×k, with S̃ = 2 · Ik.

The iterative inversion algorithms for fg, gg are special cases of the
(randomized) “nearest-plane” algorithm [Babai’86,Klein’01,GPV’08].

I Define G = In ⊗ g =


· · · g · · ·

· · · g · · ·
. . .

· · · g · · ·

 ∈ Zn×nk
q .

Now f−1
G , g−1

G reduce to n parallel (and offline) calls to f−1
g , g−1

g .

Also applies to H ·G for any invertible H ∈ Zn×n
q .

11 / 17

Step 1: Gadget G and Inversion Algorithms
I Another view: for g =

[
1 2 · · · 2k−1

]
the lattice Λ⊥(g) has basis

S =


2
−1 2

−1
. . .

2
−1 2

 ∈ Zk×k, with S̃ = 2 · Ik.

The iterative inversion algorithms for fg, gg are special cases of the
(randomized) “nearest-plane” algorithm [Babai’86,Klein’01,GPV’08].

I Define G = In ⊗ g =


· · · g · · ·

· · · g · · ·
. . .

· · · g · · ·

 ∈ Zn×nk
q .

Now f−1
G , g−1

G reduce to n parallel (and offline) calls to f−1
g , g−1

g .

Also applies to H ·G for any invertible H ∈ Zn×n
q .

11 / 17

Step 1: Gadget G and Inversion Algorithms
I Another view: for g =

[
1 2 · · · 2k−1

]
the lattice Λ⊥(g) has basis

S =


2
−1 2

−1
. . .

2
−1 2

 ∈ Zk×k, with S̃ = 2 · Ik.

The iterative inversion algorithms for fg, gg are special cases of the
(randomized) “nearest-plane” algorithm [Babai’86,Klein’01,GPV’08].

I Define G = In ⊗ g =


· · · g · · ·

· · · g · · ·
. . .

· · · g · · ·

 ∈ Zn×nk
q .

Now f−1
G , g−1

G reduce to n parallel (and offline) calls to f−1
g , g−1

g .

Also applies to H ·G for any invertible H ∈ Zn×n
q .

11 / 17

Step 2: Randomize G↔ A

1 Define semi-random [Ā | G] for uniform (universal) Ā ∈ Zn×m̄
q .

(Computing f−1, g−1 easily reduce to f−1
G , g−1

G .)

2 Choose “short” (Gaussian) R← Zm̄×n log q and let

A := [Ā | G]

[
I −R

I

]
︸ ︷︷ ︸
unimodular

= [Ā | G− ĀR].

F A is uniform if [Ā | ĀR] is: leftover hash lemma for m̄ ≈ n log q.

With G = 0, we get Ajtai’s original method for constructing A with a
“weak” trapdoor of ≥ 1 short vector (but not a full basis).

F [I | Ā | −(ĀR1 + R2)] is pseudorandom (under LWE) for m̄ = n.

12 / 17

Step 2: Randomize G↔ A

1 Define semi-random [Ā | G] for uniform (universal) Ā ∈ Zn×m̄
q .

(Computing f−1, g−1 easily reduce to f−1
G , g−1

G .)

2 Choose “short” (Gaussian) R← Zm̄×n log q and let

A := [Ā | G]

[
I −R

I

]
︸ ︷︷ ︸
unimodular

= [Ā | G− ĀR].

F A is uniform if [Ā | ĀR] is: leftover hash lemma for m̄ ≈ n log q.

With G = 0, we get Ajtai’s original method for constructing A with a
“weak” trapdoor of ≥ 1 short vector (but not a full basis).

F [I | Ā | −(ĀR1 + R2)] is pseudorandom (under LWE) for m̄ = n.

12 / 17

Step 2: Randomize G↔ A

1 Define semi-random [Ā | G] for uniform (universal) Ā ∈ Zn×m̄
q .

(Computing f−1, g−1 easily reduce to f−1
G , g−1

G .)

2 Choose “short” (Gaussian) R← Zm̄×n log q and let

A := [Ā | G]

[
I −R

I

]
︸ ︷︷ ︸
unimodular

= [Ā | G− ĀR].

F A is uniform if [Ā | ĀR] is: leftover hash lemma for m̄ ≈ n log q.

With G = 0, we get Ajtai’s original method for constructing A with a
“weak” trapdoor of ≥ 1 short vector (but not a full basis).

F [I | Ā | −(ĀR1 + R2)] is pseudorandom (under LWE) for m̄ = n.

12 / 17

Step 2: Randomize G↔ A

1 Define semi-random [Ā | G] for uniform (universal) Ā ∈ Zn×m̄
q .

(Computing f−1, g−1 easily reduce to f−1
G , g−1

G .)

2 Choose “short” (Gaussian) R← Zm̄×n log q and let

A := [Ā | G]

[
I −R

I

]
︸ ︷︷ ︸
unimodular

= [Ā | G− ĀR].

F A is uniform if [Ā | ĀR] is: leftover hash lemma for m̄ ≈ n log q.

With G = 0, we get Ajtai’s original method for constructing A with a
“weak” trapdoor of ≥ 1 short vector (but not a full basis).

F [I | Ā | −(ĀR1 + R2)] is pseudorandom (under LWE) for m̄ = n.

12 / 17

Step 2: Randomize G↔ A

1 Define semi-random [Ā | G] for uniform (universal) Ā ∈ Zn×m̄
q .

(Computing f−1, g−1 easily reduce to f−1
G , g−1

G .)

2 Choose “short” (Gaussian) R← Zm̄×n log q and let

A := [Ā | G]

[
I −R

I

]
︸ ︷︷ ︸
unimodular

= [Ā | G− ĀR].

F A is uniform if [Ā | ĀR] is: leftover hash lemma for m̄ ≈ n log q.

With G = 0, we get Ajtai’s original method for constructing A with a
“weak” trapdoor of ≥ 1 short vector (but not a full basis).

F [I | Ā | −(ĀR1 + R2)] is pseudorandom (under LWE) for m̄ = n.

12 / 17

A New Trapdoor Notion
I We constructed A = [Ā | G− ĀR].

Definition
I R is a trapdoor for A with tag H ∈ Zn×n

q (invertible) if

A ·
[

R
I
]

= H ·G.

I The quality of R is s1(R) := max
‖u‖=1

‖Ru‖. (smaller is better.)

I Fact: s1(R) ≈ (
√

rows +
√

cols) · r for Gaussian entries w/ std dev r.

I Note: R is a trapdoor for A− [0 | H′ ·G] w/ tag (H−H′) [ABB’10].

Relating New and Old Trapdoors

Given a basis S for Λ⊥(G) and a trapdoor R for A,
we can efficiently construct a basis SA for Λ⊥(A)

where ‖S̃A‖ ≤ (s1(R) + 1) · ‖S̃‖.
(But we’ll never need to.)

13 / 17

A New Trapdoor Notion
I We constructed A = [Ā | G− ĀR].

Definition
I R is a trapdoor for A with tag H ∈ Zn×n

q (invertible) if

A ·
[

R
I
]

= H ·G.

I The quality of R is s1(R) := max
‖u‖=1

‖Ru‖. (smaller is better.)

I Fact: s1(R) ≈ (
√

rows +
√

cols) · r for Gaussian entries w/ std dev r.

I Note: R is a trapdoor for A− [0 | H′ ·G] w/ tag (H−H′) [ABB’10].

Relating New and Old Trapdoors

Given a basis S for Λ⊥(G) and a trapdoor R for A,
we can efficiently construct a basis SA for Λ⊥(A)

where ‖S̃A‖ ≤ (s1(R) + 1) · ‖S̃‖.
(But we’ll never need to.)

13 / 17

A New Trapdoor Notion
I We constructed A = [Ā | G− ĀR].

Definition
I R is a trapdoor for A with tag H ∈ Zn×n

q (invertible) if

A ·
[

R
I
]

= H ·G.

I The quality of R is s1(R) := max
‖u‖=1

‖Ru‖. (smaller is better.)

I Fact: s1(R) ≈ (
√

rows +
√

cols) · r for Gaussian entries w/ std dev r.

I Note: R is a trapdoor for A− [0 | H′ ·G] w/ tag (H−H′) [ABB’10].

Relating New and Old Trapdoors

Given a basis S for Λ⊥(G) and a trapdoor R for A,
we can efficiently construct a basis SA for Λ⊥(A)

where ‖S̃A‖ ≤ (s1(R) + 1) · ‖S̃‖.
(But we’ll never need to.)

13 / 17

A New Trapdoor Notion
I We constructed A = [Ā | G− ĀR].

Definition
I R is a trapdoor for A with tag H ∈ Zn×n

q (invertible) if

A ·
[

R
I
]

= H ·G.

I The quality of R is s1(R) := max
‖u‖=1

‖Ru‖. (smaller is better.)

I Fact: s1(R) ≈ (
√

rows +
√

cols) · r for Gaussian entries w/ std dev r.

I Note: R is a trapdoor for A− [0 | H′ ·G] w/ tag (H−H′) [ABB’10].

Relating New and Old Trapdoors

Given a basis S for Λ⊥(G) and a trapdoor R for A,
we can efficiently construct a basis SA for Λ⊥(A)

where ‖S̃A‖ ≤ (s1(R) + 1) · ‖S̃‖.
(But we’ll never need to.)

13 / 17

A New Trapdoor Notion
I We constructed A = [Ā | G− ĀR].

Definition
I R is a trapdoor for A with tag H ∈ Zn×n

q (invertible) if

A ·
[

R
I
]

= H ·G.

I The quality of R is s1(R) := max
‖u‖=1

‖Ru‖. (smaller is better.)

I Fact: s1(R) ≈ (
√

rows +
√

cols) · r for Gaussian entries w/ std dev r.

I Note: R is a trapdoor for A− [0 | H′ ·G] w/ tag (H−H′) [ABB’10].

Relating New and Old Trapdoors

Given a basis S for Λ⊥(G) and a trapdoor R for A,
we can efficiently construct a basis SA for Λ⊥(A)

where ‖S̃A‖ ≤ (s1(R) + 1) · ‖S̃‖.
(But we’ll never need to.)

13 / 17

A New Trapdoor Notion
I We constructed A = [Ā | G− ĀR].

Definition
I R is a trapdoor for A with tag H ∈ Zn×n

q (invertible) if

A ·
[

R
I
]

= H ·G.

I The quality of R is s1(R) := max
‖u‖=1

‖Ru‖. (smaller is better.)

I Fact: s1(R) ≈ (
√

rows +
√

cols) · r for Gaussian entries w/ std dev r.

I Note: R is a trapdoor for A− [0 | H′ ·G] w/ tag (H−H′) [ABB’10].

Relating New and Old Trapdoors

Given a basis S for Λ⊥(G) and a trapdoor R for A,
we can efficiently construct a basis SA for Λ⊥(A)

where ‖S̃A‖ ≤ (s1(R) + 1) · ‖S̃‖.

(But we’ll never need to.)

13 / 17

A New Trapdoor Notion
I We constructed A = [Ā | G− ĀR].

Definition
I R is a trapdoor for A with tag H ∈ Zn×n

q (invertible) if

A ·
[

R
I
]

= H ·G.

I The quality of R is s1(R) := max
‖u‖=1

‖Ru‖. (smaller is better.)

I Fact: s1(R) ≈ (
√

rows +
√

cols) · r for Gaussian entries w/ std dev r.

I Note: R is a trapdoor for A− [0 | H′ ·G] w/ tag (H−H′) [ABB’10].

Relating New and Old Trapdoors

Given a basis S for Λ⊥(G) and a trapdoor R for A,
we can efficiently construct a basis SA for Λ⊥(A)

where ‖S̃A‖ ≤ (s1(R) + 1) · ‖S̃‖.
(But we’ll never need to.)

13 / 17

Step 3: Reduce f−1
A , g−1

A to f−1
G , g−1

G
I Suppose R is a trapdoor for A (w/ tag H = I): A

[
R
I
]

= G.

Inverting LWE Function

Given bt = stA + et, recover s from

bt[R
I
]

= stG + et[R
I
]
.

Works if each entry of et
[

R
I
]

in [−q
4 ,

q
4), e.g. if ‖e‖ < q/(4s1(

[
R
I
]
)).

Sampling Gaussian Preimages

Given u = fA(x′) = Ax′, sample z← f−1
G (u) and output x =

[
R
I
]
z ?

I We have Ax = Gz = u as desired.

I Problem:
[

R
I
]
z is non-spherical Gaussian, leaks R !

I Solution: use offline ‘perturbation’ [P’10] to get spherical Gaussian
w/ std dev ≈ s1(R): output x = p +

[
R
I
]
z.

14 / 17

Step 3: Reduce f−1
A , g−1

A to f−1
G , g−1

G
I Suppose R is a trapdoor for A (w/ tag H = I): A

[
R
I
]

= G.

Inverting LWE Function

Given bt = stA + et, recover s from

bt[R
I
]

= stG + et[R
I
]
.

Works if each entry of et
[

R
I
]

in [−q
4 ,

q
4), e.g. if ‖e‖ < q/(4s1(

[
R
I
]
)).

Sampling Gaussian Preimages

Given u = fA(x′) = Ax′, sample z← f−1
G (u) and output x =

[
R
I
]
z ?

I We have Ax = Gz = u as desired.

I Problem:
[

R
I
]
z is non-spherical Gaussian, leaks R !

I Solution: use offline ‘perturbation’ [P’10] to get spherical Gaussian
w/ std dev ≈ s1(R): output x = p +

[
R
I
]
z.

14 / 17

Step 3: Reduce f−1
A , g−1

A to f−1
G , g−1

G
I Suppose R is a trapdoor for A (w/ tag H = I): A

[
R
I
]

= G.

Inverting LWE Function

Given bt = stA + et, recover s from

bt[R
I
]

= stG + et[R
I
]
.

Works if each entry of et
[

R
I
]

in [−q
4 ,

q
4), e.g. if ‖e‖ < q/(4s1(

[
R
I
]
)).

Sampling Gaussian Preimages

Given u = fA(x′) = Ax′, sample z← f−1
G (u) and output x =

[
R
I
]
z ?

I We have Ax = Gz = u as desired.

I Problem:
[

R
I
]
z is non-spherical Gaussian, leaks R !

I Solution: use offline ‘perturbation’ [P’10] to get spherical Gaussian
w/ std dev ≈ s1(R): output x = p +

[
R
I
]
z.

14 / 17

Step 3: Reduce f−1
A , g−1

A to f−1
G , g−1

G
I Suppose R is a trapdoor for A (w/ tag H = I): A

[
R
I
]

= G.

Inverting LWE Function

Given bt = stA + et, recover s from

bt[R
I
]

= stG + et[R
I
]
.

Works if each entry of et
[

R
I
]

in [−q
4 ,

q
4), e.g. if ‖e‖ < q/(4s1(

[
R
I
]
)).

Sampling Gaussian Preimages

Given u = fA(x′) = Ax′, sample z← f−1
G (u) and output x =

[
R
I
]
z ?

I We have Ax = Gz = u as desired.

I Problem:
[

R
I
]
z is non-spherical Gaussian, leaks R !

I Solution: use offline ‘perturbation’ [P’10] to get spherical Gaussian
w/ std dev ≈ s1(R): output x = p +

[
R
I
]
z.

14 / 17

Step 3: Reduce f−1
A , g−1

A to f−1
G , g−1

G
I Suppose R is a trapdoor for A (w/ tag H = I): A

[
R
I
]

= G.

Inverting LWE Function

Given bt = stA + et, recover s from

bt[R
I
]

= stG + et[R
I
]
.

Works if each entry of et
[

R
I
]

in [−q
4 ,

q
4), e.g. if ‖e‖ < q/(4s1(

[
R
I
]
)).

Sampling Gaussian Preimages

Given u = fA(x′) = Ax′, sample z← f−1
G (u) and output x =

[
R
I
]
z ?

I We have Ax = Gz = u as desired.

I Problem:
[

R
I
]
z is non-spherical Gaussian, leaks R !

I Solution: use offline ‘perturbation’ [P’10] to get spherical Gaussian
w/ std dev ≈ s1(R): output x = p +

[
R
I
]
z.

14 / 17

Trapdoor Delegation [CHKP’10]

I Suppose R is a trapdoor for A, i.e. A
[

R
I
]

= H ·G.

I To delegate a trapdoor for an extension [A | A′] with tag H′, just
sample Gaussian R′ s.t.

[A | A′]
[

R′
I
]

= H′ ·G ⇐⇒ AR′ = H′ ·G− A′.

I Note: R′ is only width(A)× width(G) = m× n log q.

So size of R′ grows only as O(m), not Ω(m2) [CHKP’10].

Also computationally efficient: n log q samples, no HNF or ToBasis.

15 / 17

Trapdoor Delegation [CHKP’10]

I Suppose R is a trapdoor for A, i.e. A
[

R
I
]

= H ·G.

I To delegate a trapdoor for an extension [A | A′] with tag H′, just
sample Gaussian R′ s.t.

[A | A′]
[

R′
I
]

= H′ ·G ⇐⇒ AR′ = H′ ·G− A′.

I Note: R′ is only width(A)× width(G) = m× n log q.

So size of R′ grows only as O(m), not Ω(m2) [CHKP’10].

Also computationally efficient: n log q samples, no HNF or ToBasis.

15 / 17

Trapdoor Delegation [CHKP’10]

I Suppose R is a trapdoor for A, i.e. A
[

R
I
]

= H ·G.

I To delegate a trapdoor for an extension [A | A′] with tag H′, just
sample Gaussian R′ s.t.

[A | A′]
[

R′
I
]

= H′ ·G ⇐⇒ AR′ = H′ ·G− A′.

I Note: R′ is only width(A)× width(G) = m× n log q.

So size of R′ grows only as O(m), not Ω(m2) [CHKP’10].

Also computationally efficient: n log q samples, no HNF or ToBasis.

15 / 17

Improved “Bonsai” Applications
Hierarchical IBE [CHKP’10,ABB’10]

I Setup(d): choose A0, . . . ,Ad (each dim n log q) where
Aε = [A0 | A1] has trapdoor Rε for tag 0.
Let msk = skε = Rε and mpk = {Ai} (d + 1 vs ≥ 4d + 2)

I For id = (H1, . . . ,Ht) of nonzero (invertible) Hi ∈ H, let

Aid = [A0 | A1 −H1G | · · · | At −HtG | At+1].

and skid is a trapdoor Rid for Aid with tag 0.

Using skid, can delegate any skid′ for any nontrivial extension id′.

I Encrypt (up to n log q bits) to Aid, decrypt using Rid as in [GPV’08].

I Security (“puncturing”): Set up mpk, trapdoor R with tags = id∗.

Family H with “invertible differences” from extension ring of Zq

[DF’94,Fehr’98,ABB’10]

16 / 17

Improved “Bonsai” Applications
Hierarchical IBE [CHKP’10,ABB’10]

I Setup(d): choose A0, . . . ,Ad (each dim n log q) where
Aε = [A0 | A1] has trapdoor Rε for tag 0.
Let msk = skε = Rε and mpk = {Ai} (d + 1 vs ≥ 4d + 2)

I For id = (H1, . . . ,Ht) of nonzero (invertible) Hi ∈ H, let

Aid = [A0 | A1 −H1G | · · · | At −HtG | At+1].

and skid is a trapdoor Rid for Aid with tag 0.

Using skid, can delegate any skid′ for any nontrivial extension id′.

I Encrypt (up to n log q bits) to Aid, decrypt using Rid as in [GPV’08].

I Security (“puncturing”): Set up mpk, trapdoor R with tags = id∗.

Family H with “invertible differences” from extension ring of Zq

[DF’94,Fehr’98,ABB’10]

16 / 17

Improved “Bonsai” Applications
Hierarchical IBE [CHKP’10,ABB’10]

I Setup(d): choose A0, . . . ,Ad (each dim n log q) where
Aε = [A0 | A1] has trapdoor Rε for tag 0.
Let msk = skε = Rε and mpk = {Ai} (d + 1 vs ≥ 4d + 2)

I For id = (H1, . . . ,Ht) of nonzero (invertible) Hi ∈ H, let

Aid = [A0 | A1 −H1G | · · · | At −HtG | At+1].

and skid is a trapdoor Rid for Aid with tag 0.

Using skid, can delegate any skid′ for any nontrivial extension id′.

I Encrypt (up to n log q bits) to Aid, decrypt using Rid as in [GPV’08].

I Security (“puncturing”): Set up mpk, trapdoor R with tags = id∗.

Family H with “invertible differences” from extension ring of Zq

[DF’94,Fehr’98,ABB’10]

16 / 17

Improved “Bonsai” Applications
Hierarchical IBE [CHKP’10,ABB’10]

I Setup(d): choose A0, . . . ,Ad (each dim n log q) where
Aε = [A0 | A1] has trapdoor Rε for tag 0.
Let msk = skε = Rε and mpk = {Ai} (d + 1 vs ≥ 4d + 2)

I For id = (H1, . . . ,Ht) of nonzero (invertible) Hi ∈ H, let

Aid = [A0 | A1 −H1G | · · · | At −HtG | At+1].

and skid is a trapdoor Rid for Aid with tag 0.

Using skid, can delegate any skid′ for any nontrivial extension id′.

I Encrypt (up to n log q bits) to Aid, decrypt using Rid as in [GPV’08].

I Security (“puncturing”): Set up mpk, trapdoor R with tags = id∗.

Family H with “invertible differences” from extension ring of Zq

[DF’94,Fehr’98,ABB’10]

16 / 17

Improved “Bonsai” Applications
Hierarchical IBE [CHKP’10,ABB’10]

I Setup(d): choose A0, . . . ,Ad (each dim n log q) where
Aε = [A0 | A1] has trapdoor Rε for tag 0.
Let msk = skε = Rε and mpk = {Ai} (d + 1 vs ≥ 4d + 2)

I For id = (H1, . . . ,Ht) of nonzero (invertible) Hi ∈ H, let

Aid = [A0 | A1 −H1G | · · · | At −HtG | At+1].

and skid is a trapdoor Rid for Aid with tag 0.

Using skid, can delegate any skid′ for any nontrivial extension id′.

I Encrypt (up to n log q bits) to Aid, decrypt using Rid as in [GPV’08].

I Security (“puncturing”): Set up mpk, trapdoor R with tags = id∗.

Family H with “invertible differences” from extension ring of Zq

[DF’94,Fehr’98,ABB’10]

16 / 17

Conclusions

I A new, simpler, more efficient trapdoor notion and construction

I Exposing structure of trapdoor to applications yields further
efficiency improvements

I Key sizes and algorithms for “strong” trapdoors are now practical

Questions?

17 / 17

Conclusions

I A new, simpler, more efficient trapdoor notion and construction

I Exposing structure of trapdoor to applications yields further
efficiency improvements

I Key sizes and algorithms for “strong” trapdoors are now practical

Questions?

17 / 17

Conclusions

I A new, simpler, more efficient trapdoor notion and construction

I Exposing structure of trapdoor to applications yields further
efficiency improvements

I Key sizes and algorithms for “strong” trapdoors are now practical

Questions?

17 / 17

Conclusions

I A new, simpler, more efficient trapdoor notion and construction

I Exposing structure of trapdoor to applications yields further
efficiency improvements

I Key sizes and algorithms for “strong” trapdoors are now practical

Questions?

17 / 17

