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Fully Homomorphic Encryption [RAD'78,Gen’09]

> FHE lets you do this:
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where | f(u)| and decryption time don't depend on |f].

A cryptographic “holy grail” with tons of applications.
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Fully Homomorphic Encryption [RAD'78,Gen’09]

> FHE lets you do this:

—)[Eva|<f,>]—>

where | f(u)| and decryption time don't depend on |f].

A cryptographic “holy grail” with tons of applications.

» Naturally occurring schemes are “somewhat homomorphic” (SHE):

they can only evaluate functions of an a priori bounded depth.

(1] — | Eval (£.[5]) |- _>[Eva| (9 )]a a(f ()
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» Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext , allowing further homomorphic operations.

—>[Eva|<f(x) = Dec, (1) , ) ]_>

/21



Bootstrapping: SHE — FHE [Gen'09]

» Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext , allowing further homomorphic operations.

—>[Eva|<f(x) = Dec, (1) , ) ]_>

* The only known way of obtaining unbounded FHE.
* Goal: Efficiency! Minimize depth d and size s of decryption “circuit.”

* Best SHEs [BGV'12] can evaluate in time O(d - s - \).

21



Bootstrapping: SHE — FHE [Gen'09]

» Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext , allowing further homomorphic operations.

—>[Eva|<f(x) = Dec, () , ) ]_>

* The only known way of obtaining unbounded FHE.
* Goal: Efficiency! Minimize depth d and size s of decryption “circuit.”

* Best SHEs [BGV'12] can evaluate in time O(d - s - \).

P Intensive study, many techniques [G'09,GH'11a,GH'11b,GHS'12b], but
still very inefficient — the main bottleneck in FHE, by far.

21



Bootstrapping: SHE — FHE [Gen'09]

» Homomorphically evaluates the SHE decryption function to “refresh”
a ciphertext , allowing further homomorphic operations.

—>[Eva|<f(9c) = Dec,([) , ) ]_>

* The only known way of obtaining unbounded FHE.
* Goal: Efficiency! Minimize depth d and size s of decryption “circuit.”

* Best SHEs [BGV'12] can evaluate in time O(d - s - \).

P Intensive study, many techniques [G'09,GH'11a,GH'11b,GHS'12b], but
still very inefficient — the main bottleneck in FHE, by far.

P The asymptotically most efficient methods on “packed” ciphertexts
[GHS'12a,GHS'12b] are very complex, and appear practically worse than
asymptotically slower methods.
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Milestones in Bootstrapping
[Gen'09]: O(A*) runtime
[BGV'12]: O()A2) runtime, or O(\) amortized over \ ciphertexts
Mainly via improved SHE homomorphic capacity.

Amortized method requires “exotic” plaintext rings,
emulating Zo arithmetic in Z,,.

[GHS'12b]: O()) runtime, for “packed” plaintexts. Declare victory?

Dec circuit [GHS’Z.l|2a] [ Bootstrapping]
mod @, (X) compiler Procedure

X Log-depth mod-®,,,(X) circuit is complex, w/large hidden constants.
XX [GHS'12a] compiler is very complex, w/large polylog overhead factor.
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Our Results

Practical bootstrapping algorithms with quasi-linear O(/\) runtimes:
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Our Results

Practical bootstrapping algorithms with quasi-linear O(/\) runtimes:

@ For “unpacked” (single-bit) plaintexts:
v Extremely simple!
v Uses only power-of-2 cyclotomic rings (fast, easy to implement).
* Cf. [BGV'12]: O(\) amortized across A ciphertexts, exotic rings.

@® For “packed” (many-bit) plaintexts:
* Based on a substantial enhancement of “ring-switching” [GHPS'12] to
non-subrings.

v/ Appears quite practical, avoids both main inefficiencies of [GHS'12b]:
no homomorphic reduction modulo ®,,,(X), no generic compilation.

v/ Special purpose, completely algebraic description — no “circuits.”

v/ Completely decouples the algebraic structure of SHE plaintext ring
from that needed for bootstrapping.
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Setting the Stage: Decryption in SHE [LPrR'10,8v'11,B6V'12]
> Let R = Z[X]/(XWQ + 1), for k a power of 2. (The kth cyclotomic ring.)
Let R, = R/qR = Z,[X]/(X*/? + 1) for any integer q.

» Plaintext ring is Ra, ciphertext ring is R, for ¢ > 2.

Can assume k,q = O(\) by ring- and modulus-switching.
» Ciphertext ¢ = (g, c1) € Rg encrypting i € Ry under s € R satisfies
v=co+c-s~ip (modgR).
Define the decryption function
Decy(c) := |v] = i € Ro,
where “rounding” |-]: Z; — Zs is applied to coeffs of v = v(X).

> “Unpacked” plaintext © € Zo C Ra, i.e., just a constant polynomial.
“Packed” plaintext uses more of R, e.g., multiple “slots” [SV'11].
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Warm-Up:
Bootstrapping Unpacked Ciphertexts
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Bootstrapping Unpacked Ciphertexts: Main ldea

@ Isolate message-carrying coefficient vy of v(X) by homomorphically
“tracing down” a tower of cyclotomic rings Oar/O/ -+ /O4/Z.

(Trace = sum of the two automorphisms of Og;/0;.)
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Bootstrapping Unpacked Ciphertexts: Main ldea

@ lIsolate message-carrying coefficient vy of v(X) by homomorphically
“tracing down” a tower of cyclotomic rings Qg /Oy / -+ /O4)7Z.

(Trace = sum of the two automorphisms of Og;/0;.)

vo + 1 X + o X2 4 XFT Z X/ (XF +1)

vo +0X + v X2 ... 0XF! Z [X2]/(Xk+1)
V0 + Vg pa X P/ 4 gy X3/ [Xk/A‘]/(XkJFl)
Uo+vk/2Xk/2 [Xk/z]/|(Xk+1)

L) Zlq

® Homomorphically “round” vy € Z, to the message bit L% “vo| € Za.

8/21



Algebra: Cyclotomic Towers and Product Bases

» Let ¢ = (}, have order k, a power of 2. lts min. poly: ¢¥/2 +1 = 0.

/21



Algebra: Cyclotomic Towers and Product Bases

» Let ¢ = (}, have order k, a power of 2. lts min. poly: ¢¥/2 +1 = 0.
So O, = Z[¢] = Z[X]/(X*/? + 1) has Z-basis {1,¢,¢?,...,¢H2 1}

21



Algebra: Cyclotomic Towers and Product Bases

» Let ¢ = (}, have order k, a power of 2. lts min. poly: ¢¥/2 +1 = 0.
So O, = Z[¢] = Z[X]/(X*/? + 1) has Z-basis {1,¢,¢?,...,¢H2 1}

> Tower of quadratic extensions O /Oy, // - /O4/Z:

21



Algebra: Cyclotomic Towers and Product Bases

» Let ¢ = (}, have order k, a power of 2. lts min. poly: ¢¥/2 +1 = 0.

So O, = Z[¢] = Z[X]/(X*/? + 1) has Z-basis {1,¢,¢?,...,¢H2 1}

> Tower of quadratic extensions O /Oy, // - /O4/Z:
Clg = Ck/2 Ok = Ok/Z[Ck] Ok/Q—basis B]/c = {1, Ck}

G=U Og = b4[<8] Oy-basis By = {1, (s}

G =0 O4 = O2[4] Oy-basis B} = {1,¢}

G =1 Oy = Z[G) = Z Z-basis B) = {1}
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Algebra: Cyclotomic Towers and Product Bases

» Let ¢ = (}, have order k, a power of 2. lts min. poly: ¢¥/2 +1 = 0.

So Op = Z[(] = Z[X]/(X*/? +1) has Z-basis {1,(,¢%, ..

> Tower of quadratic extensions Oy /Oy, /5/ - /O4/Z:

G2 = Cy2 Oy = Qk/Q[Ck]
& =G Os = é(’)4[C8]
(G =0 04 = |('72 (€]
Go1 ormtial=z

» “Product” Z-basis of O:

By, =B}, Byjy = B, By -

Oy o-basis By, = {1, (i}
Oy-basis B = {1, (s}
Os-basis Bj = {1,(4}

Z-basis By = {1}

By ={1,¢,¢3,... ¢MF)

¢y,
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> O; has exactly two automorphisms that fix O;/5: (; — £

/2

The trace function Tr: O; — O; /5 simply sums these automorphisms.

> letv=wvy-1+v-( € O; for vy, vq EOi/Q.
Then Tr(v) =2 - vg. So Tr(0;) =2 Oy 5.
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Key facts:
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Algebra: The Trace
> Tower of quadratic extensions O/Oy 5/ -+ /O4/7Z, where ¢ = Gi/2-

> O; has exactly two automorphisms that fix O;/5: (; — £

The trace function Tr: O; — O; /5 simply sums these automorphisms.

> letv=wvy-1+v-( € O; for vy, vq EOi/Q.
Then Tr(v) =2 - vg. So Tr(0;) =2 Oy 5.

> More generally, Trp, /0., sums the automorphisms of O; that fix O;.
Key facts:

* Tro,/0,, = Tro, /0, © Tro, 0,
= TI‘OI./@U (Ol) = deg((’)l/Ol/) - Oy

= Tro,/z(v) = % - vg, where v € Z is the coeff of ¥ = 1.
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@ Prepare:
* View c as a “noiseless” encryption of plaintext

v:g~v+O=co—|—c1-s€Rq.
Plaintext ring is now Ry, not Ry!

* (Switch to larger ciphertext modulus @ > ¢ and ring RDR, to
support upcoming homomorphic operations.)

@® Extract “constant term” vy € Z, of v: homomorphically evaluate

Trr/z(v)
deg(R/Z)

Fast, increases noise rate by only ~ v/k factor.

:UOW%',UJEZ(].

©® Round: homomorphically evaluate |vg] = p € Zo.

Uses algebraic procedure of depth 1g(q/2) & size 1g%(q/2) [GHS'12b]
*x Now have an encryption of |vg] = p. Donel!
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v Computes Trr,r homomorphically, by taking Trr/r/ of ciphertext.
X Requires hardness of ring-LWE in R’ ...but here R’ = Z.

77 Directly apply all automorphisms 7 of R/7Z to ciphertext, then sum?

T(co) +7(cr) - T(s) = r(v) =N 4 s r(v)

X k/2 automorphisms & key-switches: quadratic work & space

v lteratively “trace down” R= 0O — Oy = -+ = Z.

* Only need to apply the two automorphisms of each O;/0; ;.
* Total Ig(k) automorphisms & key-switches = O(k) work.

Detail #1: ciphertexts are over R O R, so use automorphisms of R that coincide
with those of O;/O; 5.

12 /21



Evaluating Tracer/z Homomorphically

7?7 Use “ring switching” [GHPS'12] ?
v Computes Trr,r homomorphically, by taking Trr/r/ of ciphertext.
X Requires hardness of ring-LWE in R’ ...but here R’ = Z.

77 Directly apply all automorphisms 7 of R/7Z to ciphertext, then sum?

T(co) +7(cr) - T(s) = r(v) =N 4 s r(v)

X k/2 automorphisms & key-switches: quadratic work & space

v lteratively “trace down” R= 0O — Oy = -+ = Z.

* Only need to apply the two automorphisms of each O;/0; ;.
* Total Ig(k) automorphisms & key-switches = O(k) work.

Detail #1: ciphertexts are over R O R, so use automorphisms of R that coincide
with those of O;/O; 5.

Detail #2: each Tr(0;) = 20, s, so lift to plaintext modulus 2¢, then halve result.
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Main Result:
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Bootstrapping Packed Ciphertexts: Overview

@ Prepare: as before, view ¢ as a “noiseless” encryption of plaintext

v:co—i-cl-s:Zvj-bjeRq.
J
Recall: 1= [v] =3_;|vj]-bj € Ry (where b; = ¢).
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@ Prepare: as before, view ¢ as a “noiseless” encryption of plaintext

v:co—i-cl-s:Zvj-bjeRq.
J
Recall: 1= [v] =3_;|vj]-bj € Ry (where b; = ¢).

® Homomorphically map coeffs v; to “Zg-slots” of certain ring S:

ZUj'bjERq — Z’Uj'CjESq.

(Change of basis, analogous to homomorphic DFT.)
© Batch-round: homom'ly apply [-] on all Z-slots at once [SV'11]:
Zvj €S, ZLvﬂ ~c; € 5o,
® Homomorphically reverse-map Zo-slots back to B-coeffs:

ZLvﬂ - Cj € Sy — Ztvﬂ 'bj:MERQ.

(Akin to homomorphic DFT™'.)
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> Let 1 = {g|l1|f2| -~ (all odd), and S = O, = Z[(,,].
Identifying gﬁj/&—l = (y,_,, we get a tower SO /56D /... /7,

» In S =S@, 2 factors into distinct prime ideals, like so:
S = O, P11 P2 P13 P21 P22 P23
| NS NS
S =, p1 p2

| \ /

Z=0, 2
> By Chinese Rem Thm, S; = (), (5/p;) via natural homomorphism.
“CRT set:” C'={c¢;j} C Ss.t.¢;j =1(mod p;), =0 (mod p;).
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Identifying gﬁj/&—l = (y,_,, we get a tower SO /56D /... /7,

» In S =S@, 2 factors into distinct prime ideals, like so:
S = O, P11 P2 P13 P21 P22 P23
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S =, p1 p2

| \ /

Z =0, 2
> By Chinese Rem Thm, S; = (), (5/p;) via natural homomorphism.
“CRT set:” C'={c¢;j} C Ss.t.¢;j =1(mod p;), =0 (mod p;).
Mapping v; € Zso +— v; - ¢c; € Sz embeds Zy into jth “slot” of Ss.
» Can factor C; = C} - Ci_1: let ¢j, = 1 (mod p, ), = 0 (mod p, £).
> Similarly for S, = €D, (S/p;gq).
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Mapping Coeffs to Slots: Overview
» Choose S so that S, has > deg(R/Z) Zg-slots, via:

(vj) 625/2 — Zvjocj mod ¢

for an appropriate CRT set C' = {¢;} C S of size k/2.
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Mapping Coeffs to Slots: Overview
» Choose S so that S, has > deg(R/Z) Zg-slots, via:
(v;) € ZE? — ) "vj-¢;mod g
for an appropriate CRT set C' = {¢;} C S of size k/2.
» Our goal: homomorphically map > v;-b; € Ry — > vj-¢j € 5.
Equivalently, evaluate the Z-linear* map L: R — S defined by
L(bj) = Cj.
» Ring-switching [GHPS'12] lets us eval any R’-linear map L: R — R’

... but only for a subring R’ C R.

Goal for Remainder of Talk

> Extend ring-switching to (efficiently) handle Z-linear maps L: R — S.

“Z-linear: L(b+b') = L(b) + L(V'), L(v-b) = v - L(b) for any b,b/ € R,v € Z.
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» Let R= 0, S=0y. Let d =ged(k,?) and m = lem(k, 7).
T=R+S=0, ("compositum")
R < > s
E=RNS=0,

» Compositum 7" as a tensor product of R, .S, where ® is E-bilinear:

T = (R/E)® (S/E) := {Zem(m ®s;):ei; € B,ri€ Rys; € s}.

» For any E-linear L: R — S, there is an S-linear L: T — S that
agrees with L on R.

» Proof: define L by L(r ® s) = L(r) -s € S.
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Enhanced Ring-Switching: First Attempt
> Let R=0}, S = O, be s.t. ged(k, £) = 1, lem(k, £) = kL.
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Enhanced Ring-Switching: First Attempt
» Let R= 0y, S = Oy bes.t. ged(k,l) =1, lem(k, 0) = kL.

(lnducy

» To homom'’ly eval. Z-linear L: R — S on an encryption of v € R,
@ Trivially embed ciphertext R — T (still encrypts v).
® Homomorphically apply S-linear L: T'— S using ring-switching.
¢ We now have an encryption of L(v) = L(v) !

XX Problem: degree of T is quadratic, therefore so is runtime & space.

This is inherent if we treat L as a generic Z-linear map!
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Enhanced Ring-Switching, Efficiently

Key Ideas
» The Z-linear L: R — S given by L(B) = C'is "highly structured,”
because B, C' are product sets.
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» The Z-linear L: R — S given by L(B) = C'is "highly structured,”
because B, C' are product sets.
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Enhanced Ring-Switching, Efficiently

Key Ideas

» The Z-linear L: R — S given by L(B) = C'is "highly structured,”
because B, C' are product sets.

» Gradually map B to C through a sequence of “hybrid rings’” H,
via E(-linear functions that each send a factor of B to one of C.

» Ensure small compositums 7 = HE=1 + HO) via large ged's:
replace prime factors of k£ with those of /, one at a time.

BCR=H®O ------------- () -oommomoo oo s -S> C

nduced/ nduced/

EM

%
/
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Toy Example
» R = g, basis B= B - Bj ={1,(s}-{1,}.
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Toy Example
» R = g, basis B= B - Bj ={1,(s}-{1,}.
» S =0r713 CRT set C =C% - C); = {c1,c2} - {c], ch, A}

By-By B G Bop Bz oo
C Os fix Bfl C Our fix Cé C Or.43
04 07

» In general, switch through < log(deg(R/Z)) = log(\) hybrid rings,

one for each prime factor of k.
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Final Thoughts

» Gradually converting B to C' via hybrid rings is roughly analogous to
a log-depth FFT butterfly network.
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Final Thoughts

» Gradually converting B to C' via hybrid rings is roughly analogous to
a log-depth FFT butterfly network.

» Technique should also be useful for homomorphically evaluating other
signal-processing transforms having “sparse decompositions.”

» Practical implementation and evaluation are underway.

Thanks!
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