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Agenda

@ Lattices and short ‘trapdoor’ bases
® Lattice-based ‘preimage sampleable’ functions

©® Applications: signatures, ID-based encryption (in RO model)
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Digital Signatures
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Central Tool: Trapdoor Functions

» Public function f generated with secret ‘trapdoor’ f~!
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» ‘Hash and sign:’ pk = f, sk = f~1.  Sign(msg) = f~'(H(msg)).
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Central Tool: Trapdoor Functions
» Public function f generated with secret ‘trapdoor’ f~!

» Trapdoor permutation [DH'76,RSA'77,...] (PSF)

D f D

» ‘Hash and sign:’ pk = f, sk = f~1.  Sign(msg) = f~'(H(msg)).
» Candidate TDPs: [RSA'78,Rabin'79,Paillier'99] (‘general assumption’)

All rely on hardness of factoring:

X Complex: 2048-bit exponentiation
X Broken by quantum algorithms [Shor'97]
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Central Tool: Trapdoor Functions
» Public function f generated with secret ‘trapdoor’ f~!

» New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

» ‘Hash and sign:’ pk = f, sk = f~1.  Sign(msg) = f~1(H(msg)).

» Still secure! Can generate (x,y) in two equivalent ways:

REALITY PROOF
7 f
‘/\ /_\
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Part 1:

Constructing Preimage Sampleable

Trapdoor Functions (PSFs)
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Heuristic TDF & Signature Scheme [GGH'96]
P> Key idea: pk = ‘bad’ basis B for £, sk = ‘short’ trapdoor basis S
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Heuristic TDF & Signature Scheme [GGH'96]

P> Key idea: pk = ‘bad’ basis B for £, sk = ‘short’ trapdoor basis S
» Sign H(msg) € R™ with "nearest-plane” algorithm [Babai'g6]
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Heuristic TDF & Signature Scheme [GGH'96]

P> Key idea: pk = ‘bad’ basis B for £, sk = ‘short’ trapdoor basis S
» Sign H(msg) € R™ with "nearest-plane” algorithm [Babai'g6]
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Heuristic TDF & Signature Scheme [GGH'96]
P> Key idea: pk = ‘bad’ basis B for £, sk = ‘short’ trapdoor basis S
» Sign H(msg) € R™ with "nearest-plane” algorithm [Babai'g6]

Technical Issues

@ Generating ‘hard’ lattice together with short basis (later)

@® Signing algorithm leaks secret basis!
* Total break after several signatures [NguyenRegev'06]
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Blurring a Lattice
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Blurring a Lattice

‘Uniform” in R®  when  std dev > max length of some basis
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Blurring a Lattice

Gaussian mod L is uniform  when  std dev > max length of some basis

> First used in worst/average-case reductions [Regev'03,MR'04,...]

> Now an essential ingredient in many crypto schemes [GPV'08,...]

Lattice-Based Crypto & Applications, Bar-llan University, Israel 2012 7/19



Preimage Sampleable TDF: Evaluation

(0,49)

» ‘Hard’ description of L specifies f.

Concretely: SIS matrix A defines fa.
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(0,49)

» ‘Hard’ description of L specifies f.

Concretely: SIS matrix A defines fa.

» f(x) =xmod L for Gaussian x.

Concretely: fa(x) = Ax =u € Zj.

» Inverting < decoding syndrome u \

~1—Tx

< solving SIS. S
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Preimage Sampleable TDF: Evaluation

(0,49)
» ‘Hard’ description of L specifies f.
Concretely: SIS matrix A defines fa.
» f(x) =x mod L for Gaussian x. e

Concretely: fa(x) = Ax =u € Zj.

» Inverting < decoding syndrome u \

< solving SIS. S

> Given u, conditional distrib. of x is the discrete Gaussian Dg,,.
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Preimage Sampling: Method #1

» Sample D, given any ‘short enough’ basis S: max||s;|| < std dev
* Unlike [GGH'96], output distribution leaks no information about S !
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Preimage Sampling: Method #1

» Sample D, given any ‘short enough’ basis S: max||s;|| < std dev
* Unlike [GGH'96], output distribution leaks no information about S !

P> “Nearest-plane” algorithm with randomized rounding [Klein'00,GPV’08]
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Preimage Sampling: Method #1

» Sample D, given any ‘short enough’ basis S: max||s;|| < std dev
* Unlike [GGH'96], output distribution leaks no information about S !

P> “Nearest-plane” algorithm with randomized rounding [Klein'00,GPV'08]
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» Proof idea: D, (plane) depends only on dist(0, plane);
not affected by shift within plane
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Performance of Nearest-Plane Method?

Good News, and Bad News. . .

v Tight: std dev &~ max]||s;|| = max dist between adjacent planes
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Performance of Nearest-Plane Method?

Good News, and Bad News. . .

v Tight: std dev &~ max]||s;|| = max dist between adjacent planes
X Not efficient: runtime = Q(n?), high-precision arithmetic
X Inherently sequential: n adaptive iterations

X No efficiency improvement in the ring setting [NTRU'98,M'02,. . .]

| \

A Different Sampling Algorithm [P'10]
> Simple & efficient: n? online adds and mults (mod q)
Even better: O(n) time in the ring setting

» Fully parallel: n?/P operations on any P < n? processors

» High quality: same™ Gaussian std dev as nearest-plane alg

*in cryptographic applications
v
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A First Attempt

> [Babai'86] ‘simple rounding:’ ¢+ S-frac(S7!-c) . (Fast & parallel!)

[ ]
[ ]
[ ]
[ ]
So ° .
L]
S1 °
° OP. coset L+ ¢
[ ]
/1 e
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> [Babai'86] ‘simple rounding:’ ¢+ S-frac(S7!-c) . (Fast & parallel!)
P Deterministic rounding is insecure [NR'06] ...
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A First Attempt
> [Babai'g6] ‘simple rounding:’ ¢ — S-frac(S7!.c)s. (Fast & parallel!)
P Deterministic rounding is insecure [NR'06] . ..

... but what about randomized rounding?

so °

[ ]
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S1 °
° OP. coset L+ ¢
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A First Attempt

(Fast & parallel!)

> [Babai'g6] ‘simple rounding:’ ¢ — S - frac(S™! - c)s.

» Deterministic rounding is insecure [NR'06] .. .

. but what about randomized rounding?

S2

11/19
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A First Attempt

(Fast & parallel!)

> [Babai'86] ‘simple rounding:’ ¢+ S -frac(S7!-¢)s.
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» Non-spherical discrete Gaussian: has covariance

E::Ex[x-xt] ~ S-S
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A First Attempt

(Fast & parallel!)

> [Babai'86] ‘simple rounding:’ ¢+ S -frac(S7!-¢)s.

. A
+¢¢+.M.MM£++H+N_.+++
P

.f.rF R

S2

. but what about randomized rounding?

P Deterministic rounding is insecure [NR'06] . ..

» Non-spherical discrete Gaussian: has covariance

E::Ex[x-xt] ~ S-S

Covariance can be measured — and it leaks S! (up to rotation)

11/19
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Inspiration: Some Facts About Gaussians

@ Continuous Gaussian <> positive definite covariance matrix 2.

(pos def means: u* X u > 0 for all unit u.)
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Inspiration: Some Facts About Gaussians

@ Continuous Gaussian <> positive definite covariance matrix 2.

(pos def means: u® X u > 0 for all unit u.)

Spherical Gaussian <> covariance s21.

® Convolution of Gaussians:

” N -
)3 + PO = Y =521

© Given X, how small can s be? For £y := 21 — ¥,
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Inspiration: Some Facts About Gaussians

@ Continuous Gaussian <> positive definite covariance matrix 2.

(pos def means: u® X u > 0 for all unit u.)

Spherical Gaussian <> covariance s21.

® Convolution of Gaussians:

” N -
)3 + PO = Y =521

© Given X, how small can s be? For ¥y := 21 — ¥,

u'You = s —u'Sju>0 <= |s2>max\(D)
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Inspiration: Some Facts About Gaussians

@ Continuous Gaussian <> positive definite covariance matrix 2.

(pos def means: u* X u > 0 for all unit u.)

Spherical Gaussian <> covariance s21.

® Convolution of Gaussians:

s N -

)3 + PO = Y =521

® Given X1, how small can s be? For ¥y := s21 — ¥,

uYou = s2—uSju>0 <— 52 > max \;(3)

For 31 =SS!, can use any ‘ s > 51(S) := max singular val of S.‘
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‘Convolution’ Sampling Algorithm [p'10]

> Given basis S, coset £ + ¢, and std dev s > s1(S),

- L

¥ =SS! °
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‘Convolution’ Sampling Algorithm [p'10]

» Given basis S, coset £ + ¢, and std dev s > s1(S),
@ Generate perturbation p with covariance ¥y := s2I — %; > 0

- 5\

¥ =SS! DI g
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‘Convolution’ Sampling Algorithm [p'10]

» Given basis S, coset £ + ¢, and std dev s > s1(S),
@ Generate perturbation p with covariance 5 := s?I—%; > 0

@® Randomly simple-round p to £ + ¢
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‘Convolution’ Sampling Algorithm [p'10]

» Given basis S, coset £ + ¢, and std dev s > s1(S),
@ Generate perturbation p with covariance ¥y := s2I—%; > 0

® Randomly simple-round p to £ + ¢

-~ \

¥ =SS! DI E .

Convolution* Theorem

Algorithm generates a spherical discrete Gaussian over £ + c.
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‘Convolution’ Sampling Algorithm [p'10]

» Given basis S, coset £ + ¢, and std dev s > s1(S),
@ Generate perturbation p with covariance ¥y := s2I—%; > 0

® Randomly simple-round p to £ + ¢

-~ \

¥ =SS! DI E .

Convolution* Theorem

Algorithm generates a spherical discrete Gaussian over £ + c.

(*technically not a convolution, since step 2 depends on step 1.)
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‘Convolution’ Sampling Algorithm [p'10]

» Given basis S, coset £ + ¢, and std dev s > s1(S),
@ Generate perturbation p with covariance ¥y := s2I—%; > 0

® Randomly simple-round p to £ + ¢

- \

¥ =SS! DI E .

Optimizations

@ Precompute perturbations offline
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‘Convolution’ Sampling Algorithm [p'10]

» Given basis S, coset £ + ¢, and std dev s > s1(S),
@ Generate perturbation p with covariance ¥y := s2I—%; > 0

® Randomly simple-round p to £ + ¢

-~ \

¥ =SS! DI E .

Optimizations

@ Precompute perturbations offline

® Batch multi-sample using fast matrix multiplication
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‘Convolution’ Sampling Algorithm [p'10]

» Given basis S, coset £ + ¢, and std dev s > s1(S),
@ Generate perturbation p with covariance ¥y := s2I—%; > 0

® Randomly simple-round p to £ + ¢

-~ \

¥ =SS! DI E .

Optimizations

@ Precompute perturbations offline
® Batch multi-sample using fast matrix multiplication

©® More tricks & simplifications for SIS lattices (next talk)
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Part 2:
|dentity-Based Encryption
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|dentity-Based Encryption

» Proposed by [Shamir'84]: could this exist?
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|dentity-Based Encryption

» Proposed by [Shamir'84]: could this exist?

f

\ Enc(mpk, “Alice”, msg) %
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|dentity-Based Encryption
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Fast-Forward 17 Years. ..

@ [BonehFranklin'01,...]: first IBE construction, using “new math”
(elliptic curves w/ bilinear pairings)
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® [Cocks'01,BGH'07]: quadratic residuosity mod N = pq [GM'82]

© [GPV'08]: lattices!
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|ID-Based Encryption

x + fa'(u)

mpk = A

l

V' —b'x ~ bit- 4

u = H("Alice”)

(‘identity’ public key)

b=s'A +ef

(ciphertext preamble)

b =stu—+e + bit

. 4
2

(‘payload’)
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When We Come Back. ..

» Generating trapdoors (A with short basis)
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