Session #9: Trapdoors and Applications

Chris Peikert Georgia Institute of Technology

Winter School on Lattice-Based Cryptography and Applications
Bar-Ilan University, Israel
19 Feb 2012 – 22 Feb 2012

Agenda

- 1 Lattices and short 'trapdoor' bases
- 2 Lattice-based 'preimage sampleable' functions
- 3 Applications: signatures, ID-based encryption (in RO model)

▶ Public function f generated with secret 'trapdoor' f^{-1}

- ▶ Public function f generated with secret 'trapdoor' f^{-1}
- ► Trapdoor permutation [DH'76,RSA'77,...] (PSF)

- ▶ Public function f generated with secret 'trapdoor' f^{-1}
- ► Trapdoor permutation [DH'76,RSA'77,...] (PSF)

- ▶ Public function f generated with secret 'trapdoor' f^{-1}
- ► Trapdoor permutation [DH'76,RSA'77,...] (PSF)

- ▶ Public function f generated with secret 'trapdoor' f^{-1}
- ► Trapdoor permutation [DH'76,RSA'77,...] (PSF)

• 'Hash and sign:' pk = f, $sk = f^{-1}$. Sign(msg) = $f^{-1}(H(\text{msg}))$.

- ▶ Public function f generated with secret 'trapdoor' f^{-1}
- Trapdoor permutation [DH'76,RSA'77,...] (PSF)

- 'Hash and sign:' pk = f, $sk = f^{-1}$. Sign(msg) = $f^{-1}(H(\text{msg}))$.
- ► Candidate TDPs: [RSA'78,Rabin'79,Paillier'99] ('general assumption')

All rely on hardness of factoring:

- ✗ Complex: 2048-bit exponentiation
- ✗ Broken by quantum algorithms [Shor'97]

- lacktriangle Public function f generated with secret 'trapdoor' f^{-1}
- ► New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

- lacktriangle Public function f generated with secret 'trapdoor' f^{-1}
- ► New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

- ▶ Public function f generated with secret 'trapdoor' f^{-1}
- ► New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

- ▶ Public function f generated with secret 'trapdoor' f^{-1}
- ► New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

▶ 'Hash and sign:' pk = f, $sk = f^{-1}$. Sign(msg) = $f^{-1}(H(msg))$.

- ▶ Public function f generated with secret 'trapdoor' f^{-1}
- ► New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

- 'Hash and sign:' pk = f, $sk = f^{-1}$. Sign(msg) = $f^{-1}(H(\text{msg}))$.
- ▶ Still secure! Can generate (x, y) in two equivalent ways:

Part 1:

Constructing Preimage Sampleable Trapdoor Functions (PSFs)

lacktriangle Key idea: pk= 'bad' basis ${f B}$ for ${\cal L}$, sk= 'short' trapdoor basis ${f S}$

- lacktriangle Key idea: pk= 'bad' basis ${f B}$ for ${\cal L}$, sk= 'short' trapdoor basis ${f S}$
- lacktriangle Sign $H(\mathsf{msg}) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- lacktriangle Key idea: pk= 'bad' basis ${f B}$ for ${\cal L}$, sk= 'short' trapdoor basis ${f S}$
- ▶ Sign $H(\mathsf{msg}) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- lacktriangle Key idea: pk= 'bad' basis ${f B}$ for ${\cal L}$, sk= 'short' trapdoor basis ${f S}$
- ▶ Sign $H(\mathsf{msg}) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- lacktriangle Key idea: pk= 'bad' basis ${f B}$ for ${\cal L}$, sk= 'short' trapdoor basis ${f S}$
- ▶ Sign $H(\mathsf{msg}) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- lacktriangle Key idea: pk= 'bad' basis ${f B}$ for ${\cal L}$, sk= 'short' trapdoor basis ${f S}$
- ▶ Sign $H(\mathsf{msg}) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- lacktriangle Key idea: pk= 'bad' basis ${f B}$ for ${\cal L}$, sk= 'short' trapdoor basis ${f S}$
- ▶ Sign $H(\mathsf{msg}) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- lacktriangle Key idea: pk= 'bad' basis ${f B}$ for ${\cal L}$, sk= 'short' trapdoor basis ${f S}$
- ▶ Sign $H(\mathsf{msg}) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- lacktriangle Key idea: pk= 'bad' basis ${f B}$ for ${\cal L}$, sk= 'short' trapdoor basis ${f S}$
- ▶ Sign $H(\mathsf{msg}) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

- lacktriangle Key idea: pk= 'bad' basis ${f B}$ for ${\cal L}$, sk= 'short' trapdoor basis ${f S}$
- ▶ Sign $H(\mathsf{msg}) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

Technical Issues

Generating 'hard' lattice together with short basis (later)

- lacktriangle Key idea: pk= 'bad' basis ${f B}$ for ${\cal L}$, sk= 'short' trapdoor basis ${f S}$
- ▶ Sign $H(\mathsf{msg}) \in \mathbb{R}^n$ with "nearest-plane" algorithm [Babai'86]

Technical Issues

- Generating 'hard' lattice together with short basis (later)
- 2 Signing algorithm leaks secret basis!
 - ★ Total break after several signatures [NguyenRegev'06]

'Uniform' in \mathbb{R}^n when std dev \geq max length of some basis

Gaussian $\operatorname{mod} \mathcal{L}$ is uniform when std dev $\geq \max$ length of some basis

Gaussian $\operatorname{mod} \mathcal{L}$ is uniform when std dev $\geq \max$ length of some basis

► First used in worst/average-case reductions [Regev'03,MR'04,...]

Gaussian $\operatorname{mod} \mathcal{L}$ is uniform when std dev $\geq \max$ length of some basis

- ► First used in worst/average-case reductions [Regev'03,MR'04,...]
- Now an essential ingredient in many crypto schemes [GPV'08,...]

'Hard' description of L specifies f.
 Concretely: SIS matrix A defines f_A.

- 'Hard' description of L specifies f.
 Concretely: SIS matrix A defines f_A.
- ► $f(\mathbf{x}) = \mathbf{x} \mod \mathcal{L}$ for Gaussian \mathbf{x} . Concretely: $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = \mathbf{u} \in \mathbb{Z}_q^n$.

- ► 'Hard' description of L specifies f.
 Concretely: SIS matrix A defines f_A.
- ► $f(\mathbf{x}) = \mathbf{x} \mod \mathcal{L}$ for Gaussian \mathbf{x} . Concretely: $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} = \mathbf{u} \in \mathbb{Z}_q^n$.
- ► Inverting ⇔ decoding syndrome u ⇔ solving SIS.

► 'Hard' description of L specifies f. Concretely: SIS matrix A defines f_A.

► Inverting ⇔ decoding syndrome u ⇔ solving SIS.

lacktriangle Given ${f u}$, conditional distrib. of ${f x}$ is the discrete Gaussian $D_{{\cal L}_{f u}}$.

- ▶ Sample $D_{\mathcal{L}_{\mathbf{u}}}$ given any 'short enough' basis \mathbf{S} : $\max \|\mathbf{s}_i\| \leq \mathsf{std}$ dev
 - ★ Unlike [GGH'96], output distribution leaks no information about S!

- ▶ Sample $D_{\mathcal{L}_{\mathbf{u}}}$ given any 'short enough' basis \mathbf{S} : $\max \|\mathbf{s}_i\| \leq \mathsf{std}$ dev
 - ★ Unlike [GGH'96], output distribution leaks no information about S!
- "Nearest-plane" algorithm with randomized rounding [Klein'00,GPV'08]

- ▶ Sample $D_{\mathcal{L}_{\mathbf{u}}}$ given any 'short enough' basis \mathbf{S} : $\max \|\mathbf{s}_i\| \leq \mathsf{std}$ dev
 - ★ Unlike [GGH'96], output distribution leaks no information about S!
- "Nearest-plane" algorithm with randomized rounding [Klein'00,GPV'08]

- ▶ Sample $D_{\mathcal{L}_{\mathbf{u}}}$ given any 'short enough' basis \mathbf{S} : $\max \lVert \mathbf{s}_i \rVert \leq$ std dev
 - ★ Unlike [GGH'96], output distribution leaks no information about S!
- "Nearest-plane" algorithm with randomized rounding [Klein'00,GPV'08]

- ▶ Sample $D_{\mathcal{L}_{\mathbf{u}}}$ given any 'short enough' basis \mathbf{S} : $\max \|\mathbf{s}_i\| \leq \mathsf{std}$ dev
 - ★ Unlike [GGH'96], output distribution leaks no information about S!
- "Nearest-plane" algorithm with randomized rounding [Klein'00,GPV'08]

- ▶ Sample $D_{\mathcal{L}_n}$ given any 'short enough' basis \mathbf{S} : $\max \|\mathbf{s}_i\| \leq \mathsf{std}$ dev
 - ★ Unlike [GGH'96], output distribution leaks no information about S!
- "Nearest-plane" algorithm with randomized rounding [Klein'00,GPV'08]

Proof idea: $D_{\mathcal{L}_{\mathbf{u}}}(\mathsf{plane})$ depends only on $\mathrm{dist}(0,\mathsf{plane})$; not affected by shift within plane

Good News, and Bad News...

 $ightharpoonup ext{Tight:} ext{ std dev} pprox \max \lVert ilde{s_i} \rVert = ext{max dist between adjacent planes}$

Good News, and Bad News...

- $m{arphi}$ Tight: std dev $pprox \max \lVert ilde{\mathbf{s}_i} \rVert = \mathsf{max}$ dist between adjacent planes
- **X** Not efficient: runtime = $\Omega(n^3)$, high-precision arithmetic

Good News, and Bad News...

- $m{arphi}$ Tight: std dev $pprox \max \lVert ilde{\mathbf{s}_i} \rVert = \mathsf{max}$ dist between adjacent planes
- $m{\times}$ Not efficient: runtime = $\Omega(n^3)$, high-precision arithmetic
- X Inherently sequential: n adaptive iterations

Good News, and Bad News...

- $m{arphi}$ Tight: std dev $pprox \max \lVert ilde{\mathbf{s}_i} \rVert = \mathsf{max}$ dist between adjacent planes
- ightharpoonup Not efficient: runtime = $\Omega(n^3)$, high-precision arithmetic
- X Inherently sequential: n adaptive iterations
- ✗ No efficiency improvement in the ring setting [NTRU'98,M'02,...]

Good News, and Bad News...

- $m{arphi}$ Tight: std dev $pprox \max \lVert ilde{\mathbf{s}_i} \rVert = \mathsf{max}$ dist between adjacent planes
- $m{\times}$ Not efficient: runtime = $\Omega(n^3)$, high-precision arithmetic
- $oldsymbol{\mathsf{X}}$ Inherently sequential: n adaptive iterations
- ✗ No efficiency improvement in the ring setting [NTRU'98,M'02,...]

A Different Sampling Algorithm [P'10]

▶ Simple & efficient: n^2 online adds and mults (mod q)

Good News, and Bad News...

- $m{arphi}$ Tight: std dev $pprox \max \lVert ilde{\mathbf{s}_i} \rVert = \mathsf{max}$ dist between adjacent planes
- X Inherently sequential: n adaptive iterations
- X No efficiency improvement in the ring setting [NTRU'98,M'02,...]

A Different Sampling Algorithm [P'10]

Simple & efficient: n^2 online adds and mults (mod q) Even better: $\tilde{O}(n)$ time in the ring setting

Good News, and Bad News...

- $m{arphi}$ Tight: std dev $pprox \max \lVert ilde{s_i} \rVert = \mathsf{max}$ dist between adjacent planes
- $m{\times}$ Not efficient: runtime = $\Omega(n^3)$, high-precision arithmetic
- X Inherently sequential: n adaptive iterations
- ✗ No efficiency improvement in the ring setting [NTRU'98,M'02,...]

A Different Sampling Algorithm [P'10]

- ▶ Simple & efficient: n^2 online adds and mults (mod q) Even better: $\tilde{O}(n)$ time in the ring setting
- ▶ Fully parallel: n^2/P operations on any $P \le n^2$ processors

Good News, and Bad News...

- $m{arphi}$ Tight: std dev $pprox \max \lVert ilde{\mathbf{s}_i} \rVert = \mathsf{max}$ dist between adjacent planes
- X Not efficient: runtime = $\Omega(n^3)$, high-precision arithmetic
- $oldsymbol{\mathsf{X}}$ Inherently sequential: n adaptive iterations
- ✗ No efficiency improvement in the ring setting [NTRU'98,M'02,...]

A Different Sampling Algorithm [P'10]

- ▶ Simple & efficient: n^2 online adds and mults (mod q) Even better: $\tilde{O}(n)$ time in the ring setting
- ▶ Fully parallel: n^2/P operations on any $P \le n^2$ processors
- ► High quality: same* Gaussian std dev as nearest-plane alg
 *in cryptographic applications

 $\blacktriangleright \ \ [\mathsf{Babai'86}] \ \ \text{`simple rounding:'} \ \ \mathbf{c} \mapsto \mathbf{S} \cdot \mathsf{frac}(\mathbf{S}^{-1} \cdot \mathbf{c}) \ \ . \quad \ \ \big(\mathsf{Fast} \ \& \ \mathsf{parallel!}\big)$

- ▶ [Babai'86] 'simple rounding:' $\mathbf{c} \mapsto \mathbf{S} \cdot \mathsf{frac}(\mathbf{S}^{-1} \cdot \mathbf{c})$. (Fast & parallel!)
- ▶ Deterministic rounding is insecure [NR'06] . . .

- ▶ [Babai'86] 'simple rounding:' $\mathbf{c} \mapsto \mathbf{S} \cdot \mathsf{frac}(\mathbf{S}^{-1} \cdot \mathbf{c})_\$$. (Fast & parallel!)
- Deterministic rounding is insecure [NR'06] . . .

... but what about randomized rounding?

- ▶ [Babai'86] 'simple rounding:' $\mathbf{c} \mapsto \mathbf{S} \cdot \mathsf{frac}(\mathbf{S}^{-1} \cdot \mathbf{c})_\$$. (Fast & parallel!)
- ▶ Deterministic rounding is insecure [NR'06] . . .

... but what about randomized rounding?

- ▶ [Babai'86] 'simple rounding:' $\mathbf{c} \mapsto \mathbf{S} \cdot \mathsf{frac}(\mathbf{S}^{-1} \cdot \mathbf{c})_\$$. (Fast & parallel!)
- ▶ Deterministic rounding is insecure [NR'06] . . .
 - ... but what about randomized rounding?

Non-spherical discrete Gaussian: has covariance

$$\Sigma := \mathbb{E}_{\mathbf{x}} \left[\mathbf{x} \cdot \mathbf{x}^t \right] \approx \mathbf{S} \cdot \mathbf{S}^t.$$

- ▶ [Babai'86] 'simple rounding:' $\mathbf{c} \mapsto \mathbf{S} \cdot \mathsf{frac}(\mathbf{S}^{-1} \cdot \mathbf{c})_{\$}$. (Fast & parallel!)
- ▶ Deterministic rounding is insecure [NR'06] . . .
 - ... but what about randomized rounding?

Non-spherical discrete Gaussian: has covariance

$$\Sigma := \mathbb{E}_{\mathbf{x}} \left[\mathbf{x} \cdot \mathbf{x}^t \right] \approx \mathbf{S} \cdot \mathbf{S}^t.$$

Covariance can be measured — and it leaks S! (up to rotation)

1 Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ .

(pos def means: $\mathbf{u}^t \Sigma \mathbf{u} > 0$ for all unit \mathbf{u} .)

1 Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ .

(pos def means: $\mathbf{u}^t \, \Sigma \, \mathbf{u} > 0$ for all unit \mathbf{u} .)

Spherical Gaussian \leftrightarrow covariance s^2 **I**.

1 Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ .

(pos def means: $\mathbf{u}^t \Sigma \mathbf{u} > 0$ for all unit \mathbf{u} .)

Spherical Gaussian \leftrightarrow covariance s^2 **I**.

2 Convolution of Gaussians:

1 Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ .

(pos def means: $\mathbf{u}^t \Sigma \mathbf{u} > 0$ for all unit \mathbf{u} .)

Spherical Gaussian \leftrightarrow covariance s^2 **I**.

2 Convolution of Gaussians:

3 Given Σ_1 , how small can s be? For $\Sigma_2 := s^2 \mathbf{I} - \Sigma_1$,

1 Continuous Gaussian \leftrightarrow positive definite covariance matrix Σ . (pos def means: $\mathbf{u}^t \Sigma \mathbf{u} > 0$ for all unit \mathbf{u} .)

Spherical Gaussian \leftrightarrow covariance s^2 I.

2 Convolution of Gaussians:

3 Given Σ_1 , how small can s be? For $\Sigma_2 := s^2 \mathbf{I} - \Sigma_1$,

$$\mathbf{u}^t \Sigma_2 \mathbf{u} = s^2 - \mathbf{u}^t \Sigma_1 \mathbf{u} > 0 \iff s^2 > \max \lambda_i(\Sigma_1)$$

 $\textbf{0} \ \, \mathsf{Continuous} \ \, \mathsf{Gaussian} \, \leftrightarrow \, \mathsf{positive} \ \, \mathsf{definite} \ \, \mathsf{covariance} \ \, \mathsf{matrix} \, \, \Sigma.$

 $(\text{pos def means: } \mathbf{u}^t \, \Sigma \, \mathbf{u} > 0 \text{ for all unit } \mathbf{u}.)$ Spherical Gaussian \leftrightarrow covariance $s^2 \, \mathbf{I}.$

2 Convolution of Gaussians:

3 Given Σ_1 , how small can s be? For $\Sigma_2 := s^2 \mathbf{I} - \Sigma_1$,

$$\mathbf{u}^t \Sigma_2 \mathbf{u} = s^2 - \mathbf{u}^t \Sigma_1 \mathbf{u} > 0 \iff s^2 > \max \lambda_i(\Sigma_1)$$

For $\Sigma_1 = \mathbf{S} \mathbf{S}^t$, can use any $s > s_1(\mathbf{S}) := \max \text{ singular val of } \mathbf{S}$.

▶ Given basis **S**, coset $\mathcal{L} + \mathbf{c}$, and std dev $s > s_1(\mathbf{S})$,

$$\Sigma_1 = \mathbf{S} \, \mathbf{S}^t$$

- ▶ Given basis **S**, coset $\mathcal{L} + \mathbf{c}$, and std dev $s > s_1(\mathbf{S})$,
 - **1** Generate perturbation **p** with covariance $\Sigma_2 := s^2 \mathbf{I} \Sigma_1 > 0$

- Given basis **S**, coset $\mathcal{L} + \mathbf{c}$, and std dev $s > s_1(\mathbf{S})$,
 - **1** Generate perturbation \mathbf{p} with covariance $\Sigma_2 := s^2 \mathbf{I} \Sigma_1 > 0$
 - 2 Randomly simple-round ${f p}$ to ${\cal L}+{f c}$

- ▶ Given basis **S**, coset $\mathcal{L} + \mathbf{c}$, and std dev $s > s_1(\mathbf{S})$,
 - **1** Generate perturbation \mathbf{p} with covariance $\Sigma_2 := s^2 \mathbf{I} \Sigma_1 > 0$
 - 2 Randomly simple-round ${f p}$ to ${\cal L}+{f c}$

Convolution* Theorem

Algorithm generates a spherical discrete Gaussian over $\mathcal{L}+\mathbf{c}.$

- ▶ Given basis **S**, coset $\mathcal{L} + \mathbf{c}$, and std dev $s > s_1(\mathbf{S})$,
 - **1** Generate perturbation \mathbf{p} with covariance $\Sigma_2 := s^2 \mathbf{I} \Sigma_1 > 0$
 - 2 Randomly simple-round ${f p}$ to ${\cal L}+{f c}$

Convolution* Theorem

Algorithm generates a spherical discrete Gaussian over $\mathcal{L}+\mathbf{c}.$

(*technically not a convolution, since step 2 depends on step 1.)

- ▶ Given basis **S**, coset $\mathcal{L} + \mathbf{c}$, and std dev $s > s_1(\mathbf{S})$,
 - **1** Generate perturbation ${\bf p}$ with covariance $\Sigma_2:=s^2\,{f I}-\Sigma_1>0$
 - 2 Randomly simple-round ${f p}$ to ${\cal L}+{f c}$

Optimizations

1 Precompute perturbations offline

'Convolution' Sampling Algorithm [P'10]

- ▶ Given basis **S**, coset $\mathcal{L} + \mathbf{c}$, and std dev $s > s_1(\mathbf{S})$,
 - **1** Generate perturbation **p** with covariance $\Sigma_2 := s^2 \mathbf{I} \Sigma_1 > 0$
 - 2 Randomly simple-round ${f p}$ to ${\cal L}+{f c}$

Optimizations

- 1 Precompute perturbations offline
- 2 Batch multi-sample using fast matrix multiplication

'Convolution' Sampling Algorithm [P'10]

- ▶ Given basis **S**, coset $\mathcal{L} + \mathbf{c}$, and std dev $s > s_1(\mathbf{S})$,
 - **1** Generate perturbation **p** with covariance $\Sigma_2 := s^2 \mathbf{I} \Sigma_1 > 0$
 - 2 Randomly simple-round ${f p}$ to ${\cal L}+{f c}$

Optimizations

- 1 Precompute perturbations offline
- 2 Batch multi-sample using fast matrix multiplication
- 3 More tricks & simplifications for SIS lattices (next talk)

Part 2:

Identity-Based Encryption

Fast-Forward 17 Years...

[BonehFranklin'01,...]: first IBE construction, using "new math" (elliptic curves w/ bilinear pairings)

Fast-Forward 17 Years...

- (1) [BonehFranklin'01,...]: first IBE construction, using "new math" (elliptic curves w/ bilinear pairings)
- ② [Cocks'01,BGH'07]: quadratic residuosity mod N=pq [GM'82]

Fast-Forward 17 Years...

- (1) [BonehFranklin'01,...]: first IBE construction, using "new math" (elliptic curves w/ bilinear pairings)
- **2** [Cocks'01,BGH'07]: quadratic residuosity mod N=pq [GM'82]
- 3 [GPV'08]: lattices!

$$\frac{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}{\text{(public key)}}$$

$$\frac{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}{\text{(public key)}}$$

$$\mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$$
(ciphertext 'preamble')

$$\frac{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}{\text{(public key)}}$$

$$\mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$$
(ciphertext 'preamble')

$$b' = \mathbf{s}^t \, \mathbf{u} + e' + \mathsf{bit} \cdot \frac{q}{2}$$
('payload')

$$\mathbf{s}, \mathbf{e}$$

$$\underbrace{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}_{\text{(public key)}}$$

$$\mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$$
(ciphertext 'preamble')

$${\color{red} {b'}} - {\color{blue} {\mathbf{b}}}^t \, {\mathbf{x}} pprox {\mathsf{bit}} \cdot {\color{blue} {rac{q}{2}}}$$

$$b' = \mathbf{s}^t \, \mathbf{u} + e' + \mathsf{bit} \cdot \frac{q}{2}$$
('payload')

 \mathbf{s}, \mathbf{e}

$$\frac{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}{\text{(public key)}}$$

$$\mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t$$
(ciphertext 'preamble')

$$\mathbf{b}' - \mathbf{b}^t \mathbf{x} \approx \mathsf{bit} \cdot \frac{q}{2}$$

$$b' = \mathbf{s}^t \mathbf{u} + e' + \mathbf{bit} \cdot \frac{q}{2}$$

$$('payload')$$

$$? (\mathbf{A}, \mathbf{u}, \mathbf{b}, b')$$

$$\underbrace{\mathbf{u} = \mathbf{A}\mathbf{x} = f_{\mathbf{A}}(\mathbf{x})}_{\text{(public key)}}$$

$$\frac{\mathbf{b}^t = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t}{\text{(ciphertext 'preamble')}}$$

$$\mathbf{b}' - \mathbf{b}^t \mathbf{x} \approx \mathsf{bit} \cdot \frac{q}{2}$$

$$b' = \mathbf{s}^t \mathbf{u} + e' + \mathbf{bit} \cdot \frac{q}{2}$$

$$('payload')$$

$$? (\mathbf{A}, \mathbf{u}, \mathbf{b}, b')$$

ID-Based Encryption

► Generating trapdoors (A with short basis)

- Generating trapdoors (A with short basis)
- Removing the random oracle from signatures & IBE

- Generating trapdoors (A with short basis)
- Removing the random oracle from signatures & IBE
- ► More surprising applications

- Generating trapdoors (A with short basis)
- Removing the random oracle from signatures & IBE
- More surprising applications

Selected bibliography for this talk:

- MR'04 D. Micciancio and O. Regev, "Worst-Case to Average-Case Reductions Based on Gaussian Measures," FOCS'04 / SICOMP'07.
- GPV'08 C. Gentry, C. Peikert, V. Vaikuntanathan, "Trapdoors for Hard Lattices and New Cryptographic Constructions," STOC'08.
 - P'10 C. Peikert, "An Efficient and Parallel Gaussian Sampler for Lattices," Crypto'10.