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SIS/LWE are Efficient (...sort of)

» Each pseudorandom scalar b
requires an n-dim inner product

(_ st _) al+e=10€2Z, » Can amortize each a over many
| secrets s;, but still O(n) work
per scalar b.

» Crypto functions have rather large key sizes: Q(n?) bits

m=n logq

> Can fix A for all users, but still (n?) time to evaluate functions.
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Wishful Thinking. . .
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| | | | |

ap [x[xi|+--+|an]|*x|xXn| = |u|eZ

s*al—i—e:beZ;1

» SIS: n-dimensional x;, and m = log g

> LWE: each x operation yields n pseudorandom scalars

Key Question
» How to define ‘x’ so SIS and LWE are fast and secure?

» Careful: coordinate-wise multiplication is not secure!

» Answer: multiplication in a suitable polynomial ring.
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P> For ‘short’ x; € R, is this ‘ring-SIS’ function one-way? Coll. resistant?

a | x|x1 |+ +lan|*x|xXn] = |u] €Ry

» [Micciancio'02]: the function is one-way, if SVP, on ideal lattices in
R =7Z[X]/(X™ —1) is hard in the worst case.

P> [PR'06,LM'06]: the function is not collision resistant!
* With prob 1/q, we have a(l) =ag+a; + -+ a,—1 =0 € Z,.
* Then for x =1, we have axx =rot(a) -x =0 € R,,.

* Algebraically,
(X = D]a(X)=a(X) A1+ X+ + X" 1) =0mod (X" - 1).

» Main problem: R = Z[X]/(X™ — 1) is not an integral domain,
because X" — 1 is reducible.
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A Better Construction
> R:=Z[X]/(X"+1)and R, = R/qR, for n = 2¥ and ¢ = 1 mod 2n.
(X™ 4+ 1 is irreducible over Z, but “splits completely” over Z,.)

» Multiplication % in R (or Ry) is “anti-cyclic convolution”

ap bo ag  —Qap—1 - —ai bo
a1 b1 a1 ag cee o —an b1
* =
(p—1 bn—1 p—1  Gp—2 -+ Qg bn—1

» Multiplication in O(nlogn) time: use “FFT" over Z,

Theorem [LPR'10]

» Ring-LWE is pseudorandom if SVP,, on ideal lattices in R is
quantumly hard in the worst case.




A Few Words on ldeal Lattices

» Recall example ring R = Z[X]/(X™ + 1) for n = 2.
» Anideal Z C R is closed under + and —, and under x with R.

10



A Few Words on Ideal Lattices
» Recall example ring R = Z[X]/(X™ + 1) for n = 2.

» Anideal Z C R is closed under + and —, and under x with R.

To get ideal lattices, embed R and its ideals into Z". How?

10



A Few Words on ldeal Lattices

» Recall example ring R = Z[X]/(X™ + 1) for n = 2.
» Anideal Z C R is closed under + and —, and under x with R.

To get ideal lattices, embed R and its ideals into Z". How?
» ‘Coefficient embedding’ [HPS'98,M'02,PR’06,LM'06,G’09,...]:

aX)=ap+a X+ - Fa, 1 X" o (ag,...,an_1) €Z"

10



A Few Words on ldeal Lattices

» Recall example ring R = Z[X]/(X™ + 1) for n = 2.
» Anideal Z C R is closed under + and —, and under x with R.

To get ideal lattices, embed R and its ideals into Z". How?
» ‘Coefficient embedding’ [HPS'98,M'02,PR’06,LM'06,G’09,...]:
a(X)=ay+a X+ + a1 X" o (agy...,an—1) €Z"

Addition + is coordinate-wise, but analyzing x is cumbersome.

10



A Few Words on ldeal Lattices
» Recall example ring R = Z[X]/(X™ + 1) for n = 2.
» Anideal Z C R is closed under + and —, and under x with R.
To get ideal lattices, embed R and its ideals into Z". How?
» ‘Coefficient embedding’ [HPS'98,M'02,PR’06,LM'06,G’09,...]:
aX)=ap+a X+ - Fa, 1 X" o (ag,...,an_1) €Z"
Addition + is coordinate-wise, but analyzing x is cumbersome.

‘Expansion factor’ ¢ can bound |jaxb|| < ¢ - ||a]| - ||b]|, but is often
loose, and doesn’t help with distributions.

10



A Few Words on ldeal Lattices

» Recall example ring R = Z[X]/(X™ + 1) for n = 2.
» Anideal Z C R is closed under + and —, and under x with R.

To get ideal lattices, embed R and its ideals into C". How?
» ‘Coefficient embedding’ [HPS'98,M'02,PR’06,LM'06,G’09,...]:
a(X)=ay+a X+ + a1 X" o (agy...,an—1) €Z"

Addition + is coordinate-wise, but analyzing x is cumbersome.

‘Expansion factor’ ¢ can bound |jaxb|| < ¢ - ||a]| - ||b]|, but is often
loose, and doesn’t help with distributions.

» [Minkowski'1800s,...]: ‘canonical embedding’ o. Let w = exp(mi/n):
a(X) % (awh), alw?),..., aw? 1) eCn

10



A Few Words on ldeal Lattices

» Recall example ring R = Z[X]/(X™ + 1) for n = 2.
» Anideal Z C R is closed under + and —, and under x with R.

To get ideal lattices, embed R and its ideals into C". How?
» ‘Coefficient embedding’ [HPS'98,M'02,PR’06,LM'06,G’09,...]:
a(X)=ay+a X+ + a1 X" o (agy...,an—1) €Z"

Addition + is coordinate-wise, but analyzing x is cumbersome.

‘Expansion factor’ ¢ can bound |jaxb|| < ¢ - ||a]| - ||b]|, but is often
loose, and doesn’t help with distributions.

» [Minkowski'1800s,...]: ‘canonical embedding’ o. Let w = exp(mi/n):
a(X) % (awh), alw?),..., aw? 1) eCn

Both 4 and x are coordinate-wise! Nice geometric behavior.



A Few Words on ldeal Lattices

» Recall example ring R = Z[X]/(X™ + 1) for n = 2.
» Anideal Z C R is closed under + and —, and under x with R.

To get ideal lattices, embed R and its ideals into C". How?
» ‘Coefficient embedding’ [HPS'98,M'02,PR’06,LM'06,G’09,...]:

aX)=ap+a X+ - Fa, 1 X" o (ag,...,an_1) €Z"

Addition + is coordinate-wise, but analyzing x is cumbersome.

‘Expansion factor’ ¢ can bound |jaxb|| < ¢ - ||a]| - ||b]|, but is often
loose, and doesn’t help with distributions.

» [Minkowski'1800s,...]: ‘canonical embedding’ o. Let w = exp(mi/n):
a(X) % (awh), alw?),..., aw? 1) eCn
Both + and x are coordinate-wise! Nice geometric behavior.

P Lengths, Gaussians, etc. are all defined in terms of o.
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Some of My Favorite Open Problems

@ Classical hardness of LWE, subsuming the quantum reduction of
[Regev'05]: g = poly(n), based on GapSVP and SIVP

@® Adaptive security for IBE, with good key sizes (e.g., O(1) As).

Adapt [Waters'09] from bilinear setting?

©® Provable hardness for small parameters for related problems like
Learning With Rounding and PRFs [BPR'12]

@ Multilinear maps [GGH'12] from standard lattice assumptions (LWE)

® Anything nontrivial about ideal lattices: attacks, hardness,
applications, ...
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> You now have a solid foundation in the central concepts and
techniques used in lattice-based cryptography.

P The field is vibrant: there are endless unanswered questions, and
endless new discoveries to be made.

» Enjoy the cryptography!

Thanks!

10/10



