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Lattice-Based One-Way Functions

I Public key
[
· · · A · · ·

]
∈ Zn×m

q for q = poly(n), m = Ω(n log q).

fA(x) = Ax mod q ∈ Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . . ]

gA(s, e) = stA + et mod q ∈ Zm
q

(“short” e, injective)

OWF if LWE hard [Regev’05,P’09]
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I Lattice interpretation: Λ⊥

u

(A) = {x ∈ Zm : fA(x) = Ax = 0 mod q}

O
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Lattice-Based One-Way Functions

I Public key
[
· · · A · · ·

]
∈ Zn×m

q for q = poly(n), m = Ω(n log q).

fA(x) = Ax mod q ∈ Zn
q

(“short” x, surjective)

CRHF if SIS hard [Ajtai’96,. . . ]

gA(s, e) = stA + et mod q ∈ Zm
q

(“short” e, injective)

OWF if LWE hard [Regev’05,P’09]

I fA, gA in forward direction yield CRHFs, CPA security (w/FHE!)
. . . but not much else.
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Trapdoor Inversion

I Many cryptographic applications need to invert fA and/or gA.

Invert u = fA(x′) = Ax′:

sample random x← f−1
A (u)

with prob ∝ exp(−‖x‖2/s2).

Invert gA(s, e) = stA + et:

find the unique preimage s

(equivalently, e)

I How? Use a “strong trapdoor” for A: a short basis of Λ⊥(A)
[Babai’86,GGH’97,Klein’01,GPV’08,P’10]
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Applications of Strong Trapdoors

Canonical App: [GPV’08] Signatures

I pk = A, sk = short basis for A, random oracle H : {0, 1}∗ → Zn
q .

I Sign(msg): let u = H(msg) and output Gaussian x← f−1
A (u).

I Verify(msg,x): check fA(x) = Ax = H(msg) and x short enough.

I Security: finding short enough preimages in fA must be hard.
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I Sign(msg): let u = H(msg) and output Gaussian x← f−1
A (u).

I Verify(msg,x): check fA(x) = Ax = H(msg) and x short enough.

I Security: finding short enough preimages in fA must be hard.

Other “Black-Box” Applications of f−1, g−1

I Standard Model (no RO) signatures [CHKP’10,R’10,B’10]

I SM CCA-secure encryption [PW’08,P’09]

I SM (Hierarchical) IBE [GPV’08,CHKP’10,ABB’10a,ABB’10b]

I Many more: OT, NISZK, homom enc/sigs, deniable enc, func enc, . . .
[PVW’08,PV’08,GHV’10,GKV’10,BF’10a,BF’10b,OPW’11,AFV’11,ABVVW’11,. . . ]
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Today

“Strong” trapdoor generation and inversion algorithms:

4 Very simple & fast

F Generation: one matrix mult. No HNF or inversion (cf. [A’99,AP’09])

F Inversion of fA, gA: practical, parallel, & mostly offline

F No more efficiency-vs-quality tradeoff

4 Tighter parameters m and s

F Asymptotically optimal with small constant factors

4 New kind of trapdoor — not a basis! (But just as powerful.)

4 More efficient applications: CCA, (H)IBE in standard model
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Overview of Methods

1 Design a fixed, public lattice defined by “gadget” matrix G.

Design fast, parallel, offline algorithms for f−1
G , g−1

G .

2 Randomize G↔ A via a “nice” unimodular transformation.

(The transformation is the trapdoor!)

3 Reduce f−1
A , g−1

A to f−1
G , g−1

G plus pre-/post-processing.
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Step 1: Gadget G and Inversion Algorithms

I Let q = 2k. Define 1-by-k “parity check” vector

g :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q .

I To invert LWE function gg : Zq × Zk → Zk
q :

s · g + e =
[
s+ e0 2s+ e1 · · · 2k−1s+ ek−1

]
mod q.

F Get lsb(s) from 2k−1s+ ek−1. Then get next bit of s, etc.

Works exactly when every ei ∈ [− q
4 ,

q
4 ).

F OR round entries and look up in table.

I To sample Gaussian preimage for u = fg(x) := 〈g,x〉:

F For i← 0, . . . , k − 1: choose xi ← (2Z + u), let u← (u− xi)/2 ∈ Z.

F OR presample many x← Zk and store in q ‘buckets’ fg(x) for later.
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Step 1: Gadget G and Inversion Algorithms

I Another view: for g =
[
1 2 · · · 2k−1

]
the lattice Λ⊥(g) has basis

S =


2
−1 2

−1
. . .

2
−1 2

 ∈ Zk×k, with S̃ = 2 · Ik.

The iterative inversion algorithms for fg, gg are special cases of the
(randomized) “nearest-plane” algorithm [Babai’86,Klein’01,GPV’08].

I Define G = In ⊗ g =


· · ·g · · ·

· · ·g · · ·
. . .

· · ·g · · ·

 ∈ Zn×nk
q .

Now f−1
G , g−1

G reduce to n parallel (and offline) calls to f−1
g , g−1

g .

Also applies to H ·G for any invertible H ∈ Zn×n
q .
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Step 2: Randomize G↔ A

1 Define semi-random [Ā | G] for uniform Ā ∈ Zn×m̄
q .

Note: f−1
[Ā|G]

, g−1
[Ā|G]

easily reduce to f−1
G , g−1

G [CHKP’10].

2 Choose “short” (Gaussian) R← Zm̄×n log q and let

A := [Ā | G]

[
I −R

I

]
︸ ︷︷ ︸
unimodular

= [Ā | G− ĀR].

F A is uniform if [Ā | ĀR] is: leftover hash lemma for m̄ ≈ n log q.

(With G = 0, we get the “key trick” constructing A with a “weak”
trapdoor of ≥ 1 short vector, but not a full basis.)

F [I | Ā | −(ĀR1 + R2)] is pseudorandom (under LWE) for m̄ = n.
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F [I | Ā | −(ĀR1 + R2)] is pseudorandom (under LWE) for m̄ = n.

9 / 18



Step 2: Randomize G↔ A
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= [Ā | G− ĀR].
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F [I | Ā | −(ĀR1 + R2)] is pseudorandom (under LWE) for m̄ = n.

9 / 18



Step 2: Randomize G↔ A
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A := [Ā | G]

[
I −R

I

]
︸ ︷︷ ︸
unimodular
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A New Trapdoor Notion

I We constructed A = [Ā | G− ĀR].

Definition

I R is a trapdoor for A with tag H ∈ Zn×n
q (H invertible) if

A ·
[
R
I

]
= H ·G.

I The quality of R is s1(R) := max
‖u‖=1

‖Ru‖. (smaller is better.)

I Fact: s1(R) ≈ (
√

rows +
√

cols) · r for Gaussian entries w/ std dev r.

I Note: R is a trapdoor for A− [0 | H′ ·G] w/tag (H−H′) [ABB’10].

Relating New and Old Trapdoors

Given a basis S for Λ⊥(G) and a trapdoor R for A,

we can efficiently construct a basis SA for Λ⊥(A)

where ‖S̃A‖ ≤ (s1(R) + 1) · ‖S̃‖.
(But we’ll never need to.)
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Step 3: Reduce f−1
A , g−1

A to f−1
G , g−1

G

I Suppose R is a trapdoor for A (w/tag H = I): A
[
R
I

]
= G.

Inverting LWE Function

Given bt = stA + et, recover s from

bt
[
R
I

]
= stG + et

[
R
I

]
.

Works if each entry of et
[
R
I

]
in [− q

4 ,
q
4) ⇐ ‖e‖ < q/(4s1(

[
R
I

]
)).

Sampling Gaussian Preimages

Given u, sample z← f−1
G (u) and output x =

[
R
I

]
z ∈ f−1

A (u) ?

I We have Ax = Gz = u as desired.

I Problem:
[
R
I

]
z is non-spherical Gaussian, leaks R !

I Solution: use offline ‘perturbation’ [P’10] to get spherical Gaussian w/
std dev ≈ s1(R): output x = p +

[
R
I

]
z.
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A First Attempt

I Given u, sample z← f−1
G (u) and output x =

[
R
I

]
z ∈ f−1

A (u) ?

I x1 = Rz has a non-spherical Gaussian distribution of covariance

Σ := Ex

[
x · xt

]
= Ez

[
R · zzt ·Rt

]
≈ s2 ·RRt.

Covariance can be measured — and it leaks R! (up to rotation)
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Inspiration: Some Facts About Gaussians

1 Continuous Gaussian ↔ positive definite covariance matrix Σ.

(pos def means: ut Σu > 0 for all unit u.)

Spherical Gaussian ↔ covariance s2 I.

2 Convolution of Gaussians:

+ =

Σ1 + Σ2 = Σ = s2 I

3 Given Σ1, how small can s be? For Σ2 := s2 I− Σ1,

ut Σ2 u = s2 − ut Σ1 u > 0 ⇐⇒ s2 > maxλi(Σ1)

For Σ1 = RRt, can use any s > s1(R) := max singular val of R.
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‘Convolution’ Sampling Algorithm [P’10]

I Given trapdoor R of A, syndrome u, and std dev s > s1(R),

1 Generate perturbation p with covariance Σ2 := s2 I−RRt > 0.

2 Sample spherical z s.t. Gz = u−Ap.

3 Output x = p +
[
R
I

]
z. (Note: Ax = Ap + Gz = u.)

+ =

RRt + (s2I−RRt) = s2 I

Convolution∗ Theorem

Algorithm generates a spherical discrete Gaussian over L⊥u (A).

(∗technically not a convolution, since step 2 depends on step 1.)

14 / 18
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Application: Efficient IBE a la [ABB’10]

I Setup: choose A = [Ā | −ĀR]. Let mpk = (A,u), msk = R.

(A has trapdoor R with tag 0.)

I Extract(R, id): map id 7→ invertible Hid ∈ Zn×n
q . [DF’94,. . . ,ABB’10]

Using R, choose skid = x← f−1
Aid

(u), where

Aid = A + [0 | Hid ·G] = [Ā | Hid ·G− ĀR].

I Encrypt to Aid, decrypt using skid as in ‘dual’ system [GPV’08].

I Security (“puncturing”): Given target id∗ (selective security), set up

A = [Ā | −Hid∗ ·G− ĀR] =⇒ Aid = [Ā | (Hid −Hid∗)G− ĀR].

F Hid −Hid∗ is invertible for all id 6= id∗, so can extract skid using R.

F Aid∗ = [Ā | −ĀR], so can embed an LWE challenge at id∗.

15 / 18
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I Encrypt to Aid, decrypt using skid as in ‘dual’ system [GPV’08].

I Security (“puncturing”): Given target id∗ (selective security), set up
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F Aid∗ = [Ā | −ĀR], so can embed an LWE challenge at id∗.
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Application: Efficient IBE a la [ABB’10]

I Setup: choose A = [Ā | −ĀR]. Let mpk = (A,u), msk = R.

(A has trapdoor R with tag 0.)

I Extract(R, id): map id 7→ invertible Hid ∈ Zn×n
q . [DF’94,. . . ,ABB’10]

Using R, choose skid = x← f−1
Aid

(u), where
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Trapdoor Delegation [CHKP’10]

I Suppose R is a trapdoor for A, i.e. A
[
R
I

]
= H ·G.

I To delegate a trapdoor for an extension [A | A′] with tag H′, just
sample Gaussian R′ s.t.

[A | A′]
[
R′
I

]
= H′ ·G ⇐⇒ AR′ = H′ ·G−A′.

I One-way: R′ reveals nothing about R.

Useful for HIBE & IB-TDFs [CHKP’10,ABB’10,BKPW’12].

I Note: R′ is only width(A)× width(G) = m× n log q.

So size of R′ grows only as O(m), not Ω(m2) like a basis does.

Also computationally efficient: n log q samples, no HNF or ToBasis.
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Hierarchical IBE [CHKP’10,ABB’10]

I Setup(d): choose A0, . . . ,Ad where Aε = [A0 | A1]

has trapdoor Rε for tag 0. Let msk = skε = Rε and mpk = {Ai}.

I Extract(id): map id = (id1, . . . , idt) 7→ (Hid1 , . . .Hidt) (invertible).

Let
Aid = [A0 | A1 + Hid1G | · · · | At + HidtG | At+1].

Delegate skid = trapdoor Rid for Aid with tag 0.

Using skid, can delegate any skid′ for any nontrivial extension id′.

I Encrypt to Aid, decrypt using Rid as in [GPV’08].

I Security (“puncturing”): Set up mpk, trapdoor R with tags = −id∗.
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Conclusions

I A simple trapdoor that’s easy to generate, use, and understand.

I Key sizes and algorithms for “strong” trapdoors are now realistic,
with ring techniques (tomorrow)
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