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Lattice-Based One-Way Functions
> Public key [ A } € Z™ for ¢ = poly(n), m = Q(nlog q).

fa(x) = Axmod q € Z7 ga(s,e) =s'A +e' mod g € Z7'

(“short” x, surjective) ("short” e, injective)
CRHF if SIS hard [Ajtai'9e,. . .] OWEF if LWE hard [Regev'05,P'09]

» fa, ga in forward direction yield CRHFs, CPA security (w/FHE!)
... but not much else.
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Trapdoor Inversion

» Many cryptographic applications need to invert fa and/or ga.

Invert u = fa(x') = Ax":
sample random x ¢ f*(u)

with prob o exp(—|x||*/s?).
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Trapdoor Inversion

» Many cryptographic applications need to invert fa and/or ga.

Invert u = fa(x') = Ax": Invert ga(s,e) = stA + el
sample random x <« f;l(u) find the unique preimage s
with prob o exp(—|x||*/s?). (equivalently, e)

» How? Use a “strong trapdoor” for A: a short basis of AL(A)
[Babai’86,GGH’97,Klein’01,GPV'08,P'10]
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Canonical App: [GPV'08] Signatures
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Canonical App: [GPV'08] Signatures
» pk = A, sk = short basis for A, random oracle H: {0,1}* — Zy.
> Sign(msg): let u = H(msg) and output Gaussian x + f5 ' (u).
» Verify(msg,x): check fa(x) = Ax = H(msg) and x short enough.

» Security: finding short enough preimages in fa must be hard.

| A\,

Other “Black-Box" Applications of f~1, g1
» Standard Model (no RO) signatures [CHKP'10,R’10,B'10]
» SM CCA-secure encryption [PW'08,P'09]
» SM (Hierarchical) IBE [GPV'08,CHKP’'10,ABB'10a,ABB’10b]
» Many more: OT, NISZK, homom enc/sigs, deniable enc, func enc, ...

[PVW'08,PV'08,GHV'10,GKV'10,BF'10a,BF'10b,0PW’11,AFV'11, ABVVW'11,. . .]

v
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Applications of Strong Trapdoors

Canonical App: [GPV'08] Signatures
» pk = A, sk = short basis for A, random oracle H: {0,1}* — Zy.

> Sign(msg): let u = H(msg) and output Gaussian x + f5 ' (u).
» Verify(msg,x): check fa(x) = Ax = H(msg) and x short enough.

» Security: finding short enough preimages in fa must be hard.

Some Drawbacks. . .

| \

X Generating A w/ short basis is complicated and slow [Ajtai’99,AP’09]

X Known inversion algorithms trade quality for efficiency

tight, iterative, fp | looser, parallel, offline

e [Babai’86] [Babai'86]

At [Klein'01,GPV'08] [P'10]
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Today

“Strong” trapdoor generation and inversion algorithms:

v’ Very simple & fast

* Generation: one matrix mult. No HNF or inversion (cf. [A'99,AP'09])
* Inversion of fa, ga: practical, parallel, & mostly offline

* No more efficiency-vs-quality tradeoff

v/ Tighter parameters m and s

* Asymptotically optimal with small constant factors

v/ New kind of trapdoor — not a basis! (But just as powerful.)

v’ More efficient applications: CCA, (H)IBE in standard model
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Design fast, parallel, offline algorithms for fél, gal.
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Overview of Methods
@ Design a fixed, public lattice defined by “gadget” matrix G.

Design fast, parallel, offline algorithms for fél, gal.

® Randomize G <> A via a “nice” unimodular transformation.

(The transformation is the trapdoor!)

© Reduce f;l, ggl to fal, gal plus pre-/post-processing.

6
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Step 1: Gadget G and Inversion Algorithms

» Let ¢ = 2*. Define 1-by-k “parity check” vector

gi=[1 2 4 - 261 ezl¥h
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Step 1: Gadget G and Inversion Algorithms

» Let ¢ = 2*. Define 1-by-k “parity check” vector
gi=[1 2 4 - 261 ezl¥h
> To invert LWE function gg: Zg x Z* — Zk:
s-g+e= [s—i—eo 2s+ep .- 2k*13+ek,1] mod q.

* Get Isb(s) from 2¥=1s + ¢, ;. Then get next bit of s, etc.
Works exactly when every ¢; € [-%, 9).

* OR round entries and look up in table.

» To sample Gaussian preimage for u = fg(x) := (g, x):

* For i< 0,...,k—1: choose z; < (2Z + u), let u < (u —x;)/2 € Z.

* OR presample many x < Z* and store in ¢ ‘buckets’ fy(x) for later.
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> Another view: for g = [1 2 --- 2%71] the lattice At (g) has basis

S = . e ZF* with S =2-1,.
2
-1 2

The iterative inversion algorithms for f, gs are special cases of the
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Step 1: Gadget G and Inversion Algorithms

> Another view: for g = [1 2 --- 2%71] the lattice At (g) has basis

S = . e ZF* with S =2-1,.
2
-1 2

The iterative inversion algorithms for fg, gs are special cases of the
(randomized) “nearest-plane” algorithm [Babai’86,Klein’01,GPV'08].

--g.--
P DefineG=1,0¢g= B B - ezgxnkz_

.. g e
Now f&', gg' reduce to n parallel (and offline) calls to fet ggt

Also applies to H - G for any invertible H € Zg*".
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Step 2: Randomize G + A
@ Define semi-random [A | G] for uniform A e Z*™.

Note: f[:SI|G]' g[—llG] easily reduce to fél, gal [CHKP'10].

@® Choose “short” (Gaussian) R < Z™*™1984 and let

A=[A|G [I _ﬂ —[A |G- AR].
——

unimodular

* A is uniform if [A | AR] is: leftover hash lemma for m ~ nlogq.

(With G = 0, we get the “key trick” constructing A with a “weak”

trapdoor of > 1 short vector, but not a full basis.)

* [I| A|—(AR; + Ry)] is pseudorandom (under LWE) for m = n.
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A New Trapdoor Notion
» We constructed A = [A | G — AR].

Definition
> R is a trapdoor for A with tag H € Z;*" (H invertible) if
A-[B]=H G.

» The quality of R is s;(R) := Hmﬁ‘ix |IRull. (smaller is better.)
uf|=1

» Fact: s1(R) = (y/rows + v/cols) - r for Gaussian entries w/ std dev 7.
» Note: R is a trapdoor for A — [0 | H' - G] w/tag (H — H') [ABB'10].

Relating New and Old Trapdoors
Given a basis S for A+(G) and a trapdoor R for A,

we can efficiently construct a basis S5 for A+(A)
where [|Sal| < (s1(R) +1) - [IS]].
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A New Trapdoor Notion
» We constructed A = [A | G — AR].

Definition
> R is a trapdoor for A with tag H € Z;*" (H invertible) if
A-[B]=H G.

» The quality of R is s;(R) := Hmﬁ‘ix |IRull. (smaller is better.)
uf|=1

» Fact: s1(R) = (y/rows + v/cols) - r for Gaussian entries w/ std dev 7.
» Note: R is a trapdoor for A — [0 | H' - G] w/tag (H — H') [ABB'10].

Relating New and Old Trapdoors
Given a basis S for A+(G) and a trapdoor R for A,

we can efficiently construct a basis S5 for A+(A)
where [|Sal| < (s1(R) +1) - [IS]].

(But we'll never need to.)
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Step 3: Reduce f,', g' to f&' 9&'
> Suppose R is a trapdoor for A (w/tag H=1): A[®] =G.
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Step 3: Reduce f;l, g;l to fal, gél
> Suppose R is a trapdoor for A (w/tag H=1): A[®] =G.

Inverting LWE Function

Given b! = st A + €t recover s from

Works if each entry of e![B] in [-4, 1) < |le]| < ¢/(4s1([]}])).

Sampling Gaussian Preimages

Given u, sample z < f5'(u) and output x = [B]z € f ' (u) ?

» We have Ax = Gz = u as desired.

> Problem: [®]z is non-spherical Gaussian, leaks R !

» Solution: use offline ‘perturbation’ [P'10] to get spherical Gaussian w/
std dev ~ s1(R): output x = p + [} ]z.
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A First Attempt

> Given u, sample z « f5'(u) and output x = [}z € f1'(u) ?
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z € f;l(u) ?

7]

» x; = Rz has a non-spherical Gaussian distribution of covariance

L(u) and output x

G

» Given u, sample z < f

A First Attempt

)

4
N

+.

iy +,
¢r4rmwym
Ty,
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Z € f;l(u) ?

7]

> x; = Rz has a non-spherical Gaussian distribution of covariance

L(u) and output x

G

» Given u, sample z < f

A First Attempt

| = s> RR'.

-R!

Y= Ex[x-xt] :EZ[R-zzt

Covariance can be measured — and it leaks R! (up to rotation)
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Inspiration: Some Facts About Gaussians

@ Continuous Gaussian <> positive definite covariance matrix 2.

(pos def means: u’ X u > 0 for all unit u.)
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Inspiration: Some Facts About Gaussians

@ Continuous Gaussian <> positive definite covariance matrix 2.
(pos def means: u’ X u > 0 for all unit u.)

Spherical Gaussian <+ covariance s 1.

® Convolution of Gaussians:

N »

> + Yo = Y =51

©® Given X, how small can s be? For ¥y := 21 — %,

uYou = s2—uSju>0 — 52 > max \;(31)

For ¥1 = RR!, can use any ‘ s > s1(R) := max singular val of R.‘

13/18



‘Convolution’ Sampling Algorithm [p'10]

» Given trapdoor R of A, syndrome u, and std dev s > s1(R),
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‘Convolution’ Sampling Algorithm [p'10]
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‘Convolution’ Sampling Algorithm [p'10]

» Given trapdoor R of A, syndrome u, and std dev s > s1(R),
@ Generate perturbation p with covariance X5 := s2I — RR! > 0.
® Sample spherical z s.t. Gz =u — Ap.
©® Outputx=p + [?]Z (Note: Ax =Ap + Gz =u.)

N »

RR/ + (sI-RRY) = 521

Convolution* Theorem

Algorithm generates a spherical discrete Gaussian over Lt (A).

(*technically not a convolution, since step 2 depends on step 1.)
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Application: Efficient IBE a2 [aBB'10]

» Setup: choose A = [A | —AR]. Let mpk = (A, u), msk = R.
(A has trapdoor R with tag 0.)
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» Setup: choose A = [A | —AR]. Let mpk = (A, u), msk = R.
(A has trapdoor R with tag 0.)

> Extract(R,id): map id > invertible H;q € Zy*".  [DF'94,...,ABB'10]

Using R, choose sk;q = x + f;ild(u), where

Aig=A+[0|Hy G]=[A|Hy G- AR].

» Encrypt to A;4, decrypt using sk;q as in ‘dual’ system [GPV'08].

» Security (“puncturing”): Given target id* (selective security), set up

A=[A|-Hy G-AR]= Ajy=[A | (H;y — Hiy)G — ARJ.

* H,;; — H;4« is invertible for all id # id*, so can extract sk;; using R.

* A;g- = [A | —AR], so can embed an LWE challenge at id*.
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» One-way: R’ reveals nothing about R.

Useful for HIBE & IB-TDFs [CHKP'10,ABB'10,BKPW'12].
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> Suppose R is a trapdoor for A, ie. A[R] =H-G.

» To delegate a trapdoor for an extension [A | A'] with tag H’, just
sample Gaussian R’ s.t.

[A|A[R]=H G < AR =H-G-A'

» One-way: R’ reveals nothing about R.

Useful for HIBE & IB-TDFs [CHKP'10,ABB'10,BKPW'12].

» Note: R’ is only width(A) x width(G) = m x nlogg.

So size of R/ grows only as O(m), not ©(m?) like a basis does.

Also computationally efficient: nlog g samples, no HNF or ToBasis.
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» Setup(d): choose Ay, ..., Ay where A, = [A( | Aq]
has trapdoor R for tag 0. Let msk = sk. = R. and mpk = {A;}.
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» Extract(id): map id = (idy,...,idt) — (Hiq,, ... H;q,) (invertible).
Let
A= [AO | Ay —{—Hile | | Ay +HidtG | At+1].

Delegate sk;; = trapdoor R;4 for A4 with tag O.

Using sk;4, can delegate any sk;, for any nontrivial extension id’.

» Encrypt to A4, decrypt using R;4 as in [GPV'08].

» Security (“puncturing”): Set up mpk, trapdoor R with tags = —id*.
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Conclusions

» A simple trapdoor that's easy to generate, use, and understand.

P> Key sizes and algorithms for “strong” trapdoors are now realistic,
with ring techniques (tomorrow)
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