Lattice-Based Cryptography:
Trapdoors, Discrete Gaussians, and Applications

Chris Peikert

Georgia Institute of Technology

crypt@b-it 2013

/21

Agenda

@ "Strong trapdoors” for lattices
® Discrete Gaussians, sampling, and “preimage sampleable” functions

© Applications: signatures, ID-based encryption (in RO model)

)

21

Digital Signatures

(Images courtesy xkcd.org)

/21

Digital Signatures

—e

(secret)

(Images courtesy xkcd.org)

(public)

/21

Digital Signatures

e

(public)

(secret)

(Images courtesy xkcd.org)

“I love you" ¢/

/21

Digital Signatures

(secret)

(Images courtesy xkcd.org)

(public)

oner” X

/21

Central Tool: Trapdoor Functions

» Public function f generated with secret ‘trapdoor’ f~!

21

Central Tool: Trapdoor Functions
» Public function f generated with secret ‘trapdoor’ f~!

» Trapdoor permutation [DH'76,RSA'77,...] (TDP)

f

21

Central Tool: Trapdoor Functions
» Public function f generated with secret ‘trapdoor’ f~!

» Trapdoor permutation [DH'76,RSA'77,...] (TDP)

21

Central Tool: Trapdoor Functions
» Public function f generated with secret ‘trapdoor’ f~!

» Trapdoor permutation [DH'76,RSA'77,...] (TDP)

D f D

21

Central Tool: Trapdoor Functions

» Public function f generated with secret ‘trapdoor’ f~!

» Trapdoor permutation [DH'76,RSA'77,..

D =

» ‘Hash and sign:' pk = f, sk = f~L.

.1 (TDP)

Sign(msg) = f~!(H(msg)).

21

Central Tool: Trapdoor Functions
» Public function f generated with secret ‘trapdoor’ f~!

» Trapdoor permutation [DH'76,RSA'77,...] (TDP)

D f D

» ‘Hash and sign:’ pk = f, sk = f~1. Sign(msg) = f~1(H(msg)).
» Candidate TDPs: [RSA'78,Rabin'79,Paillier'99] (‘general assumption’)

All rely on hardness of factoring:

X Complex: 2048-bit exponentiation
X Broken by quantum algorithms [Shor'97]

Central Tool: Trapdoor Functions
» Public function f generated with secret ‘trapdoor’ f~!

» New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

f

21

Central Tool: Trapdoor Functions
» Public function f generated with secret ‘trapdoor’ f~!

» New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

f

—

21

Central Tool: Trapdoor Functions
» Public function f generated with secret ‘trapdoor’ f~!

» New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

21

Central Tool: Trapdoor Functions
» Public function f generated with secret ‘trapdoor’ f~!

» New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

» ‘Hash and sign:’ pk = f, sk = f~1. Sign(msg) = f~1(H(msg)).

21

Central Tool: Trapdoor Functions
» Public function f generated with secret ‘trapdoor’ f~!

» New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

» ‘Hash and sign:’ pk = f, sk = f~1. Sign(msg) = f~1(H(msg)).

» Still secure! Can generate (x,y) in two equivalent ways:

REALITY PROOF
7 f
‘/\ /_\

21

Candidate Signature Scheme [cGH96]
> Key idea: pk = “bad” basis B for £, sk = “short” trapdoor basis S

/21

Candidate Signature Scheme [cGH96]
> Key idea: pk = “bad” basis B for £, sk = “short” trapdoor basis S

» Sign: H(msg) = ¢ + L; get short x € ¢ + L via round-off [Babai'86]

/21

Candidate Signature Scheme [cGH96]
> Key idea: pk = “bad” basis B for £, sk = “short” trapdoor basis S
» Sign: H(msg) = ¢ + L; get short x € ¢ + L via round-off [Babai'86]

> Verify(msg,x) check x € H(msg) = ¢ + £, and x short enough

21

Candidate Signature Scheme [cGH96]
> Key idea: pk = “bad” basis B for £, sk = “short” trapdoor basis S
» Sign: H(msg) = ¢ + L; get short x € ¢ + L via round-off [Babai'86]

> Verify(msg,x) check x € H(msg) = ¢ + £, and x short enough

21

Candidate Signature Scheme [cGH96]
> Key idea: pk = “bad” basis B for £, sk = “short” trapdoor basis S
» Sign: H(msg) = ¢ + L; get short x € ¢ + L via round-off [Babai'86]

> Verify(msg,x) check x € H(msg) = ¢ + £, and x short enough

21

Candidate Signature Scheme [cGH96]
> Key idea: pk = “bad” basis B for £, sk = “short” trapdoor basis S
» Sign: H(msg) = ¢ + L; get short x € ¢ + L via round-off [Babai'86]

> Verify(msg,x) check x € H(msg) = ¢ + £, and x short enough

» N °
/ a s ®
L4 \ 1 °
’ o/ o
L] 1 | °
[[! °
\ ;e
® e / °

21

Candidate Signature Scheme [cGH96]
> Key idea: pk = “bad” basis B for £, sk = “short” trapdoor basis S
» Sign: H(msg) = ¢ + L; get short x € ¢ + L via round-off [Babai'86]

> Verify(msg,x) check x € H(msg) = ¢ + £, and x short enough

Technical Issues

©® Generating “hard” lattice together with short basis (tomorrow)

Candidate Signature Scheme [cGH96]
> Key idea: pk = “bad” basis B for £, sk = “short” trapdoor basis S
» Sign: H(msg) = ¢ + L; get short x € ¢ + L via round-off [Babai'86]

> Verify(msg,x) check x € H(msg) = ¢ + £, and x short enough

Technical Issues

©® Generating “hard” lattice together with short basis (tomorrow)

@® Signing algorithm leaks secret basis!
* Total break after 100s-1000s of signatures [NguyenRegev'06]

Candidate Signature Scheme [cGH96]
> Key idea: pk = “bad” basis B for £, sk = “short” trapdoor basis S
» Sign: H(msg) = ¢ + L; get short x € ¢ + L via round-off [Babai'86]

> Verify(msg,x) check x € H(msg) = ¢ + £, and x short enough

Technical Issues

©® Generating “hard” lattice together with short basis (tomorrow)

@® Signing algorithm leaks secret basis!
* Total break after 100s-1000s of signatures [NguyenRegev'06]

Candidate Signature Scheme [cGH96]
> Key idea: pk = “bad” basis B for £, sk = “short” trapdoor basis S
» Sign: H(msg) = ¢ + L; get short x € ¢ + L via round-off [Babai'86]

> Verify(msg,x) check x € H(msg) = ¢ + £, and x short enough

Technical Issues

©® Generating “hard” lattice together with short basis (tomorrow)

@® Signing algorithm leaks secret basis!
* Total break after 100s-1000s of signatures [NguyenRegev'06]

Candidate Signature Scheme [cGH96]
> Key idea: pk = “bad” basis B for £, sk = “short” trapdoor basis S
» Sign: H(msg) = ¢ + L; get short x € ¢ + L via round-off [Babai'86]

> Verify(msg,x) check x € H(msg) = ¢ + £, and x short enough

Technical Issues

©® Generating “hard” lattice together with short basis (tomorrow)

@® Signing algorithm leaks secret basis!
* Total break after 100s-1000s of signatures [NguyenRegev'06]

Candidate Signature Scheme [cGH96]
> Key idea: pk = “bad” basis B for £, sk = “short” trapdoor basis S
» Sign: H(msg) = ¢ + L; get short x € ¢ + L via round-off [Babai'86]

> Verify(msg,x) check x € H(msg) = ¢ + £, and x short enough

Technical Issues

©® Generating “hard” lattice together with short basis (tomorrow)

@® Signing algorithm leaks secret basis!
* Total break after 100s-1000s of signatures [NguyenRegev'06]

Candidate Signature Scheme [cGH96]
> Key idea: pk = “bad” basis B for £, sk = “short” trapdoor basis S
» Sign: H(msg) = ¢ + L; get short x € ¢ + L via round-off [Babai'86]

> Verify(msg,x) check x € H(msg) = ¢ + £, and x short enough

Technical Issues

©® Generating “hard” lattice together with short basis (tomorrow)

@® Signing algorithm leaks secret basis!
* Total break after 100s-1000s of signatures [NguyenRegev'06]

Key Concept: Blurring a Lattice [Regev'03,MR'04]

6/21

Key Concept: Blurring a Lattice [Regev'03MR'04]

6/21

Key Concept: Blurring a Lattice [Regev'03,MR'04]

6/21

Key Concept: Blurring a Lattice [Regev'03,MR'04]

Question: How much blur makes it uniform?

/21

Gaussians

7/21

GauBians

7/21

GauBians
» The 1-dim Gaussian function: (pdf of normal dist w/ std dev 1/+/27)
pla) S exp(— - a?).
Also define p,(z) 2 p(z/s) = exp(—7 - (x/5)?).

GauBians
(pdf of normal dist w/ std dev 1/v/27)

» The 1-dim Gaussian function:
A
p(x) = exp(—m - 2?).
Also define ps(x) = p(x/s) =exp(—m - (z/s)?).

» Sum of Gaussians centered at lattice points:

fs(c) = ZPS(C_ z) = ps(c+ Z).

Z€Z

21

(pdf of normal dist w/ std dev 1/@)

GauBians
» The 1-dim Gaussian function:

pla) £ exp(—r - 2?).
Also define ps(x) = p(x/s) =exp(—m - (z/s)?).

» Sum of Gaussians centered at lattice points:
fle) = pslc—2) = ps(c+ 2).
2€7Z
> Fact: ps(c+7Z) € [1+ =] - s for all c € R, where £ < 2exp(—s?)

21

(pdf of normal dist w/ std dev 1/@)

GauBians
» The 1-dim Gaussian function:
p(a) 2 exp(—m - a?).

Also define ps(x) = p(x/s) =exp(—m - (z/s)?).

» Sum of Gaussians centered at lattice points:
fle) = pslc—2) = ps(c+ 2).
2€7Z
> Fact: ps(c+7Z) € [1+ =] - s for all c € R, where £ < 2exp(—s?)

21

GauBians

» The 1-dim Gaussian function: (pdf of normal dist w/ std dev 1/+/27)

pla) £ exp(—r - 2?).
Also define p,(z) 2 p(z/s) = exp(—7 - (x/5)?).

» Sum of Gaussians centered at lattice points:

fs(c) = ZPS(C_ z) = ps(c+ Z).

Z€Z

> Fact: ps(c+7Z) € [+ =] - s for all c € R, where £ < 2exp(—ms?).

21

GauBians

» The 1-dim Gaussian function: (pdf of normal dist w/ std dev 1/+/27)

pla) £ exp(—r - 2?).
Also define p,(z) 2 p(z/s) = exp(—7 - (x/5)?).

» Sum of Gaussians centered at lattice points:

fs(c) = ZPS(C_ z) = ps(c+ Z).

Z€Z

> Fact: ps(c+7Z) € [+ =] - s for all c € R, where £ < 2exp(—ms?).

21

n-dimensional Gaussians

» The n-dim Gaussian: p(x) 2 exp(—m - |x]|?) = p(z1) - -

Clearly, it is rotationally invariant.

- p(Tn).

21

n-dimensional Gaussians

» The n-dim Gaussian: p(x) 2 exp(— - |x]|?) = p(x1) - - - p(an).

Clearly, it is rotationally invariant.

> Fact: Suppose £ has a basis B with M = max||b;||. Then

ps(c+L)e[lte]-s"
for all c € R™, where ¢ < 2n - exp(—(s/M)?).

21

n-dimensional Gaussians

» The n-dim Gaussian: p(x) 2 exp(— - |x]|?) = p(x1) - - - p(an).

Clearly, it is rotationally invariant.

> Fact: Suppose £ has a basis B with M = max||b;||. Then
7
ps(c+L)e[lte]-s"
for all c € R™, where ¢ < 2n - exp(—(s/M)?).
So s ~ M+/logn suffices for near-uniformity.

21

n-dimensional Gaussians

» The n-dim Gaussian: p(x) 2 exp(— - |x]|?) = p(x1) - - - p(an).

Clearly, it is rotationally invariant.

> Fact: Suppose £ has a basis B with M = max||b;||. Then
7
ps(c+L)e[lte]-s"
for all c € R™, where ¢ < 2n - exp(—(s/M)?).
So s ~ M+/logn suffices for near-uniformity.

21

n-dimensional Gaussians

» The n-dim Gaussian: p(x) 2 exp(— - |x]|?) = p(x1) - - - p(an).

Clearly, it is rotationally invariant.

> Fact: Suppose £ has a basis B with M = max||b;||. Then
7
ps(c+L)e[lte]-s"
for all ¢ € R™, where € < 2n - exp(—7(s/M)?).
So s ~ M+/logn suffices for near-uniformity.

21

n-dimensional Gaussians

» The n-dim Gaussian: p(x) 2 exp(— - |x]|?) = p(x1) - - - p(an).

Clearly, it is rotationally invariant.

> Fact: Suppose £ has a basis B with M = max||b;||. Then
ps(c+L)e[lxe]-s"
for all c € R", where ¢ < 2n - exp(—m(s/M)?).
So s &~ M+/logn suffices for near-uniformity.

/21

n-dimensional Gaussians

» The n-dim Gaussian: p(x) 2 exp(— - |x]|?) = p(x1) - - - p(an).

Clearly, it is rotationally invariant.

> Fact: Suppose £ has a basis B with M = max||b;||. Then
7
ps(c+L)e[lte]-s"
for all c € R", where £ < 2n - exp(—m(s/M)?).
So s ~ M+/logn suffices for near-uniformity.

21

Discrete Gaussians

» Define the discrete Gaussian distribution over coset ¢ + L as

ps(x)

mfora“XEC‘i_ﬁ.

Dc+£,s (X) =

21

Discrete Gaussians

» Define the discrete Gaussian distribution over coset ¢ + L as

Dc—i—ﬁ,s (X) = ps(pz(:)ﬁ)

» Consider the following experiment:
@ Choose x € Z" from Dzn 4

forallxec+ L.

t ++
++*

& ‘t’b#*
/ ;;;:@r; W

Discrete Gaussians

» Define the discrete Gaussian distribution over coset ¢ + L as

ps(x)
D X)= ——"+
+es(X) ps(c+ L)
» Consider the following experiment:

@ Choose x € Z" from Dzn .
® Reveal coset x + L.

forallxec+ L.

(e.g., as X = x mod B for some basis B)

+ +
e
L *or
+ +4+
T 43
0
¥ + o+
$+ ch + +
-
T
oot t + L
4 +++t L
Pyt +7F
+*|- 4, + P . N
#ﬁti#*? ++++.,*++ ety ++¢++ +++
PSS e
;f AR + + +++++
fh;;;;fﬁ e Tree Tey e T

Discrete Gaussians

» Define the discrete Gaussian distribution over coset ¢ + L as

ps(x)
D X)= ——"+
+es(X) ps(c+ L)
» Consider the following experiment:

@ Choose x € Z" from Dzn .
® Reveal coset x + L.

forallxec+ L.

(e.g., as X = x mod B for some basis B)
Immediate facts:

+ +
e
L *or
+ +4+
T 43
0
¥ + o+
$+ ch + +
-
T
oot t + L
4 +++t L
Pyt +7F
+*|- 4, + P . N
#ﬁti#*? ++++.,*++ ety ++¢++ +++
PSS e
;f AR + + +++++
fh;;;;fﬁ e Tree Tey e T

Discrete Gaussians

» Define the discrete Gaussian distribution over coset ¢ + L as

Dc—i—ﬁ,s (X) = ps(pz(:)ﬁ)

» Consider the following experiment:
@ Choose x € Z" from Dzn .

forallxec+ L.

@® Reveal coset x + L. (e.g., as X = x mod B for some basis B)

Immediate facts:

@ Every coset ¢ + L is equally* likely: we get uniform dist over Z" /L.

+ 4+ + +

;// srﬁhw P T e e
+++m:+ ++++++*¥— ++++
ﬁf%;f;;;f i f/jf by e, ey e

/21

Discrete Gaussians

» Define the discrete Gaussian distribution over coset ¢ + L as

Dc—i—ﬁ,s (X) = ps(pz(—i)f)ﬁ)

» Consider the following experiment:
@ Choose x € Z" from Dzn .

forallxec+ L.

@® Reveal coset x + L. (e.g., as X = x mod B for some basis B)

Immediate facts:

@ Every coset ¢ + L is equally* likely: we get uniform dist over Z" /L.

® Given that x € ¢ + £, it has conditional distribution D¢ 5.

+ 4+ + +

;// srﬁhw P T e e
+++m:+ ++++++*¥— ++++
ﬁf%;f;;;f i f/jf by e, ey e

/21

/
Preimage Sampleable TDF: Evaluation ®\©

(0, q)

» ‘Hard’ description of L specifies f.

Concretely: SIS matrix A defines fa.

10/21

/
Preimage Sampleable TDF: Evaluation Q\@

(0,49)
» ‘Hard’ description of L specifies f.
Concretely: SIS matrix A defines fa.
» f(x) =xmod L for Gaussian x <= Dzm .
Concretely: fa(x) = Ax =u € Zj. x
o (q{0)

10/21

!
Preimage Sampleable TDF: Evaluation Q\@

» ‘Hard’ description of L specifies f. E
Concretely: SIS matrix A defines fa.
» f(x) =xmod L for Gaussian x <= Dzm ;. iy
Concretely: fa(x) = Ax =u € Zj. x
[l To[M (¢,0)
» Inverting fao < decoding unif syndrome u \ /
< solving SIS. S

10/21

Preimage Sampleable TDF: Evaluation

(0,9)

» ‘Hard’ description of L specifies f.

Concretely: SIS matrix A defines fa.

» f(x) =xmod L for Gaussian x <= Dzm ,.

~1 7%

Concretely: fa(x) = Ax =u € Zj. i -
(@] \
» Inverting fao < decoding unif syndrome u \
< solving SIS. S

> Given u, conditional distrib. of x is the discrete Gaussian Dy (a)

W?&ﬁity*?w N . + *
fffh;;;ﬁ;g];/// T, .,

+
+

/21

Preimage Sampling: Method #1

> Sample D 1), given any short enough basis S: max||§;[| < s.
* Unlike [GGH'96], output leaks nothing about S!

+ 4+ + +
+ taaty 4+
et P e
++++‘N' = Aty
+
+¥
i +
+ + + +
ey ey by Tha, e

(the bound s is public)

11/21

Preimage Sampling: Method #1

> Sample D1 (), given any short enough basis S: max|[s;|| < s.
* Unlike [GGH'96], output leaks nothing about S! (the bound s is public)

P> “Nearest-plane” algorithm with randomized rounding [Klein'00,GPV’08]

S2 °
[]
+ o, . . s1 .l
e o o coset Ly (A)

R T L]
gt + ET L °

+ 4t = .

+
g + °
£ Tt
+ + + +
ey ey o The, e

11/21

Preimage Sampling: Method #1

> Sample D1 () s given any short enough basis S: max||§;[| < s.
* Unlike [GGH'96], output leaks nothing about S! (the bound s is public)

P> “Nearest-plane” algorithm with randomized rounding [Klein'00,GPV’08]

+ 4+ + +
R T
+
b+t F Ty
+4t i Y

+¥
+ 4 +
+ +
iy ey ta, iy tay

11/21

Preimage Sampling: Method #1

> Sample D1 () s given any short enough basis S: max||§;[| < s.
* Unlike [GGH'96], output leaks nothing about S! (the bound s is public)

P> “Nearest-plane” algorithm with randomized rounding [Klein'00,GPV’08]

+ 4+ + +
R T
+
b+t F Ty
+4t i Y

+¥
+ 4 +
+ +
iy ey ta, iy tay

11/21

Preimage Sampling: Method #1

> Sample D1 () s given any short enough basis S: max||§;[| < s.
* Unlike [GGH'96], output leaks nothing about S! (the bound s is public)

P> “Nearest-plane” algorithm with randomized rounding [Klein'00,GPV’08]

+ 4+ + +
R T
+
b+t F Ty
+4t i Y

+¥
+ 4 +
+ +
iy ey ta, iy tay

11/21

Preimage Sampling: Method #1

> Sample D1 (), given any short enough basis S: max|[s;|| < s.
* Unlike [GGH'96], output leaks nothing about S! (the bound s is public)

P> “Nearest-plane” algorithm with randomized rounding [Klein'00,GPV'08]

+ 4+ + +

R T
b+t F Ty
+4t i Y

+¥
+ 4 +
+ +
iy ey ta, iy tay

» Proof idea: ps((c+ £) N plane) depends only on dist(0, plane);
essentially no dependence on shift within plane

11/21

|dentity-Based Encryption

» Proposed by [Shamir'84]: could this exist?

12 /21

|dentity-Based Encryption

» Proposed by [Shamir'84]: could this exist?

12 /21

|dentity-Based Encryption

» Proposed by [Shamir'84]: could this exist?

f

\ Enc(mpk, “Alice”, msg) %

12 /21

|dentity-Based Encryption

» Proposed by [Shamir'84]: could this exist?

f

\ Enc(mpk, “Alice”, msg) %

12 /21

Fast-Forward 17 Years. ..

@ [BonehFranklin'01,...]: first IBE construction, using “new math”
(elliptic curves w/ bilinear pairings)

13/21

Fast-Forward 17 Years. ..

@ [BonehFranklin'01,...]: first IBE construction, using “new math”
(elliptic curves w/ bilinear pairings)

® [Cocks'01,BGH'07]: quadratic residuosity mod N = pq [GM'82]

13/21

Fast-Forward 17 Years. ..

@ [BonehFranklin'01,...]: first IBE construction, using “new math”
(elliptic curves w/ bilinear pairings)

@ [Cocks'01,BGH'07]: quadratic residuosity mod N = pq [GM'82]

© [GPV'08]: lattices!

13/21

Recall: ‘Dual’ LWE Cryptosystem

Y
= :

14 /21

Recall: ‘Dual’ LWE Cryptosystem

Y
= :

u=Ax = fa(x)

(public key)

14 /21

Recall: ‘Dual’ LWE Cryptosystem

ﬁ x < Gauss s, e %

u=Ax = fa(x)

(public key)

bt =s'A + el

(ciphertext ‘preamble’)

14 /21

Recall: ‘Dual’ LWE Cryptosystem

ﬁ x < Gauss s, e %

u=Ax = fa(x)

(public key)

bt =s'A + el

(ciphertext ‘preamble’)

V=s'u+e +bit- 4

(‘payload’)

14 /21

Recall: ‘Dual’ LWE Cryptosystem

ﬁ x < Gauss s, e %

u=Ax = fa(x)

(public key)

bt =s'A + el

(ciphertext ‘preamble’)

V=s'u+e +bit-1
V' —b'x ~ bit- % 2

(‘payload’)

14 /21

Recall: ‘Dual’ LWE Cryptosystem

ﬁ x < Gauss s, e %

u=Ax = fa(x)

(public key)

bt =s'A + el

(ciphertext ‘preamble’)

V=s'u+e +bit- 4

V' —b'x ~ bit- %
(‘payload’)

14 /21

Recall: ‘Dual’ LWE Cryptosystem

ﬁ x < Gauss s, e %

u=Ax = fa(x)

(public key)

bt =s'A + el

(ciphertext ‘preamble’)

V=s'u+e +bit- 4

V' —b'x ~ bit- %
(‘payload’)

14 /21

|ID-Based Encryption

x < fa'(w)
J mpk = A

f -

u = H("Alice”)

(‘identity’ public key)

b=s'A +ef

(ciphertext preamble)

b’:stu—l—e’—i—bit-%
b’—btx%bit-%

(‘payload’)

15/21

Tomorrow. . .

» Generating trapdoors (A with short basis or equivalent)

16 /21

Tomorrow. . .
» Generating trapdoors (A with short basis or equivalent)

» Removing the random oracle from signatures & IBE

16 /21

Tomorrow. . .
» Generating trapdoors (A with short basis or equivalent)
» Removing the random oracle from signatures & IBE

» More surprising applications

16 /21

Tomorrow. . .

» Generating trapdoors (A with short basis or equivalent)
» Removing the random oracle from signatures & IBE

> More surprising applications

Selected bibliography for this talk:

MR’04 D. Micciancio and O. Regev, “Worst-Case to Average-Case Reductions
Based on Gaussian Measures,” FOCS'04 / SICOMP’07.

GPV'08 C. Gentry, C. Peikert, V. Vaikuntanathan, “Trapdoors for Hard Lattices
and New Cryptographic Constructions,” STOC'08.

P'10 C. Peikert, “An Efficient and Parallel Gaussian Sampler for Lattices,”
Crypto’10.

16 /21

Bonus Material:

A Better

Discrete Gaussian Sampling
Algorithm

17/21

Performance of Nearest-Plane Sampling Algorithm?

Good News, and Bad News. . .

v Tight: std dev s &~ max||S;|| = max dist between adjacent planes

18/21

Performance of Nearest-Plane Sampling Algorithm?

Good News, and Bad News. . .

v Tight: std dev s &~ max||S;|| = max dist between adjacent planes

X Not efficient: runtime = Q(n?), high-precision arithmetic

18/21

Performance of Nearest-Plane Sampling Algorithm?

Good News, and Bad News. . .

v Tight: std dev s &~ max||S;|| = max dist between adjacent planes

X Not efficient: runtime = Q(n?), high-precision arithmetic

X Inherently sequential: n adaptive iterations

18/21

Performance of Nearest-Plane Sampling Algorithm?

Good News, and Bad News. . .

v Tight: std dev s &~ max||S;|| = max dist between adjacent planes

X Not efficient: runtime = Q(n?), high-precision arithmetic
X Inherently sequential: n adaptive iterations

X No efficiency improvement in the ring setting [NTRU'98,M'02,. . .]

18/21

Performance of Nearest-Plane Sampling Algorithm?

Good News, and Bad News. . .

v Tight: std dev s &~ max||S;|| = max dist between adjacent planes
X Not efficient: runtime = Q(n?), high-precision arithmetic
X Inherently sequential: n adaptive iterations

X No efficiency improvement in the ring setting [NTRU'98,M'02,. . .]

| \

A Different Sampling Algorithm [P'10]
> Simple & efficient: n? online adds and mults (mod q)

A,

18/21

Performance of Nearest-Plane Sampling Algorithm?

Good News, and Bad News. . .

v Tight: std dev s &~ max||S;|| = max dist between adjacent planes
X Not efficient: runtime = Q(n?), high-precision arithmetic
X Inherently sequential: n adaptive iterations

X No efficiency improvement in the ring setting [NTRU'98,M'02,. . .]

A Different Sampling Algorithm [P'10]

| \

> Simple & efficient: n? online adds and mults (mod q)
Even better: O(n) time in the ring setting

A,

18/21

Performance of Nearest-Plane Sampling Algorithm?

Good News, and Bad News. . .

v Tight: std dev s &~ max||S;|| = max dist between adjacent planes
X Not efficient: runtime = Q(n?), high-precision arithmetic
X Inherently sequential: n adaptive iterations

X No efficiency improvement in the ring setting [NTRU'98,M'02,. . .]

A Different Sampling Algorithm [P'10]

| \

> Simple & efficient: n? online adds and mults (mod q)
Even better: O(n) time in the ring setting

» Fully parallel: n?/P operations on any P < n? processors

A,

18/21

Performance of Nearest-Plane Sampling Algorithm?

Good News, and Bad News. . .

v Tight: std dev s &~ max||S;|| = max dist between adjacent planes
X Not efficient: runtime = Q(n?), high-precision arithmetic
X Inherently sequential: n adaptive iterations

X No efficiency improvement in the ring setting [NTRU'98,M'02,. . .]

| \

A Different Sampling Algorithm [P'10]

> Simple & efficient: n? online adds and mults (mod q)
Even better: O(n) time in the ring setting

» Fully parallel: n?/P operations on any P < n? processors

» High quality: same™ Gaussian std dev as nearest-plane alg

*in cryptographic applications
v

18/21

A First Attempt

> [Babai'86] “round-off:” ¢+ S -frac(S™!.c) . (Fast & parallel!)

s2
L]
[]
sy °
¢ OP s coset L+ c
L]

e
L]

19/21

A First Attempt

> [Babai'86] “round-off:” ¢+ S -frac(S™!.c) . (Fast & parallel!)
» Deterministic round-off is insecure [NR'06] . . .

s2
L]
[]
s1 °
¢ OP s coset L+ c
L]

1 e
L]

19/21

A First Attempt

> [Babai'86] “round-off:” ¢+ S -frac(S™!-c)g. (Fast & parallel!)
» Deterministic round-off is insecure [NR'06] . . .

... but what about randomized rounding?

s2
L]
[]
s1 °
¢ OP s coset L+ c
L]

1 e
L]

19/21

A First Attempt

(Fast & parallel!)

> [Babai'86] “round-off:” ¢+ S - frac(S7!: c)g.

» Deterministic round-off is insecure [NR'06] . . .

. but what about randomized rounding?

S2

19/21

A First Attempt

(Fast & parallel!)

> [Babai'86] “round-off:” ¢+ S - frac(S7!: c)g.

» Deterministic round-off is insecure [NR'06] . . .

. but what about randomized rounding?

S2

» Non-spherical discrete Gaussian: has covariance

E::Ex[x-xt] ~ S-S

19/21

A First Attempt

(Fast & parallel!)

> [Babai'86] “round-off:” ¢+ S - frac(S7!: c)g.

» Deterministic round-off is insecure [NR'06] . . .

. but what about randomized rounding?

S2

» Non-spherical discrete Gaussian: has covariance

E::Ex[x-xt] ~ S-S

Covariance can be measured — and it leaks S! (up to rotation)

19/21

Inspiration: Some Facts About Gaussians

@ Continuous Gaussian <> positive definite covariance matrix 2.

(pos def means: u’ X u > 0 for all unit u.)

20/21

Inspiration: Some Facts About Gaussians

@ Continuous Gaussian <> positive definite covariance matrix 2.

(pos def means: u’ X u > 0 for all unit u.)

Spherical Gaussian <+ covariance s 1.

20/21

Inspiration: Some Facts About Gaussians

@ Continuous Gaussian <> positive definite covariance matrix 2.

(pos def means: u’ X u > 0 for all unit u.)

Spherical Gaussian <+ covariance s 1.

® Convolution of Gaussians:

” - N -

20/21

Inspiration: Some Facts About Gaussians

@ Continuous Gaussian <> positive definite covariance matrix 2.

(pos def means: u’ X u > 0 for all unit u.)

Spherical Gaussian <+ covariance s 1.

® Convolution of Gaussians:

” N -
)3 + PO = Y =521

® Given X, how small can s be? For ¥y := 21 — Xy,

20/21

Inspiration: Some Facts About Gaussians

@ Continuous Gaussian <> positive definite covariance matrix 2.

(pos def means: u’ X u > 0 for all unit u.)

Spherical Gaussian <+ covariance s 1.

® Convolution of Gaussians:

” N -
)3 + PO = Y =521

© Given ¥, how small can s be? For £y := s21 — %,

wWu = 2—u'iu>0 — 52 > max \;(31)

20/21

Inspiration: Some Facts About Gaussians

@ Continuous Gaussian <> positive definite covariance matrix 2.

(pos def means: u’ X u > 0 for all unit u.)

Spherical Gaussian <+ covariance s 1.

® Convolution of Gaussians:

s N -

> + Yo = Y =51

©® Given X, how small can s be? For ¥y := 21 — %,

uYou = s2—uSju>0 — 52 > max \;(31)

For ¥1 =SS!, can use any ‘ s > s1(S) := max singular val of S.‘

20/21

‘Convolution’ Sampling Algorithm [p'10]

> Given basis S, coset £ + ¢, and std dev s > s1(S),

¥ =SS! ‘ .

21/21

‘Convolution’ Sampling Algorithm [p'10]

» Given basis S, coset £ + ¢, and std dev s > s1(S),
@ Generate perturbation p with covariance ¥y := s2I—%; > 0

-~ 5\

¥ =SS! p ° .

21/21

‘Convolution’ Sampling Algorithm [p'10]

» Given basis S, coset £ + ¢, and std dev s > s1(S),
@ Generate perturbation p with covariance ¥y := s?I—%; > 0

® Randomly round-off p to £+ c: return S - frac(S™! - (c +p))s

¥ =SS! D) * .

21/21

‘Convolution’ Sampling Algorithm [p'10]

» Given basis S, coset £ + ¢, and std dev s > s1(S),
@ Generate perturbation p with covariance ¥y := s?I—%; > 0

@® Randomly round-off p to £ + c: return S - frac(S™! - (¢ + p))s

Convolution* Theorem

Algorithm generates a spherical discrete Gaussian over £ + c.

21/21

‘Convolution’ Sampling Algorithm [p'10]

» Given basis S, coset £ + ¢, and std dev s > s1(S),
@ Generate perturbation p with covariance ¥y := s?I—%; > 0

@® Randomly round-off p to £ + c: return S - frac(S™! - (¢ + p))s

Convolution* Theorem

Algorithm generates a spherical discrete Gaussian over £ + c.

(*technically not a convolution, since step 2 depends on step 1.)

21/21

‘Convolution’ Sampling Algorithm [p'10]

» Given basis S, coset £ + ¢, and std dev s > s1(S),
@ Generate perturbation p with covariance ¥y := s?I—%; > 0

@® Randomly round-off p to £ + c: return S - frac(S™! - (¢ + p))s

Optimizations

@ Precompute perturbations offline

21/21

‘Convolution’ Sampling Algorithm [p'10]

» Given basis S, coset £ + ¢, and std dev s > s1(S),
@ Generate perturbation p with covariance ¥y := s?I—%; > 0

@® Randomly round-off p to £ + c: return S - frac(S™! - (¢ + p))s

Optimizations

@ Precompute perturbations offline

® Batch multi-sample using fast matrix multiplication

21/21

‘Convolution’ Sampling Algorithm [p'10]

» Given basis S, coset £ + ¢, and std dev s > s1(S),
@ Generate perturbation p with covariance ¥y := s?I—%; > 0

@® Randomly round-off p to £ + c: return S - frac(S™! - (¢ + p))s

Optimizations

@ Precompute perturbations offline
® Batch multi-sample using fast matrix multiplication

©® More tricks & simplifications for SIS lattices (tomorrow)

21/21

