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Agenda

@ "Strong trapdoors” for lattices
® Discrete Gaussians, sampling, and “preimage sampleable” functions

© Applications: signatures, ID-based encryption (in RO model)

)

21



Digital Signatures

(Images courtesy xkcd.org)

/21



Digital Signatures

—e

(secret)

(Images courtesy xkcd.org)

(public)

/21



Digital Signatures

e

(public)

(secret)

(Images courtesy xkcd.org)

“I love you" ¢/

/21



Digital Signatures

(secret)

(Images courtesy xkcd.org)

(public)

oner” X

/21



Central Tool: Trapdoor Functions

» Public function f generated with secret ‘trapdoor’ f~!

21



Central Tool: Trapdoor Functions
» Public function f generated with secret ‘trapdoor’ f~!

» Trapdoor permutation [DH'76,RSA'77,...] (TDP)

f

21



Central Tool: Trapdoor Functions
» Public function f generated with secret ‘trapdoor’ f~!

» Trapdoor permutation [DH'76,RSA'77,...] (TDP)

21



Central Tool: Trapdoor Functions
» Public function f generated with secret ‘trapdoor’ f~!

» Trapdoor permutation [DH'76,RSA'77,...] (TDP)

D f D

21



Central Tool: Trapdoor Functions

» Public function f generated with secret ‘trapdoor’ f~!

» Trapdoor permutation [DH'76,RSA'77,..

D =

» ‘Hash and sign:' pk = f, sk = f~L.
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Central Tool: Trapdoor Functions
» Public function f generated with secret ‘trapdoor’ f~!

» Trapdoor permutation [DH'76,RSA'77,...] (TDP)

D f D

» ‘Hash and sign:’ pk = f, sk = f~1. Sign(msg) = f~1(H(msg)).
» Candidate TDPs: [RSA'78,Rabin'79,Paillier'99] (‘general assumption’)

All rely on hardness of factoring:

X Complex: 2048-bit exponentiation
X Broken by quantum algorithms [Shor'97]
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Central Tool: Trapdoor Functions
» Public function f generated with secret ‘trapdoor’ f~!

» New twist [GPV'08]: preimage sampleable trapdoor function (PSF)

» ‘Hash and sign:’ pk = f, sk = f~1.  Sign(msg) = f~1(H(msg)).

» Still secure! Can generate (x,y) in two equivalent ways:

REALITY PROOF
7 f
‘/\ /_\
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Key Concept: Blurring a Lattice [Regev'03,MR'04]

Question: How much blur makes it uniform?
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» The 1-dim Gaussian function: (pdf of normal dist w/ std dev 1/+/27)
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Also define p,(z) 2 p(z/s) = exp(—7 - (x/5)?).




GauBians
(pdf of normal dist w/ std dev 1/v/27)

» The 1-dim Gaussian function:
A
p(x) = exp(—m - 2?).
Also define ps(x) = p(x/s) =exp(—m - (z/s)?).

» Sum of Gaussians centered at lattice points:

fs(c) = ZPS(C_ z) = ps(c+ Z).

Z€Z
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GauBians
» The 1-dim Gaussian function:

pla) £ exp(—r - 2?).
Also define ps(x) = p(x/s) =exp(—m - (z/s)?).

» Sum of Gaussians centered at lattice points:
fle) = pslc—2) = ps(c+ 2).
2€7Z
> Fact: ps(c+7Z) € [1+ =] - s for all c € R, where £ < 2exp(—s?)
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n-dimensional Gaussians

» The n-dim Gaussian: p(x) 2 exp(—m - |x]|?) = p(z1) - -

Clearly, it is rotationally invariant.

- p(Tn).
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> Fact: Suppose £ has a basis B with M = max||b;||. Then
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Discrete Gaussians

» Define the discrete Gaussian distribution over coset ¢ + L as

ps(x)

mfora“XEC‘i_ﬁ.

Dc+£,s (X) =
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» Define the discrete Gaussian distribution over coset ¢ + L as

Dc—i—ﬁ,s (X) = ps(pz(:)ﬁ)

» Consider the following experiment:
@ Choose x € Z" from Dzn 4
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Discrete Gaussians

» Define the discrete Gaussian distribution over coset ¢ + L as

ps(x)
D X)= ——"+
+es(X) ps(c+ L)
» Consider the following experiment:

@ Choose x € Z" from Dzn .
® Reveal coset x + L.

forallxec+ L.

(e.g., as X = x mod B for some basis B)
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Discrete Gaussians

» Define the discrete Gaussian distribution over coset ¢ + L as

Dc—i—ﬁ,s (X) = ps(pz(:)ﬁ)

» Consider the following experiment:
@ Choose x € Z" from Dzn .

forallxec+ L.

@® Reveal coset x + L. (e.g., as X = x mod B for some basis B)

Immediate facts:

@ Every coset ¢ + L is equally* likely: we get uniform dist over Z" /L.

+ 4+ + +

;// srﬁhw P T e e
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Discrete Gaussians

» Define the discrete Gaussian distribution over coset ¢ + L as

Dc—i—ﬁ,s (X) = ps(pz(—i)f)ﬁ)

» Consider the following experiment:
@ Choose x € Z" from Dzn .

forallxec+ L.

@® Reveal coset x + L. (e.g., as X = x mod B for some basis B)

Immediate facts:

@ Every coset ¢ + L is equally* likely: we get uniform dist over Z" /L.

® Given that x € ¢ + £, it has conditional distribution D¢ 5.

+ 4+ + +

;// srﬁhw P T e e
+++m:+ ++++++*¥— ++++
ﬁf%;f;;;f i f/jf by e, ey e
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Preimage Sampleable TDF: Evaluation

(0,9)

» ‘Hard’ description of L specifies f.

Concretely: SIS matrix A defines fa.

» f(x) =xmod L for Gaussian x <= Dzm ,.

~1 7%

Concretely: fa(x) = Ax =u € Zj. i -
(@] \
» Inverting fao < decoding unif syndrome u \
< solving SIS. S

> Given u, conditional distrib. of x is the discrete Gaussian Dy (a)

W?&ﬁity*?w N . + *
fffh;;;ﬁ;g ];/// T, .,

+
+
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Preimage Sampling: Method #1

> Sample D 1), given any short enough basis S: max||§;[| < s.
* Unlike [GGH'96], output leaks nothing about S!
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P> “Nearest-plane” algorithm with randomized rounding [Klein'00,GPV’08]
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Preimage Sampling: Method #1

> Sample D1 (), given any short enough basis S: max|[s;|| < s.
* Unlike [GGH'96], output leaks nothing about S!  (the bound s is public)

P> “Nearest-plane” algorithm with randomized rounding [Klein'00,GPV'08]

+ 4+ + +

R T
b+t F Ty
+4t i Y

+¥
+ 4 +
+ +
iy ey ta, iy tay

» Proof idea: ps((c+ £) N plane) depends only on dist(0, plane);
essentially no dependence on shift within plane
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@ [BonehFranklin'01,...]: first IBE construction, using “new math”
(elliptic curves w/ bilinear pairings)

@ [Cocks'01,BGH'07]: quadratic residuosity mod N = pq [GM'82]

© [GPV'08]: lattices!
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|ID-Based Encryption

x < fa'(w)
J mpk = A

f -

u = H("Alice”)

(‘identity’ public key)

b=s'A +ef

(ciphertext preamble)

b’:stu—l—e’—i—bit-%
b’—btx%bit-%

(‘payload’)
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Tomorrow. . .

» Generating trapdoors (A with short basis or equivalent)
» Removing the random oracle from signatures & IBE

> More surprising applications

Selected bibliography for this talk:

MR’04 D. Micciancio and O. Regev, “Worst-Case to Average-Case Reductions
Based on Gaussian Measures,” FOCS'04 / SICOMP’07.

GPV'08 C. Gentry, C. Peikert, V. Vaikuntanathan, “Trapdoors for Hard Lattices
and New Cryptographic Constructions,” STOC'08.

P'10 C. Peikert, “An Efficient and Parallel Gaussian Sampler for Lattices,”
Crypto’10.
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Bonus Material:

A Better

Discrete Gaussian Sampling
Algorithm
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Performance of Nearest-Plane Sampling Algorithm?

Good News, and Bad News. . .

v Tight: std dev s &~ max||S;|| = max dist between adjacent planes
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Good News, and Bad News. . .

v Tight: std dev s &~ max||S;|| = max dist between adjacent planes
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A Different Sampling Algorithm [P'10]

> Simple & efficient: n? online adds and mults (mod q)
Even better: O(n) time in the ring setting

» Fully parallel: n?/P operations on any P < n? processors

» High quality: same™ Gaussian std dev as nearest-plane alg

*in cryptographic applications
v
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A First Attempt

> [Babai'86] “round-off:” ¢+ S -frac(S™!.c) . (Fast & parallel!)
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A First Attempt

(Fast & parallel!)

> [Babai'86] “round-off:” ¢+ S - frac(S7!: c)g.

» Deterministic round-off is insecure [NR'06] . . .

. but what about randomized rounding?

S2

» Non-spherical discrete Gaussian: has covariance

E::Ex[x-xt] ~ S-S

Covariance can be measured — and it leaks S! (up to rotation)
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Inspiration: Some Facts About Gaussians

@ Continuous Gaussian <> positive definite covariance matrix 2.

(pos def means: u’ X u > 0 for all unit u.)
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Inspiration: Some Facts About Gaussians

@ Continuous Gaussian <> positive definite covariance matrix 2.

(pos def means: u’ X u > 0 for all unit u.)

Spherical Gaussian <+ covariance s 1.

® Convolution of Gaussians:

s N -

> + Yo = Y =51

©® Given X, how small can s be? For ¥y := 21 — %,

uYou = s2—uSju>0 — 52 > max \;(31)

For ¥1 =SS!, can use any ‘ s > s1(S) := max singular val of S.‘
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‘Convolution’ Sampling Algorithm [p'10]

> Given basis S, coset £ + ¢, and std dev s > s1(S),

¥ =SS! ‘ .
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@® Randomly round-off p to £ + c: return S - frac(S™! - (¢ + p))s

Convolution* Theorem

Algorithm generates a spherical discrete Gaussian over £ + c.

(*technically not a convolution, since step 2 depends on step 1.)
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‘Convolution’ Sampling Algorithm [p'10]

» Given basis S, coset £ + ¢, and std dev s > s1(S),
@ Generate perturbation p with covariance ¥y := s?I—%; > 0

@® Randomly round-off p to £ + c: return S - frac(S™! - (¢ + p))s

Optimizations

@ Precompute perturbations offline
® Batch multi-sample using fast matrix multiplication

©® More tricks & simplifications for SIS lattices (tomorrow)
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