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Lattice-Based Cryptography

N
=
p · q

y =
g
x mod p

m
e mod N

e(ga, gb)

=⇒

Why?

I Simple description and implementation

I Efficient: linear, highly parallel operations

I Resists quantum attacks (so far)

I Security from worst-case assumptions [Ajtai96,. . . ]

I Solutions to “holy grail” crypto problems [Gentry09,. . . ]
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Part 1:

Mathematical Background

Coming up:

1 Definitions: lattice, basis, determinant, cosets, successive minima, . . .

2 Two simple bounds on the minimum distance.
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Lattices

I Lattice L of dimension n: a discrete additive subgroup of Rn.

Additive subgroup: 0 ∈ L, and x,y ∈ L =⇒ −x, x + y ∈ L.

Discrete: for all x ∈ L, exists ε > 0 s.t. L ∩ Ball(x, ε) = {x}.

Lattices Not lattices

{0}, Z ⊂ R Q ⊂ R

2Z, cZ for any c ∈ R 2Z + 1 = {odd x ∈ Z}

Zn ⊂ Rn Z +
√

2Z
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This Week: Only Full-Rank Integer Lattices

I Integer lattice: L ⊆ Zn. (Essentially equivalent to rational lattice, by scaling.)

I Full-rank lattice: span(L) = Rn.

Equivalently, L has a set of n linearly independent vectors.

Full rank Not full rank

cZn, c 6= 0 {0}

(1, 1) · Z + (−1, 1) · Z (1, 1) · Z
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Representing Lattices: Bases

I Basis of L: ordered set (i.e., matrix) B = (b1,b2, . . . ,bn) s.t.

L = L(B)
∆
= B · Zn =

{ n∑
i=1

cibi : ci ∈ Z
}
.

The bi must be linearly ind., because span(L) = span(B) = Rn.

I The fundamental parallelepiped of basis B is P(B) = B ·
[
−1

2 ,
1
2

)n
.

It tiles space: Rn =
⋃
v∈L

(v + P(B)).

I A basis is not unique: BU is also a basis iff U ∈ Zn×n,det(U) = ±1.

O

b1

b2
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Cosets and Determinant

I Quotient group Zn/L consists of cosets v +L: “shifts” of the lattice.

Recall: v1 + L = v2 + L iff v1 − v2 ∈ L.

I Determinant det(L)
∆
= |Zn/L| = |det(B)| = vol(P(B)), any basis B.

I For any basis B and v ∈ Rn, (v + L) ∩ P(B) = {v̄}.
Write v̄ = v mod B, the “distinguished representative” of v + L.

v
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Successive Minima

I The minimum distance of L is

λ1(L)
∆
= min

0 6=v∈L
‖v‖ = min

distinct x,y∈L
‖x− y‖.

I More generally, the ith successive minimum (i = 1, . . . , n) is

λi(L)
∆
= min{r : L contains i linearly ind. vectors of length ≤ r}
= min{r : dim(span(L ∩ B(r))) ≥ i}.

λ1

b1

b2
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Gram-Schmidt Orthogonalization and Lower Bounding λ1

I The GSO (or QR decomposition) of basis B is:

B = QR = Q ·


‖b̃1‖ ? ?

‖b̃2‖ ?
...

. . .

‖b̃n‖

 , Q orthonormal

I Facts: P(B̃) = B̃ · [−1
2 ,

1
2)n is a fund. region; det(L) =

∏n
i=1‖b̃i‖.

I Fact: λ1(L) ≥ min
i
‖b̃i‖.

Proof: consider Bc = Q(Rc) for c ∈ Zn.

b̃1 = b1

b2

b̃2
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Upper Bounding λ1: Minkowski’s Theorem

Theorem
I Any convex, centrally symmetric body S of volume > 2n · det(L)

contains a nonzero lattice point.

I Corollary: λ1(L) ≤
√
n · det(L)1/n.

Proof of Theorem

1 Let S′ = S/2, so vol(S′) > det(L).

2 By pigeonhole argument, ∃ distinct x,y ∈ S′ s.t. x− y ∈ L.

3 Now 2x,−2y ∈ S by central symmetry, so x− y ∈ S by convexity.

Proof of Corollary

1 Ball of radius >
√
n · det(L)1/n is convex and centrally symmetric.

2 It contains a cube of side length > 2 det(L)1/n, which has volume
> 2n · det(L).
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Part 2:

Computational Background

I Lattices are a source of many seemingly hard problems:

SVP, CVP, uSVP, SIVP, BDD, CRP, DGS, . . . & decision variants.

I We’ll focus on the two most relevant to cryptography: the

(approximate) Shortest Vector Problem (SVPγ and GapSVPγ) and

Bounded-Distance Decoding (BDD) problem.

1 They admit worst-case/average-case reductions (to SIS and LWE).

2 Essentially all crypto schemes are based on versions of these problems.
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Shortest Vector Problem: SVPγ and GapSVPγ
Approximation problems with factor γ = γ(n):

Search: given basis B, find nonzero v ∈ L s.t. ‖v‖ ≤ γ · λ1(L).

Decision: given basis B and real d, decide between

λ1(L) ≤ d versus λ1(L) > γ · d.

Clearly GapSVPγ ≤ SVPγ , but the reverse direction is open!

Recall: min
i
‖b̃i‖ ≤ λ1 ≤

√
n · det(L)1/n, but these are often very loose.

γ · λ1

b1

b2

λ1

γdd

b1

b2
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Complexity of GapSVP

I Clearly, (Gap)SVPγ can only get easier as γ increases.

γ = 2(logn)1−ε

NP-hard∗

[Ajtai’98,. . . ]

√
n

∈ NP ∩ coNP
[GG’98,AR’05]

n

crypto
[Ajtai’96,. . . ]

2∼n

SVP ∈ P
[LLL’82,Schnorr’87]

I For γ = poly(n), best algorithm is 2n time & space [AKS’01,MV’10,. . . ]

I For γ = 2k, best algorithm takes ≈ 2n/k time [Schnorr’87,. . . ]

E.g., γ = 2
√
n appears to be ≈ 2

√
n-hard.
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An Algorithm for SVP2(n−1)/2 [LLL’82]

I Key idea: manipulate basis to ensure ‖b̃i+1‖2 ≥ 1
2‖b̃i‖

2, for all i.

This implies ‖b1‖ ≤ 2(n−1)/2 ·min
i
‖b̃i‖ ≤ 2(n−1)/2 · λ1(L).

In two dimensions: given basis B = (b1,b2),

1 Let b2 ← b2 − c · b1 for the c ∈ Z s.t. b2 ∈ b̃2 + [−1
2 ,

1
2) · b1.

2 If ‖b2‖2 < 3
4‖b1‖2, swap b1 ↔ b2 and loop. Else end.
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Claim 1: At end, ‖b̃2‖2 ≥ 1
2‖b̃1‖2 (as desired).

Proof: At end, 3
4‖b1‖2 ≤ ‖b2‖2 ≤ ‖b̃2‖2 + 1

4‖b1‖2.

Claim 2: Algorithm terminates after poly(|B|) many iterations.

Proof: Define Φ(B) = ‖b̃1‖2 · ‖b̃2‖ = ‖b1‖ · det(L).

When we swap, Φ decreases by >
√

3
2 factor.

It starts as 2poly(|B|) and cannot go below 1.

LLL in n dimensions: do similar loop on all adjacent pairs bi,bi+1.
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Related: Shortest Independent Vectors Problem (SIVPγ)

I Given basis B, find lin. ind. v1, . . . ,vn ∈ L s.t. ‖vi‖ ≤ γ · λn(L).

I LLL algorithm also solves SIVP2(n−1)/2 .

I We know GapSVPγ ≤ SIVPγ , but the reverse direction is open!

γ · λ2

λ1

λ2

b1

b2
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Bounded-Distance Decoding (BDD)

Search: given basis B, point t, and real d < λ1/2 s.t. dist(t,L) ≤ d,
find the (unique) v ∈ L closest to t.

Equivalently, given coset t + L 3 e s.t. ‖e‖ ≤ d, find e.

Decision: given basis B, coset t + L, and real d, decide between

dist(0, t + L) ≤ d versus > γ · d.

t
b1

b2
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Algorithms for BDD [Babai’86]

“Round off:” Using a “good” basis B, output e = t mod B.

Works if Ball(d) ⊆ P(B): radius d = min
i
‖b⊥i ‖/2.

“Nearest plane:” Output e = t mod B̃. Proceeds iteratively.

Works if Ball(d) ⊆ P(B̃): radius d = min
i
‖b̃i‖/2.

b1

b2
b⊥
1

b⊥
2
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Wrapping Up

I Now you know (almost) everything you need to know about lattices
(to do cryptography, at least).

I We’ve covered a lot: do the exercises to reinforce your understanding!

I Tomorrow: the cryptographic problems SIS and LWE (as SVP and
BDD variants), and some basic applications.
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