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Lattice-Based Cryptography

P> Simple description and implementation

Efficient: linear, highly parallel operations
Resists quantum attacks (so far)

>
>
P Security from worst-case assumptions [Ajtai96,...]
>

Solutions to “holy grail” crypto problems [Gentry09,...]
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Part 1:

Mathematical Background

Coming up:

@ Definitions: lattice, basis, determinant, cosets, successive minima, . ..

® Two simple bounds on the minimum distance.
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Representing Lattices: Bases

> Basis of £: ordered set (i.e., matrix) B = (by,ba,...,b,) s.t.
n
L= £(B) é B.-7Z"= {ZczbZ 1 G € Z}.
i=1

The b; must be linearly ind., because span(£) = span(B) = R".

bo




Representing Lattices: Bases

> Basis of £: ordered set (i.e., matrix) B = (by,ba,...,b,) s.t.
n
£:£(B) é]3-Zn = {ZczbZ LG GZ}.
i=1

The b; must be linearly ind., because span(£) = span(B) = R".

> The fundamental parallelepiped of basis B is P(B) = B - [—1,1)".

bo

N

/18



Representing Lattices: Bases

» Basis of £: ordered set (i.e., matrix) B = (b1, bg,...,b,) s.t.
n
£:£(B) éB-Zn = {ZczbZ LG EZ}.
i=1

The b; must be linearly ind., because span(£) = span(B) = R".

> The fundamental parallelepiped of basis B is P(B) = B - [—1,1)".

It tiles space: R" = U (v+P(B)).
vel

bo

]
7
L~

/18



Representing Lattices: Bases

» Basis of £: ordered set (i.e., matrix) B = (b1, ba,...,by) s

£:£(B)éB-Z”:{ZcZ » Z}
(

The b; must be linearly ind., because span(L) = span(B) =
> The fundamental parallelepiped of basis B is P(B) =B - [—

It tiles space: R" = U (v+P(B)).
vel

%)-

» A basis is not unique: BU s also a basis iff U € Z"*" det(U) =

b1

+1.
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Successive Minima

» The minimum distance of L is

A .
(L) = OglvlgLHVH =

min
distinct x,yeL

Ix =yl
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Successive Minima

» The minimum distance of L is

A .
M(L) = = -yl
1= M= oty =Y
» More generally, the ith successive minimum (i =1,...,n) is

Ai(L) 2 min{r : £ contains ¢ linearly ind. vectors of length < r}
= min{r : dim(span(L N B(r))) > i}.
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[ ] ’ b2 ) [ ]
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Gram-Schmidt Orthogonalization and Lower Bounding A,
» The GSO (or QR decomposition) of basis B is:

[T
B=QR=Q- LI Q orthonormal
[
> Facts: P(B) =B - [-1,1)" is a fund. region; det(£) = [T/, |/bs]l.

> Fact: A;(£) > min ||bg||. Proof: consider Bc = Q(Rc) for ¢ € Z".
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Upper Bounding A\;: Minkowski's Theorem

Theorem
> Any convex, centrally symmetric body S of volume > 2" - det(L£)
contains a nonzero lattice point.

> Corollary: A\j(£) < /n - det(£)Y/™.

Proof of Theorem
@ Let S' = 5/2, so vol(S’') > det(L).
® By pigeonhole argument, 3 distinct x,y € S’ s.t. x —y € L.

| A

©® Now 2x, —2y € S by central symmetry, so x —y € S by convexity.

Proof of Corollary

| \

© Ball of radius > /n - det(L£)/™ is convex and centrally symmetric.

® It contains a cube of side length > 2det(£)'/™, which has volume
> 2" - det(L).
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SVP, CVP, uSVP, SIVP, BDD, CRP, DGS, ... & decision variants.

> We'll focus on the two most relevant to cryptography: the
(approximate) Shortest Vector Problem (SVP, and GapSVP.) and
Bounded-Distance Decoding (BDD) problem.
@ They admit worst-case/average-case reductions (to SIS and LWE).

@ Essentially all crypto schemes are based on versions of these problems.
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Shortest Vector Problem: SVP. and GapSVP.,

Approximation problems with factor v = ~(n):
Search: given basis B, find nonzero v € L s.t. ||v| < v - A (L).
Decision: given basis B and real d, decide between
(L)< d versus A(L) > -d.
Clearly GapSVP, < SVP,, but the reverse direction is open!

Recall: min|[b;|| < A1 < v/ - det(£)'/", but these are often very loose.
7
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Complexity of GapSVP

» Clearly, (Gap)SVP, can only get easier as 7 increases.

v = 2(10gn)176 \/’Tl n o~n

| | | |
I

w w w
NP-hard* & NP N coNP crypto SVP € P
[Ajtai’'98,. . .] [GG'98,AR'05] [Ajtai'96,...] [LLL'82,Schnorr'87]

» For v = poly(n), best algorithm is 2™ time & space [AKS'01,MV'10,...

» For v = 2F, best algorithm takes ~ 2"/* time [Schnorr'87,...]

E.g., v = 2V™ appears to be ~ 2V7_hard.
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An Algorithm for SVPyu-1)/2 [LLL'82]

> Key idea: manipulate basis to ensure ||b;1]|* > %HBZHQ for all 1.
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Claim 1: At end, ||by]* > %Hf)lHQ (as desired).
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Claim 2: Algorithm terminates after poly(|B|) many iterations.
Proof: Define ®(B) = ||b1]|* - ||b2 = ||b1| - det(L).
When we swap, ® decreases by > @ factor.

It starts as 2P°Y(IBD) and cannot go below 1.

LLL in n dimensions: do similar loop on all adjacent pairs b;, b; 1.

2, for all 4.
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Related: Shortest Independent Vectors Problem (SIVP.)

» Given basis B, find lin. ind. vi,...,v, € Ls.t. ||vi|| < v - A (L).
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Bounded-Distance Decoding (BDD)

Search: given basis B, point t, and real d < \1/2 s.t. dist(t, £) < d,
find the (unique) v € L closest to t.
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Algorithms for BDD [Babai'se]

“Round off:” Using a “good” basis B, output e =t mod B.

Works if Ball(d) € P(B): radius d = min||b;"||/2.
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Algorithms for BDD [Babai'se]

“Round off:” Using a “good” basis B, output e =t mod B.
Works if Ball(d) € P(B): radius d = min||b;"||/2.

“Nearest plane:” Output e = t mod B. Proceeds iteratively.
Works if Ball(d) € P(B): radius d = min||bg||/2.
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Wrapping Up

» Now you know (almost) everything you need to know about lattices
(to do cryptography, at least).

P> We've covered a lot: do the exercises to reinforce your understanding!

» Tomorrow: the cryptographic problems SIS and LWE (as SVP and
BDD variants), and some basic applications.
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