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Abstract

Several recent papers have established limits on the computational difficulty of lattice problems,
focusing primarily on the `2 (Euclidean) norm. We demonstrate close analogues of these results
in `p norms, for every 2 < p ≤ ∞. In particular, for lattices of dimension n:

• Approximating the closest vector problem, the shortest vector problem, and other related
problems to within O(

√
n) factors (or O(

√
n log n) factors, for p =∞) is in coNP.

• Approximating the closest vector and bounded distance decoding problems with prepro-
cessing to within O(

√
n) factors can be accomplished in deterministic polynomial time.

• Approximating several problems (such as the shortest independent vectors problem) to
within Õ(n) factors in the worst case reduces to solving the average-case problems defined
in prior works (Ajtai, STOC 1996; Micciancio and Regev, SIAM J. on Computing 2007;
Regev, STOC 2005).

Our results improve prior approximation factors for `p norms by up to
√
n factors. Taken all

together, they complement recent reductions from the `2 norm to `p norms (Regev and Rosen,
STOC 2006), and provide some evidence that lattice problems in `p norms (for p > 2) may not
be substantially harder than they are in the `2 norm.

One of our main technical contributions is a very general analysis of Gaussian distributions
over lattices, which may be of independent interest. Our proofs employ analytical techniques of
Banaszczyk that, to our knowledge, have yet to be exploited in computer science.

1 Introduction

An n-dimensional lattice Λ ⊂ Rn is a periodic “grid” of points generated by all integer linear
combinations of n linearly independent vectors b1, . . . ,bn ∈ Rn, which form what is called a basis
of Λ. Over the past two centuries, lattices have emerged as fundamental objects in many areas
of mathematics. More recently in computer science, lattices have been at the center of several
celebrated results in algorithms, complexity theory, and cryptography (e.g., [LLL82, Ajt04]).

Two of the central computational problems on lattices are the shortest vector problem SVP and
the closest vector problem CVP. The goal of SVP, given an arbitrary basis of a lattice, is to find a
(nonzero) lattice point that is closest to the origin. The goal of CVP, given an arbitrary basis of
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a lattice and a target point v ∈ Rn, is to find a lattice point closest to v. In these problems and
others, the distance is measured relative to some fixed norm on Rn. Generally this is the `2 (i.e.,
Euclidean) norm, but it is also common to use the `p norm for some 1 ≤ p ≤ ∞.1

As with most optimization problems, it is interesting to consider approximation versions of
lattice problems. For SVP (respectively, CVP), the goal then becomes to find a lattice point whose
distance from the origin (resp., target) exceeds the optimal distance by no more than a certain
approximation factor γ ≥ 1. Generally, γ is taken to be some function γ(n) of the dimension of the
lattice.

Known polynomial-time algorithms for approximating SVP and CVP (in the `2 norm), such as
the LLL algorithm, achieve approximation factors γ(n) that are only mildly better than exponential
in n [LLL82, Bab86, Sch87, AKS01]. To approximate SVP or CVP (in any `p norm) to within even
polynomial factors, known algorithms require time and space that are exponential in n [AKS01,
AKS02, BN07]. (We add that these algorithms can achieve any constant approximation factor
γ(n) = 1 + ε, and that the algorithm of [AKS01] can even solve SVP in the `2 norm exactly.)

There are a number of other seemingly difficult computational problems relating to geometric
properties of lattices; we informally describe a few of them here.

• The goal of the shortest independent vectors problem SIVP is to find (given an arbitrary lattice
basis) a set of n linearly independent lattice vectors, where the length of the longest such
vector is minimized (more generally, is within a γ(n) factor of optimal).

• The goal of the covering radius problem CRP is to compute (to within a γ(n) factor, given a
basis) the covering radius of the lattice, which is defined as the maximum distance from a
point t to the lattice, taken over all t ∈ Rn.

• Motivated by coding theory, the closest vector problem with preprocessing CVPP is a version
of CVP in which the lattice is fixed, and arbitrary succinct advice about the lattice (generated
by an unbounded preprocessing phase) may be used to find a lattice vector close to a given
target point.

• In a variant of CVPP called bounded distance decoding BDD (with preprocessing), the distance
from the target point to the lattice is guaranteed to be within a certain factor of the minimum
distance of the lattice (i.e., the length of its shortest nonzero vector).

Hardness. The apparent difficulty of lattice problems is reinforced by several hardness results. As
is standard in hardness of approximation, these results are expressed in terms of decision problems
satisfying a promise, or “gap” (by convention, the problem names start with Gap). The goal is to
decide whether the relevant quantity is bounded from above by (say) 1, or from below by γ. For
example, the goal of GapSVP is to determine whether the length of the shortest nonzero vector
in a lattice (given by an arbitrary basis) is at most 1 or greater than γ (otherwise, any answer is
acceptable). Hardness for a gap problem generally implies analogous hardness for the corresponding
optimization and search problems, by standard reductions. Below, we briefly describe the state of
the art for hardness of lattice problems, which applies for all `p norms (in many cases, via a general
result of [RR06]) unless stated otherwise.

To summarize, some form of hardness is known for all the problems we have introduced. The
approximation factors range from specific constants to as large as nc/ log logn for some constant c > 0.

1For 1 ≤ p <∞, the `p norm of x ∈ Rn is ‖x‖p = (
Pn
i=1 |xi|

p)1/p, and the `∞ norm is ‖x‖∞ = maxi |xi|.
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However, no hardness is known for any polynomial approximation factor nε, under any standard
complexity assumption.

For GapSVP and p <∞, there is no (randomized) polynomial-time algorithm for any constant
approximation factor unless NP ⊆ RP, nor for any 2(logn)1−ε

factor unless NP ⊆ RTIME(2poly(logn)),
nor for some nc/ log logn factor (where c > 0) unless NP ⊆ RSUBEXP = ∩δ>0RTIME(2n

δ
) [Ajt98,

CN99, Mic00, Kho05, HR07]. For p = ∞, GapSVP is NP-hard to approximate to within a factor
nc/ log logn for some constant c > 0 [vEB81, Din02].

GapCVP is NP-hard to approximate to within nc/ log logn factors for some constant c > 0 [ABSS97,
DKRS03, Din02]. For GapCVPP with 2 ≤ p < ∞, there is no (randomized) polynomial-time
algorithm for any (log n)1/2−ε factor unless NP ⊆ RTIME(2poly(logn)); for p = ∞, there is no
such algorithm for any constant factor unless NP ⊆ RP, nor for any (log n)1/2−ε factor unless
NP ⊆ RTIME(2poly(logn)) [FM04, Reg04a, AKKV05, RR06]. For GapBDD, there is no polynomial-
time algorithm for any factor

√
2− ε unless NP ⊆ P/ poly [LLM06].

GapSIVP is NP-hard to approximate to within any constant factor, and no polynomial-time
algorithm exists for any 2(logn)1−ε

factor unless NP ⊆ DTIME(2poly(logn)). For all sufficiently large
p ≤ ∞, there is a constant cp > 1 such that GapCRP in the `p norm is Π2-hard to approximate to
within any factor less than cp (for p =∞, the constant c∞ = 1.5) [HR06].

Limits on hardness. Given the difficulty of designing efficient algorithms for even moderately
subexponential approximation factors, one might hope to significantly increase the factors in the
hardness results above. However, there seem to be strict limits to any such improvements.

One general approach for limiting hardness is to show, for some approximation factor γ(n), that
a certain problem is in some complexity class that is not believed to contain NP, such as coNP or
coAM. Putting aside some subtleties, this in turn implies that the problem (for the particular factor
γ(n)) is not NP-hard, assuming that the polynomial-time hierarchy does not collapse.

Lagarias, Lenstra, and Schnorr [LLS90] showed that for γ(n) = n1.5, GapCVP and GapSVP are
in coNP. In other words, there is a succinct witness proving that a given point is far from a given
lattice, and a witness proving that a given lattice has no short nonzero vectors. The factor was
improved to γ(n) = n by Banaszczyk [Ban93]. Goldreich and Goldwasser showed that GapCVP
and GapSVP are in coAM for some γ(n) = O(

√
n/ log n) [GG00]. Recently, Aharonov and Regev

improved the containment to coNP, for a slightly relaxed factor γ(n) = O(
√
n) [AR05]. Building

upon these most recent works, other problems such as GapSIVP and GapCRP have been placed in
coNP for some γ(n) = O(

√
n) factor, and in coAM for some γ(n) = O(

√
n/ log n) factor [GMR05],

and the problems GapCVPP and BDD have been shown to be computable in polynomial time (not
including the unlimited preprocessing stage) for γ(n) = O(

√
n/ log n) [AR05, LLM06].

One of the most remarkable features of lattice problems is their worst-case/average-case re-
ducibility, first demonstrated by Ajtai [Ajt04] and studied extensively since then (e.g., by [CN97,
Mic04, MR07, Reg05]). Worst-case to average-case reductions are typically taken as evidence for
the hardness of the average-case problem, which often has applications in cryptography. At the
same time, though, these reductions also limit the hardness of the underlying worst-case problem,
by showing that it is no harder than the average-case problem (which is in, say, distributional-
NP [Lev86, BDCGL92]). The state of the art in this area is represented by the works of Micciancio
and Regev [MR07] and Regev [Reg05], who demonstrated reductions from worst-case lattice problems
in the `2 norm for almost-linear γ(n) = Õ(n) factors to certain average-case problems. Interestingly,
the latter result of Regev is a quantum reduction, which is non-trivial because quantum computing
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is not known to confer any advantage over classical algorithms for lattice problems.
A final intriguing limit on hardness comes from a recent paper of Regev and Rosen [RR06]. By

applying embeddings from the `2 norm to other `p norms, they showed (essentially) that lattice
problems in the `2 norm are no harder than they are in the `p norm, for any approximation factor
γ(n) and any p ∈ [1,∞].

We emphasize that all of these results have had the primary effect of limiting the hardness of
lattice problems in the `2 norm. Using standard relations between norms, one can trivially obtain
limits for other `p norms, but the approximations suffer by up to

√
n factors. For example, the

approximation factors become O(n1/2+|1/2−1/p|) = O(n) for the problems in coNP, and become
Õ(n1+|1/2−1/p|) = Õ(n1.5) for the worst-case/average-case reductions.

Summary. Focusing on the relationship between norms, the landscape looks as follows: in certain
cases (such as for GapSVP and GapCRP), the known hardness results for large values of p are
stronger than those for, say, p = 2. Problems in `p norms are essentially no easier than those in the
`2 norm, and furthermore, the known limits on their hardness are weaker by factors as large as

√
n.

Therefore, most of the evidence indicates that lattice problems in `p norms could be strictly harder
than those in the `2 norm — but is this actually true? This is the main question motivating our
work.

1.1 Our Results

We show (perhaps surprisingly, given the state of the art) that many known limits on hardness
for the `2 norm carry over to the `p norm for any p > 2, for essentially the same asymptotic
approximation factors. Specifically, for any 2 < p ≤ ∞ we show that:

• For certain O(
√
n) approximation factors (or O(

√
n log n) factors for p =∞), GapCVP in the

`p norm is in coNP. By known relations among lattice problems, it also follows that GapSVP,
GapSIVP, and GapCRP are in coNP for the same asymptotic factors.

• For certain O(
√
n) approximation factors, GapCVPP and the search variant BDD in the `p

norm can be solved in deterministic polynomial time (with unlimited preprocessing).

• For certain Õ(n) approximation factors, the worst-case problems SIVP and GapSVP (among
others) in the `p norm reduce to the average-case problem first defined in [Ajt04]. The
same holds true for the average-case problem defined in [Reg05], under an efficient quantum
reduction.

Each of these results improves upon the prior known approximation factors for `p norms by up
to a

√
n factor, and matches (up to O(log n) factors or better) the current state of the art for the

`2 norm. We remark that the factors hidden by the O-notation above do depend very mildly on
the choice of norm and the specific lattice problem. For the problems in coNP (with p finite), the
O(
√
n) expression hides a constant factor proportional to

√
p. For the problems with preprocessing,

the approximation factor does not depend on p, but our bound is an O(
√

log n) factor looser than
those known for the `2 norm [AR05, LLM06]. For the worst-case/average-case reductions, our
approximation factors are looser than those achieved in [MR07, Reg05] by any ω(

√
log n) factor.

Our results also have implications for cryptography. Until now, the hardness of lattice-based
cryptographic primitives has always been based on worst-case problems in the `2 norm. Because
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lattice problems are essentially easiest in the `2 norm (for any given approximation factor), the
security of the resulting primitives has thus far been based on the strongest worst-case assumption
of its kind. Our results imply that security can be based on the possibly weaker assumption that
lattice problems are hard in some `p norm, 2 ≤ p ≤ ∞. Viewed another way, our results imply
that an adversary capable of breaking the cryptographic primitive is also capable of solving lattice
problems in all such norms.

One of our main technical contributions is a very general analysis of Gaussian distributions over
lattices, which we hope will be of independent interest and utility elsewhere. Indeed, our analysis has
also been applied in work by Peikert and Rosen [PR07] to obtain very tight worst-case/average-case
reductions for special classes of algebraic lattices.

Finally, we remark that our proofs can easily be adapted to essentially arbitrary norms ‖·‖.
Generally speaking, our proofs exploit upper bounds in the `2 norm in one case, and lower bounds
in the `p norm in the opposing case. Therefore it typically suffices to know some R > 0 such that
for all x ∈ Rn, ‖x‖2 ≤ ‖x‖ (without loss of generality, by scaling) and 1

R ‖x‖ ≤ ‖x‖∞; the value R
then contributes to the final approximation factor. Note that by the relationship between the `2
and `∞ norms, we always have R ≥

√
n.

1.2 Techniques

One way of obtaining all our results (and more) would be to give approximation-preserving reductions
from lattice problems in the `p norm to problems in the `2 norm. While reductions in the reverse
direction are known [RR06], reducing from the `p norm to the `2 norm appears to be much more
challenging.

We instead obtain our results by directly demonstrating the requisite coNP proof systems,
worst-case to average-case reductions, etc. Remarkably, we are able to use the exact same algorithms
and reductions that were initially designed for the `2 norm! Our results follow by a novel analysis
of these constructions for `p norms. We rely on results and techniques of Banaszczyk that were
initially developed to prove transference theorems for lattices, first for the `2 norm [Ban93], and
later for norms defined by more general convex bodies, including `p norms [Ban95]. Ideas from the
former paper have stimulated many recent advances in the understanding of lattices in computer
science. To the best of our knowledge, this is the first time that techniques from the latter paper
have been applied in computational complexity.

As an illustration, let us summarize the proof that GapCVP in the `p norm is in coNP for some
O(
√
n) approximation factor (where p is finite for simplicity). We apply certain measure inequalities

from [Ban95] to the framework laid out by Aharonov and Regev [AR05]. Their main tool is a
function f : Rn → [0, 1] that is indicates whether its argument is close to, or far from, a given
lattice (in the `2 norm). We show that the same function f also works in all `p norms, for p ≥ 2.
Specifically,

• For points x whose `p distance to the lattice is at least cpn1/p (for some constant cp depending
only on p), the measure inequalities of [Ban95] guarantee that f(x) ≤ 1

4 .

• For points x whose `p distance to the lattice is at most 1
100 · n

1/p−1/2, standard properties of
norms combined with results from [AR05] guarantee that f(x) ≥ 1

2 .

These two facts are the essence of the O(
√
n) gap factor in the resulting coNP proof system. (Similar

facts hold for p =∞, yielding an O(
√
n log n) gap.)
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For our new analysis of prior worst-case to average-case reductions, we derive new facts about
the discrete Gaussian probability distributions over lattices that emerge in the analysis of those
reductions. Specifically, we show that in many important respects, these discrete Gaussians behave
almost exactly like continuous Gaussians. In particular, the expected `p norm of a point sampled
from an n-dimensional discrete Gaussian is proportional to n1/p, and the sum of m independent
discrete Gaussians behaves like a single discrete Gaussian whose standard deviation is a

√
m factor

larger. Our results extend prior analyses by Micciancio and Regev [MR07] and Lyubashevsky and
Micciancio [LM06], while providing more modular and tractable proofs.

1.3 Open Questions

The case of p < 2. Our work does not say much about lattice problems in `p norms for 1 ≤ p < 2,
due to their relationship with the `2 norm. We are unable to conclude anything other than what is
trivially implied by basic relations among norms, i.e., problems in coNP for O(n1/p) factors, and
worst-case to average-case reductions with Õ(n1/2+1/p) connection factors.

One way of approaching `p norms for p < 2 might be via duality, which defines a natural
correspondence between not only pairs of lattices, but also pairs of norms. In particular, for
1 ≤ p ≤ 2 ≤ q ≤ ∞ such that 1/p+ 1/q = 1, the `p norm and `q norm are dual to each other. It
may be that lattice problems in the `p norm could be related to problems in the `q norm in this way.

We point out that any results going below the n1/p barrier (even for just one `p norm) would imply
analogous non-trivial results for problems on linear codes over binary or ternary alphabets, such as
the nearest codeword problem and the minimum distance problem. This follows from a standard
transformation from codes to lattices (see, e.g., [FM04]), which converts a Hamming distance of
d to an `p distance of d1/p. Therefore, if CVP in some `p norm is in coNP for γ(n) = n(1−ε)/p,
then the nearest codeword problem is in coNP for a sublinear approximation factor n1−ε. As far
as we are aware, nothing of the sort is known about codes, and this may explain the difficulty in
obtaining better bounds for lattice problems when p < 2. (For the nearest codeword problem, there
are polynomial-time algorithms achieving Ω(n) approximation factors without randomization, and
Ω(n/ log n) factors with randomization [BK02].)

coNP versus coAM. Another interesting question is whether our results for coNP can be tightened
by a

√
log n factor, by relaxing the containments to coAM. This question is motivated by the current

state of affairs for the `2 norm, where CVP is known to be in coNP only for some γ(n) = O(
√
n),

but is known to be in coAM for some γ(n) = O(
√
n/ log n). In `p norms, however, our techniques

do not seem to yield such an improvement. We explain below.
Recall that the main tool in [AR05] is a function f indicating whether a given point is close

to, or far from, some given lattice. In the `2 norm, the measure inequality from [Ban93] gives an
exponentially small bound on f in the “far” case. That is, for points x at a distance ≥

√
n from the

lattice, we have f(x) < 2−n. As pointed out in [AR05], the full strength of this bound is not needed
for the coNP proof system; a small enough constant bound suffices. In contrast, the coAM protocol
of [GG00] has soundness error as large as 1 − 1

poly(n) , and therefore needs an inverse polynomial
bound on f(x) for completeness.

For `p norms, the measure inequalities of [Ban95] provide only a constant upper bound on f(x)
when x is at distance ≥ n1/p from the lattice. As we have already explaiend, this constant bound is
sufficient for the coNP proof system. However, it does not appear strong enough to yield a coAM
protocol for O(

√
n/ log n) factors, due to the large soundness error.
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We suspect that the way to resolve this issue is by improving the coNP proof system for the `2
norm by a

√
log n factor, which was left as an open problem in [AR05].2 The coNP proof systems

would then essentially subsume the known coAM protocols, for all values of p.

Equivalence among `p norms? A final challenging question is whether there are efficient
approximation-preserving reductions from lattice problems in the `p norm to corresponding problems
in the `2 norm (perhaps only for p ≥ 2). Together with [RR06], this would imply that all `p norms
are polynomially equivalent for any factor γ(n).

1.4 Reader’s Guide and Warning

Section 2 contains basic notation and concepts that are needed throughout the rest of the paper,
and may be safely skimmed by the reader who is familiar with the recent literature. The remainder
of the paper is conceptually divided into two independent parts, each containing one section devoted
to analysis and one section devoted to complexity-theoretic applications.

Section 3 introduces some measure inequalities of Banaszczyk and their immediate implications.
These facts provide a basic starting point for understanding how Gaussian measures relate to `p
norms, and we encourage the reader to start here. Section 4 then applies the inequalities to the
framework of [AR05], resulting in coNP proof systems for several lattice problems, and some other
results relating to problems with preprocessing.

Section 5 develops a new analysis of discrete Gaussian distributions. It is completely self-contained
and assumes no prior knowledge, though we still recommend absorbing Section 3 beforehand for
intuition. Section 6 then applies this analysis by extending prior worst-case/average-case reductions
to `p norms. This section is quite technical and requires familiarity with prior works.

Finally, a few words of warning: this work extends and generalizes results from a number of
recent papers [AR05, LLM06, MR07, Reg05]. Wherever possible, we have attempted to present
enough context to make the presentation as self-contained as possible, and detailed knowledge of the
prior works unnecessary. In some cases, however, understanding and verifying our claims requires
more familiarity with the details of the prior works. Moreover, at times our proofs need to rely
upon facts that are established only implicitly in those works (for example, within lengthy proofs
of other claims). In these cases, we have made our best attempt to encapsulate the main facts we
need, and to provide some guidance to the reader who is interested in verifying the claims against
the contents of the original papers.

2 Preliminaries

2.1 Notation

The real numbers are denoted by R and the integers by Z. For any positive integer n, [n] denotes
{1, . . . , n}. The function log is always taken to be the natural logarithm. We extend any function
f(·) to a countable set A in the following way: f(A) =

∑
x∈A f(x). We write poly(n) for some

unspecified polynomial function in n. We write ω(f(n)) to denote the set of functions (or a particular
function in that set) growing faster than c · f(n) for any c > 0. A positive function ε(·) is negligible
in its parameter if it decreases faster than the inverse of any polynomial, i.e., if ε(n) = n−ω(1).

2For p =∞, such a result would presumably also improve our coNP system to work for γ(n) = O(
√
n), but would

have no further effect for finite p.
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Vectors are written using bold lower-case letters, e.g., x. For a vector x, the ith component of x
is denoted xi. Matrices are written using bold capital letters, e.g., X. The ith column vector of X is
denoted xi. We often use matrix notation to denote a set of vectors, i.e., S also represents the set of
its column vectors. We write span(v1,v2, . . .) to denote the linear space spanned by its arguments.
For a set S ⊆ Rn, v ∈ Rn, and c ∈ R, we let S + x = {y + x : y ∈ S} and cS = {cy : y ∈ S}.

A norm ‖·‖ is a nonnegative real-valued function on Rn that satisfies the following axioms:
‖x‖ = 0 if and only if x = 0, ‖cx‖ = |c| ‖x‖ for any c ∈ R, and ‖x + y‖ ≤ ‖x‖+ ‖y‖ (the triangle
inequality). The associated metric is dist(x,y) = ‖x− y‖. For p ∈ [1,∞), the `p norm on Rn,
denoted ‖·‖p, is defined as

‖x‖p =
(∑

i∈[n]
|xi|p

)1/p

.

For p = ∞, the `∞ norm ‖·‖∞ is defined as ‖x‖∞ = maxi∈[n] |xi|. For ease of notation, when
p ∈ [1,∞] represents an `p norm we say that 1/p = 0 for p = ∞ and 1/p = 0 for p = ∞. As a
special case of Hölder’s inequality, for any x ∈ Rn and any p ∈ [2,∞], we have

n1/p−1/2 ‖x‖2 ≤ ‖x‖p ≤ ‖x‖2 ,

whereas for any p ∈ [1, 2], we have

‖x‖2 ≤ ‖x‖p ≤ n
1/p−1/2 ‖x‖2 .

In the following, fix some arbitrary norm ‖·‖ on Rn. By convention, we say that the norm
of a matrix is the norm of its longest column: ‖X‖ = maxi ‖xi‖. For any t ∈ Rn and set
V ⊆ Rn, the distance from t to V is dist(t, V ) = infv∈V dist(t,v). The open unit ball is denoted
Bn = {x ∈ Rn : ‖x‖ < 1}, and the closed unit ball by Cn = Bn = {x ∈ Rn : ‖x‖ ≤ 1}. We often
affix a superscript p ∈ [1,∞] to these expressions to indicate that the quantity is defined using the
`p norm, e.g., distp or B∞n .

The Euler Gamma function for real z > 0 is defined as

Γ(z) = 2
∫ ∞
r=0

r2z−1e−r
2
dr.

The Gamma function satisfies the recursive formula Γ(z + 1) = zΓ(z), and Γ(z + 1) = z! for all
nonnegative integers z.

2.2 Lattices

For a matrix B ∈ Rn×n whose columns b1, . . . ,bn are linearly independent, the n-dimensional
lattice3 Λ generated by the basis B is

Λ = L(B) =
{

Bc =
∑

i∈[n]
ci · bi : c ∈ Zn

}
.

The fundamental parallelepiped of B is the half-open set P(B) = {
∑

i cibi : 0 ≤ ci < 1, i ∈ [n]}.
The dual lattice of Λ, denoted Λ∗, is defined to be Λ∗ = {x ∈ Rn : ∀ v ∈ Λ, 〈x,v〉 ∈ Z}. From the
symmetry of this definition, it is easy to see that (Λ∗)∗ = Λ.

3Technically, this is the definition of a full-rank lattice, which is all we are concerned with in this work.
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In the following definitions, fix some norm ‖·‖ on Rn, and recall that Cn ⊂ Rn is the closed
unit ball under that norm. The minimum distance of a lattice Λ, denoted λ1(Λ), is the length of
its shortest nonzero element: λ1(Λ) = min06=x∈Λ ‖x‖. More generally, the ith successive minimum
λi(Λ) is the smallest radius r such that the (closed) ball rCn contains i linearly independent vectors
in Λ; formally, λi(Λ) = min {r ∈ R : dim span(Λ ∩ rCn) ≥ i}. The covering radius of Λ, denoted
µ(Λ), is the smallest radius r such that closed balls rCn centered at every point of Λ cover all of
Rn; formally, µ(Λ) = maxx∈Rn dist(x,Λ). As above, for each of these quantities we often affix a
superscript (p) to indicate that the quantity is measured in the `p norm, e.g., λ(2)

i and µ(p).

2.3 Problems on Lattices

Here we define some standard worst-case problems on lattices. See [MG02, MR07] for further
motivation and discussion of these problems. We define approximation problems parameterized
by a positive function γ = γ(n) of the lattice dimension n. The problems are defined relative to
some (implicit) norm ‖·‖ on Rn. We attach a superscript p ∈ [1,∞] to the name of the problem to
indicate that this norm is the `p norm, e.g., GapSVPpγ or GDDp,φ

γ .
We first define some promise (or “gap”) problems, where the goal is to decide whether the input

belongs to the YES set or the NO set (these two sets are disjoint, but not necessarily exhaustive;
when the input belongs to neither set, any output is acceptable). In the complement of a promise
problem, the YES and NO sets are merely swapped.

Definition 2.1 (Shortest Vector Problem). An input to GapSVPγ is a basis B of an n-dimensional
lattice. It is a YES instance if λ1(L(B)) ≤ 1, and is a NO instance if λ1(L(B)) > γ(n).

Definition 2.2 (Closest Vector Problem). An input to GapCVPγ is a pair (B,v) where B is a basis
of an n-dimensional lattice and v ∈ Rn. It is a YES instance if dist(v,L(B)) ≤ 1, and is a NO
instance if dist(v,L(B)) > γ(n).

Formally (and as in [AR05]), we assume that the target vector v is specified relative to the
basis B using some `(n) = poly(n) bits of precision, i.e., v is specified as v =

∑
i∈[n] aibi, where the

coefficients ai are specified using at most `(n) bits each. In particular, v ∈ L(B)/2`(n).

Definition 2.3 (Covering Radius Problem). An input to GapCRPγ is a basis B of an n-dimensional
lattice. It is a YES instance if µ(L(B)) ≤ 1 and is a NO instance if µ(L(B)) > γ(n).

Note that the choice of the quantities 1 and γ in the above problems is arbitrary; by scaling the
input instance, they can be replaced by β and β · γ (respectively) for any β > 0 without changing
the problem.

We now define some lattice problems in their search versions. In these problems, the parameter
φ represents any desired function from n-dimensional lattices to the positive reals, e.g., the nth
successive minimum λn or the covering radius µ.

Definition 2.4 (Generalized/Shortest Independent Vectors Problem). An input to GIVPφγ is a basis
B of an n-dimensional lattice. The goal is to output a set of n linearly independent lattice vectors
S ⊂ L(B) such that ‖S‖ ≤ γ(n) · φ(L(B)).

In the promise variant GapGIVPφγ , the input is a YES instance if φ(L(B)) ≤ 1 and a NO instance
if φ(L(B)) > γ.

The special case φ = λn defines the shortest independent vectors problem SIVPγ and its promise
variant GapSIVPγ .
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Definition 2.5 (Guaranteed Distance Decoding Problem). An input to GDDp,φ
γ is a pair (B, t)

where B is a basis of an n-dimensional lattice and t ∈ Rn. The goal is to output a lattice point
x ∈ L(B) such that ‖t− x‖ ≤ γ(n) · φ(L(B)).

Various other problems on lattices are defined within the paper, closer to where they are needed.

2.4 Gaussian Measures

Our review of Gaussian measures over lattices follows the development by prior works [Reg04b,
AR05, MR07]. For any s > 0 define the Gaussian function centered at c with parameter s as:

∀x ∈ Rn, ρs,c(x) = e−π‖x−c‖2/s2 .

The subscripts s and c are taken to be 1 and 0 (respectively) when omitted.
For any c ∈ Rn, real s > 0, and lattice Λ, define the discrete Gaussian distribution over Λ as:

∀x ∈ Λ, DΛ,s,c(x) =
ρs,c(x)
ρs,c(Λ)

.

(As above, we may omit the parameters s or c.) Note that the denominator in the above expression is
always finite (see, e.g., [AR05, Claim 2.4]), so the probability distribution is well-defined. Intuitively,
DΛ,s,c can be viewed as a “conditional” distribution, resulting from sampling x ∈ Rn from a Gaussian
centered at c with parameter s, and conditioning on the event x ∈ Λ.

The smoothing parameter. Micciancio and Regev [MR07] proposed a lattice quantity called
the smoothing parameter :

Definition 2.6 ([MR07]). For an n-dimensional lattice Λ and positive real ε > 0, the smoothing
parameter ηε(Λ) is defined to be the smallest s such that ρ1/s(Λ∗\ {0}) ≤ ε.

The name “smoothing parameter” is due to the following (informally stated) fact: if a lattice
Λ is “blurred” by adding Gaussian noise with parameter s ≥ ηε(Λ), the resulting distribution is
within ε of uniform over the entire space. (Further discussion along with the precise statement of
this fact can be found in [MR07, Section 3].) The smoothing parameter of any n-dimensional lattice
is closely related to its nth successive minimum:

Lemma 2.7 ([MR07, Lemma 3.3]). For any p ∈ [2,∞], any n-dimensional lattice Λ, and any ε > 0,

ηε(Λ) ≤ λ(2)
n (Λ) ·

√
log(2n(1 + 1/ε))/π ≤ λ(p)

n (Λ) · n1/2−1/p ·
√

log(2n(1 + 1/ε))/π.

In particular, for any ω(
√

log n) function, there is a negligible function ε(n) for which

ηε(Λ) ≤ λ(2)
n (Λ) · ω(

√
log n) ≤ λ(p)

n (Λ) · n1/2−1/p · ω(
√

log n).

(We note that the inequalities for the `p norm in Lemma 2.7 follow immediately from standard
relations between the `2 and `p norms.)

The smoothing parameter also influences the behavior of discrete Gaussians over the lattice. In
our new analysis of discrete Gaussians we rely upon the following simple lemma.
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Lemma 2.8. For any ε ∈ (0, 1), s ≥ ηε(Λ), and c ∈ Rn, we have

1−ε
1+ε · ρs(Λ) ≤ ρs,c(Λ) ≤ ρs(Λ).

Proof. The first inequality is implicit in the proof of Lemma 4.4, and the second inequality is Lemma
2.9, of [MR07].

For our GapSVP reductions we also need the following lemma, which is implicit in the proofs of
Lemma 4.5 and Corollary 4.6 of [MR07].

Lemma 2.9. Let Λ be any n-dimensional lattice, let w, c ∈ Rn, and let s ≥ ηε(Λ) for some ε ∈ (0, 1).
Then for any v ∈ Rn, we have∣∣∣∣ E

x∼DΛ,s,c

[cos(2π 〈x + w,v〉)]
∣∣∣∣ ≤ 1 + ε

1− ε
·
ρ1/s(Λ∗ − v)
ρ1/s(Λ∗)

.

3 Measure Inequalities for `p Norms

In this section we review some inequalities developed by Banaszczyk [Ban95] and a few of their
immediate consequences for our applications.

The goal of these inequalities is to bound the total Gaussian measure ρ((Λ− v) \ rBpn) assigned
to those points of a shifted lattice Λ− v whose `p norm exceeds a certain radius r. The measure
is typically normalized by the total measure ρ(Λ) on the entire unshifted lattice, yielding a ratio
between 0 and 1. This ratio has proved to be a crucial quantity in obtaining transference theorems
for lattices [Ban93, Ban95], and in the study of the computational complexity of lattice problems
(see, e.g., [AR03, AR05, MR07]).

In a prior work of Banaszczyk [Ban93], it was shown that for p = 2 and radius r =
√
n,

the ratio described above is exponentially small in n. The results below generalize this result to
arbitrary `p norms, showing that the ratio is small for r ∼ n1/p. The ratio is not, generally speaking,
exponentially small, but for our applications we only need it to be a small constant or negligibly
small in n.

Lemma 3.1 ([Ban95, Lemma 2.9]). For any n-dimensional lattice Λ, p ∈ [1,∞), v ∈ Rn, and
r > 0,

ρ((Λ− v) \ rBpn)
ρ(Λ)

< 2n · Γ
(p

2
+ 1
)
· (r
√
π)−p.

Corollary 3.2. For any p ∈ [1,∞), there is a constant cp ≈
√
p such that for any n-dimensional

lattice Λ and v ∈ Rn,
ρ((Λ− v) \ cpn1/p · Bpn)

ρ(Λ)
< 1/4.

(The 1/4 bound is arbitrary, and may be replaced by any other constant δ > 0 for some suitable
constant cp.)

Proof. Follows immediately from Lemma 3.1 by setting

r =
(

8n · Γ
(p

2
+ 1
))1/p

/
√
π = cp · n1/p.
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Lemma 3.3 ([Ban95, Lemma 2.10]). For any n-dimensional lattice Λ, v ∈ Rn, and real r > 0,

ρ((Λ− v) \ rB∞n )
ρ(Λ)

< 2n · exp(−πr2).

Corollary 3.4. Let n ≥ 3. For any n-dimensional lattice Λ and v ∈ Rn,

ρ((Λ− v) \
√

log n · B∞n )
ρ(Λ)

< 1/4.

Proof. Follows immediately from Lemma 3.3 by setting r =
√

log(8n)/π ≤
√

log n for n ≥ 3.

3.1 Smoothing Parameter

The measure inequalities also yield bounds on the smoothing parameter relative to the dual minimum
distance in various `p norms. We use these bounds in Section 6.1.2 for the worst-case to average-case
reductions for GapSVP in `p norms, in Sections 6.1.2 and 6.2.

Lemma 3.5. For any p ∈ [1,∞], any n-dimensional lattice Λ, and any ε > 0,

ηε(Λ) ≤
√

log(2n(1 + 1/ε))/π

λ
(∞)
1 (Λ∗)

≤
n1/p ·

√
log(2n(1 + 1/ε))/π

λ
(p)
1 (Λ∗)

.

In particular, for any ω(
√

log n) function, there is a negligible function ε(n) such that

ηε(Λ) ≤ ω(
√

log n)/λ(∞)
1 (Λ∗) ≤ n1/p · ω(

√
log n)/λ(p)

1 (Λ∗).

Proof. The inequalities for the `p norm follow from the fact that λ(∞)
1 (Λ∗) ≥ λ

(p)
1 (Λ∗)/n1/p, by

standard relations between the `∞ and `p norms.
For `∞ norm, let L = λ

(∞)
1 (Λ∗). We have

ρ1/s(Λ
∗ \ {0}) = ρ(sΛ∗ \ {0}) = ρ(sΛ∗ \ sL · B∞n ).

Now let s =
√

log(2n(1 + 1/ε))/π/L. Applying Lemma 3.3,

ρ(sΛ∗ \ {0}) < ε

1 + ε
· ρ(sΛ∗) =

ε

1 + ε
· (1 + ρ(sΛ∗ \ {0})).

Rearranging terms, we get ρ(sΛ∗ \ {0}) < ε, as desired.

We remark that for p ≤ 2, the bound in Lemma 3.5 is slightly looser than the known bound of

ηε(Λ) ≤ n1/p/λ
(p)
1 (Λ∗)

for ε = 2−n, which follows from [MR07, Lemma 3.2]. The extra factor in the numerator of our bound
(which is identical to the extra factor in Lemma 2.7) arises from needing to deal with arbitrarily
small ε > 0, rather than a fixed constant like 1/4. The best dependence on ε seems to come by
bounding the minimum distance of Λ∗ in the `∞ norm and applying Lemma 3.3 (which introduces
the extra factor), rather than by applying Lemma 3.1 directly with the minimum distance of Λ∗ in
the `p norm.
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4 Problems in coNP

In this section, we show that for p ≥ 2 and certain γ(n) = Õ(
√
n) approximation factors, the following

promise problems in `p norm are in coNP: the closest vector problem GapCVPpγ , the shortest vector
problem GapSVPpγ , the covering radius problem GapCRPpγ , and the shortest independent vectors
problem GapSIVPpγ . This implies that these problems are not NP-hard unless the polynomial-time
hierarchy collapses (see [GG00, Gol, Cai98] for a discussion of some subtleties concerning promise
problems and the polynomial-time hierarchy). For similar approximation factors, we also show that
the closest vector with preprocessing GapCVPP and bounded distance decoding with preprocessing
BDD in the `p norm are easy (i.e., in P).

The results in this section follow from an application of the measure inequalities from Section 3
to prior work by Aharonov and Regev [AR05], who developed the main techniques for the `2 norm.

4.1 Closest Vector Problem

The main result we need is GapCVPpγ ∈ coNP for p ∈ [2,∞) and appropriate γ(n) = O(
√
n) (and,

for p = ∞, some γ(n) = O(
√
n log n)). Other problems are then be placed in coNP via known

reductions to GapCVP, which work for arbitrary norms and approximation factors.
We start with an informal overview of the main proof technique of Aharonov and Regev [AR05].

They show that for any n-dimensional lattice Λ, there is a positive function f : Rn → [0, 1] that
indicates whether an arbitrary point v ∈ Rn is close to, or far from, the lattice (in `2 norm). The
function f is in fact the (normalized) sum of Gaussians centered at every lattice point, i.e.,

f(v) = ρ(Λ− v)/ρ(Λ).

When v is within distance (say) 1/100 of Λ, it is relatively straightforward to show that f(v) ≥ 1/2.
On the other hand, when v is far away from Λ, the measure inequalities of [Ban93, Ban95] imply
that f(v) is quite small. (For example, when dist2(v,Λ) >

√
n, we have f(v) < 2−n.)

A main technical result of [AR05] is that f can be succinctly approximated by an efficiently-
computable function fW, where W ∈ Rn×N is a matrix made up of N = poly(n) vectors wi from
the dual lattice Λ∗. The vectors wi are chosen independently at random from the Fourier spectrum
of f , which just so happens to be the discrete Gaussian distribution DΛ∗ . With good probability
over these random choices, fW is a very good (pointwise) approximation to f .

Putting together all these facts results in an NP proof system for the complement of GapCVPγ ,
for γ(n) = 100

√
n. The witness that a point v is far from Λ is simply a suitable matrix W defining

the function fW ≈ f . The verifier accepts if fW(v) is small (say, less than 1/2), and if fW is a
good enough approximation to f (this is more technical, but can also be checked efficiently via a
spectral test on W). When dist2(v,Λ) >

√
n, then fW(v) ≈ f(v) < 2−n is very small, and the

verifier accepts. On the other hand, when dist(v,Λ) ≤ 1/100, then fW(v) ≥ 1/2 for any acceptable
W, causing the verifier to reject.

Overview of analysis for `p norms. Now consider the `p norm for p ≥ 2. It turns out that we
can use exactly the same witness and verifier; only the analysis is different. We make the following
observations: if distp(v,Λ) ≤ n1/p−1/2/100, then dist2(v,Λ) ≤ 1/100 by basic relations among
norms. In such a case, we already are guaranteed that the verifier rejects. On the other hand, if
distp(v,Λ) > cpn

1/p for some appropriate constant cp, then the measure inequalities for `p norms
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guarantee that fW(v) ≈ f(v) < 1/4, so the verifier accepts. The resulting gap factor is therefore
O(n1/p/n1/p−1/2) = O(

√
n).

Unfortunately, when 1 ≤ p < 2, the above analysis breaks down. Using the measure inequalities,
we can show that the verifier still accepts when distp(v,Λ) > cpn

1/p for an appropriate constant
cp. However, soundness is compromised: if distp(v,Λ) ≤ n1/p−1/2, it may also be the case that
dist2(v,Λ) = n1/p−1/2 � 1, and f(v) may be small enough to fool the verifier. In order to guarantee
that dist2(v,Λ) ≤ 1/100, we must also require that distp(v,Λ) ≤ 1/100. This yields a gap factor of
O(n1/p), which already follows trivially from the original analysis in the `2 norm and its relationship
to `p norms. We do not know if there is an alternate proof system that improves upon this factor.

We now proceed more formally.

Theorem 4.1. For any p ∈ [2,∞), there is a constant cp ≈
√
p such that GapCVPp

100cp
√
n

belongs
to NP ∩ coNP.
For p =∞, GapCVP∞

100
√
n logn

belongs to NP ∩ coNP.

In order to prove the theorem, we need to recall a few tools from [AR05]. First we recall the
verifier algorithm V for the complement of GapCVP: the input is a basis B for an n-dimensional
lattice Λ = L(B) and a target point v ∈ Rn, and the witness is a matrix W ∈ Rn×N , for some large
enough N = poly(n). The verifier checks the following conditions, accepting if all three hold true
and rejecting otherwise:

1. Check that fW(v) < 1/2, where fW is the function fW(v) = 1
N

∑
i∈[N ] cos(2π 〈v,wi〉).

2. Check that wi ∈ Λ∗ for all i ∈ [N ], i.e., that each column of W is in the dual lattice.

3. Check that the largest eigenvalue of the positive semidefinite matrix WWT ∈ Rn×n is at most
3N .

Using standard algorithms, V can be implemented in polynomial time.
The first two facts we need are concerned with completeness. In the following two lemmas,

suppose we choose the N columns wi of an n × N matrix W independently according to DΛ∗ ,
i.e., the discrete Gaussian distribution over the dual lattice Λ∗. The first fact says that with good
probability, the eigenvalues of WWT are not too large, as required by Condition 3 of the verifier.
The second fact says that with good probability, fW is a very good approximation to f essentially
everywhere (more precisely, on a fine grid of any desired precision). The proofs of these facts are
somewhat lengthy, so we omit them and direct the interested reader to [AR05].

Lemma 4.2 ([AR05, Lemma 6.3]). The probability that W satisfies Condition 3 of the verifier
algorithm V is at least 3/4.

Lemma 4.3 ([AR05, Lemma 1.3]). Let `(n) = poly(n) be a precision parameter, let c > 0 be any
constant, and let N = `(n) · n2c+2 = poly(n). Then with probability at least 3/4 over the choice of
W, we have

|fW(v)− f(v)| ≤ 1
nc

for every v ∈ Λ/2`(n), where fW is defined as in Condition 1 of the verifier algorithm V.

The final fact that we need is concerned with the soundness of the verifier algorithm V.
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Lemma 4.4 ([AR05, Section 6.1]). If dist2(v,L(B)) ≤ 1/100, then V always rejects on (B,v) and
any W.

Proof. We repeat the short proof from [AR05] for self-containment. Suppose that Conditions 2
and 3 are passed; we show that Condition 1 must fail. Because Condition 2 is passed, the function
fW is periodic over L(B). It therefore suffices to prove that fW(v) ≥ 1/2 for any v such that
‖v‖ ≤ 1/100. Now because Condition 3 is passed, we have

1
N

∑
i∈[N ]

〈v,wi〉2 =
1
N

vTWWTv ≤ 1
N
· 3N

10000
=

3
10000

,

where the inequality follows by expressing v in the (orthonormal) eigenvector basis of WWT . Using
the inequality cos θ ≥ 1− θ2/2, we then get

fW(v) =
1
N

∑
i∈[N ]

cos(2π 〈v,wi〉) ≥ 1− 4π2

2N

∑
i∈[N ]

〈v,wj〉2 ≥ 1− 6π2

10000
>

1
2
.

We are now ready to prove the main theorem.

Proof of Theorem 4.1. Membership in NP is trivial, as are the cases n = 1, 2. Thus it suffices to
give an NP verifier for the complement of GapCVP, assuming n ≥ 3. Consider an instance (B,v)
to the complement of GapCVP, and let Λ = L(B). Without loss of generality, we can assume by
scaling the input that for p ∈ [2,∞), NO instances are such that distp(v,Λ) ≤ n1/p−1/2/100, while
YES instances are such that distp(v,Λ) > cpn

1/p. Likewise, for p =∞, NO instances are such that
dist(v,Λ) ≤ n−1/2/100, while YES instances are such that dist(v,Λ) >

√
log n.

First we show soundness: suppose that (B,v) is a NO instance, that is, distp(v,Λ) ≤ n1/p−1/2/100.
Then by the properties of `p norms, we have dist2(v,Λ) ≤ 1/100. By Lemma 4.4, V always rejects
on any witness W, as desired.

We now show completeness: suppose that p ∈ [2,∞) and (B,v) is a YES instance, that is,
distp(v,Λ) > cpn

1/p for appropriate constant cp. Then Corollary 3.2 implies that

f(v) =
ρ(Λ− v)
ρ(Λ)

=
ρ((Λ− v)\cpn1/p · Bpn)

ρ(Λ)
< 1/4.

Now suppose we choose the witness W as above, by sampling each column wi independently
according to DΛ∗ . By this choice, clearly V ’s Condition 2 holds true, and by Lemma 4.2, Condition 3
holds true except with probability at most 1/4. Furthermore, by setting c = 2 in Lemma 4.3, we
have that fW(v) ≤ f(v) + 1/n2 < 1/2 except with probability at most 1/4. We conclude that all
conditions hold true with at least 1/2 probability over the choice of the witness W, implying that
there exists some W that causes V to accept.

For p = ∞, if (B,v) is a YES instance we have dist∞(v,Λ) >
√

log n. Repeating the above
argument using Corollary 3.4, the proof is complete.

4.2 Other Problems in coNP

Theorem 4.5. For any p ∈ [2,∞), there is a constant cp ≈
√
p such that the problems GapSVPpγ,

GapCRPp2γ, GapSIVPpγ belong to coNP, for γ(n) = 100cp
√
n.

For p =∞, all of the above problems belong to coNP for γ(n) = 100
√
n log n.
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Proof. The claims follow via known approximation- and norm-preserving reductions from the various
problems to GapCVP.

For the shortest vector problem (in any norm), there is a deterministic non-adaptive Cook
reduction from GapSVPγ to GapCVPγ (in any norm, for any γ ≥ 1) due to Goldreich et al [GMSS99,
Theorem 6]. As shown in [AR05, Lemma A.1], it follows that if GapCVPγ is in coNP, then so is
GapSVPγ . Essentially, a YES instance of GapSVP maps to at least one YES instance of GapCVP
(which lacks a coNP witness), whereas a NO instance of GapSVP maps to several NO instances of
GapCVP. Therefore, it suffices to give coNP witnesses for all of the GapCVP instances produced by
the reduction.

For the covering radius problem, the proof of Theorem 4.5 of Guruswami et al [GMR05] implicitly
describes a nondeterministic Karp reduction from the complement of GapCRPγ to the complement
of GapCVPγ (in any norm, for any γ(n) ≥ 1). Using this reduction, their proof establishes that if
GapCVPγ is in coNP, then so is GapCRP2γ (the reduction loses a factor of two in the approximation).

For the shortest independent vectors problem, Theorem 4.9 and Corollary 4.10 of [GMR05]
establish (via a nondeterministic reduction) that if GapCVPγ is in coNP, then so is GapSIVPγ (for
any γ(n) ≥ 1). Their proofs are independent of the choice of norm, except in the proof of Theorem
4.9 where specific properties of the `2 norm are used to argue that a certain quantity M can be
made polynomial in the input size. Because the `p norm is always within a

√
n factor of the `2

norm, the same proof establishes that there is a suitable polynomial M for any `p norm.

4.3 Easy Problems with Preprocessing

Lattice problems with preprocessing model situations in which a lattice is fixed long before an actual
instance of the problem is generated. For example, a fixed lattice Λ = L(B) may be used as a kind
of error-correcting code, and a (noisy) received message would be represented by a target point
v. The goal would be to decode v to a nearby element of Λ, given some suitable (short) advice
about Λ that assists the decoding process. Because the lattice is fixed far in advance, the advice can
be viewed as the output of a preprocessing phase, whose running time does not count toward the
complexity of the decoding algorithm. (For additional motivation and discussion of preprocessing,
see [FM04].)

Here we define two variants of the closest vector problem with preprocessing. The first, defined
by Feige and Micciancio [FM04], is a decision version whose goal is to efficiently distinguish points
that are close to the lattice from those than are very far from the lattice. The second, due to Liu
et al [LLM06], is a search version whose goal is to efficiently decode a target point to its (unique)
closest lattice point, under the promise that the target is within a certain fraction (say, 1/10) of the
minimum distance of the lattice. In the following problems, the norm ‖·‖ is implicit; we attach a
superscript p ∈ [1,∞] to the problem name to indicate the `p norm.

Definition 4.6. A solution to the closest vector problem with preprocessing GapCVPPγ (respectively,
bounded distance decoding problem with preprocessing BDDγ) is given by a preprocessing function P
(which may be very hard to compute) and a decision algorithm (respectively, decoding algorithm)
D having the following properties:

• On input an n-dimensional basis B for lattice Λ = L(B), P returns a succinct advice string
A, i.e., the length of A is at most a fixed polynomial in the length of B.

• For GapCVPP: given A = P (B) and a target vector v ∈ Rn, D accepts if dist(v,Λ) ≤ 1 and
rejects if dist(v,Λ) > γ(n) (otherwise, any output is acceptable).
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• For BDD: given A = P (B) and a target v ∈ Rn such that dist(v,Λ) ≤ λ1(Λ)/γ(n), D outputs
the unique x ∈ Λ closest to v (in order to guarantee that x is unique, we require γ > 2).

The complexity of the solution is measured by the running time of D alone.
(Formally, as with GapCVP we fix some precision parameter `(n) = poly(n) in advance and

represent the target vector v relative to the basis B using coefficients having at most `(n) bits of
precision, so that v ∈ Λ/2`(n).)

Aharonov and Regev showed that GapCVPP in the `2 norm is easy for any γ(n) = O(
√
n/ log n)

factor [AR05]. Their result extends to `p norms using a similar analysis as above.

Theorem 4.7. For any p ∈ [2,∞], GapCVPPp
10
√
n

can be solved in deterministic polynomial time.

Proof. Let Λ = L(B) where B is the input basis. By scaling, we can assume without loss of
generality that YES instances are such that distp(v,Λ) ≤ n1/p−1/2 ·

√
log n, while NO instances are

such that distp(v,Λ) > 10n1/p ·
√

log n.
By Lemma 4.3, there is some N = poly(n) and a matrix W ∈ Rn×N such that the function

fW approximates the function f at any point v ∈ L(B)/2`(n) to within n−10. Given B, the
preprocessing function outputs such W as the advice. Given this advice and a target point v, the
decision algorithm D outputs YES if fW(v) ≥ n−4, otherwise it outputs NO.

Suppose v is a YES instance. Let d = dist2(v,Λ) ≤
√

log n. Lemma 3.2 of [AR05] establishes
that f(v) ≥ exp(−πd2) ≥ n−π, therefore fW(v) ≥ n−π − n−10 ≥ n−4 and D accepts. Now suppose
v is a NO instance, so that dist∞(v,Λ) > 10

√
log n. By Lemma 3.3, we have f(v) < n−100, so

fW(v) < n−100 + n−10 < n−4 and D rejects, as desired.

Building upon the techniques of [AR05], Liu et al [LLM06] showed that the search problem
BDDγ (with preprocessing) in the `2 norm is also easy for certain γ(n) = O(

√
n/ log n) factors.

Their decoding algorithm follows a “hill-climbing” approach using the function fW ≈ f to move
closer and closer to the lattice Λ, until it becomes close enough that the nearest lattice vector can
be found by other means. The hill-climbing process works as long as f can be used to compute (to
a high degree of precision) the distance dist(w,Λ) for all w that are suitably close to Λ. The main
claim can be abstracted as follows.

Lemma 4.8 ([LLM06, Theorem 2]). There is an preprocessing function P and a deterministic
polynomial-time algorithm D having the following properties:

1. Given a basis B of an n-dimensional lattice Λ = L(B), P outputs a succinct advice string A.

2. Suppose that4

f(w) ≤ ρ(w) + n−100

for all w ∈ Rn of length ‖w‖2 ≤
√

log n. Then given advice string A and any v such that
dist2(v,Λ) ≤ 1

2

√
log n, D outputs the vector x ∈ Λ closest to v (in the `2 norm).

We now extend this result to solve BDD in `p norms.

Theorem 4.9. For any p ∈ [2,∞], BDDp
20
√
n

can be solved in deterministic polynomial time.

4Recall that f(w) ≥ ρ(w) for all lattices Λ and all w ∈ Rn, by [AR05, Lemma 3.2]. The choice of n−100 is rather
arbitrary and can be replaced with the inverse of any suitably large polynomial in n.
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Proof. Let Λ = L(B) where B is the input basis. By scaling, we can assume without loss of
generality that distp(v,Λ) ≤ n1/p−1/2 ·

√
log n and λ

(p)
1 (Λ) ≥ 10n1/p ·

√
log n. This implies that

dist2(v,Λ) ≤ 1
2

√
log n and λ

(p)
1 (Λ) ≥ λ(∞)

1 (Λ) ≥ 10
√

log n.

In particular, there is a unique x ∈ Λ that is closest to v in both the `2 and `p norms. Therefore it
suffices to use the algorithm guaranteed by Lemma 4.8, which finds x.

It remains to prove the hypothesis of Lemma 4.8. Suppose ‖w‖2 ≤
√

log n, which implies
‖w‖∞ ≤

√
log n. Then because λ(∞)

1 (Λ) ≥ 10
√

log n, it is the case that

(Λ−w)\ {w} = (Λ−w)\(9
√

log n · B∞n ).

Therefore we have

f(w) =
ρ(Λ−w)
ρ(Λ)

=
ρ(w)
ρ(Λ)

+
ρ((Λ−w)\(9

√
log n · B∞n ))

ρ(Λ)
≤ ρ(w) + n−100,

where the inequality follows from the fact that ρ(Λ) ≥ 1 and by Lemma 3.3.

We note that the approximation factors in Theorems 4.7 and 4.9 are an O(
√

log n) factor looser
than those in [AR05, Theorem 1.4] and [LLM06, Theorem 2]. This stems from a corresponding
looseness in the measure inequalities for `p norms. In the `2 norm, we have f(v) < 2−n when
dist(v,Λ) >

√
n [Ban93]. In contrast, the inequalities for `p norms from [Ban95] require dist(v,Λ) ≥

Ω(n1/p ·
√

log n) to obtain even an inverse polynomial (say, 1/n) upper bound on f(v). While it is
possible to bound f(v) by a constant (say, 1/4) when dist(v,Λ) ≥ cpn1/p, this merely leads to the
loss of a

√
log n factor on the YES instances, to no overall benefit.

5 Analysis of Discrete Gaussians

In this section, we develop new tools for analyzing worst-case to average-case reductions that use
Gaussian measures. Our main result is a general bound on the moments of discrete Gaussian
distributions over lattices. These moments are nearly identical to those of continuous Gaussian
distributions. As a consequence, many essential facts about continuous Gaussians also carry over to
the discrete case. These include, for example, exponential tail bounds and “nice” behavior of sums
of independent samples.

Our analysis seems to be a natural continuation to prior study of discrete Gaussians. Using
ideas of Banaszczyk [Ban93], Micciancio and Regev [MR07] analyzed the low-order moments of
discrete Gaussians. Lyubashevsky and Micciancio [LM06] extended this analysis to higher moments.
Unfortunately, even at this stage the analysis becomes quite cumbersome. Our analysis is more
general but actually more modular and arguably simpler, due to the techniques from [Ban95].

5.1 Overview of Techniques

Here we give a simplified overview of the techniques for analyzing a single discrete Gaussian over
a lattice, centered at the origin. Our main result are general enough to apply to sums of several
discrete Gaussians (even over different lattices, having different centers, etc.).
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Let Λ be a sufficiently dense lattice in Rn, and suppose that x ∈ Λ is a random variable with
distribution DΛ.5 We are interested in calculating the expected length of x in the `p norm, E[‖x‖p].
By Jensen’s inequality and linearity of expectation, this is at most(

E
[
‖x‖pp

])1/p
=
(∑

i∈[n]
E [|xi|p]

)1/p
, (1)

so it suffices to bound E [|xi|p], i.e., the pth moment of |xi|. The crucial tool we use is an exponential
tail inequality on xi:

Tail Inequality. For any r ≥ 0, the probability that |xi| ≥ r decreases exponentially with r2:

Pr
x∼DΛ

[|xi| ≥ r] ≤ exp(−Θ(r2)).

This inequality is stated precisely and in full generality as Lemma 5.1 below. We remark that for
continuous Gaussians, proving this inequality is straightforward using direct integration. However,
for discrete Gaussians the path is not so straightforward.

To prove the tail inequality and complete the analysis, we draw upon techniques of [Ban95].
First, consider x’s probability distribution as a positive function D = DΛ : Λ→ R+. Then our goal
is to bound the total measure assigned by D to a subset Λ− = {x ∈ Λ : |xi| ≥ r} of the lattice.
The general strategy is to find some positive function g : Λ→ R+ satisfying two conditions:

1. The measure (D · g)(Λ) on the entire lattice exceeds the measure D(Λ) = 1 by only at most a
“small” factor c.

2. The measure (D · g)(Λ−) on the subset exceeds the measure D(Λ−) by at least a “very large”
factor C.

Because D and g are positive, we then get

C ·D(Λ−) ≤ (D · g)(Λ−) ≤ (D · g)(Λ) ≤ c ·D(Λ) = c,

from which we conclude that the tail probability D(Λ−) ≤ c/C, a very small quantity. It turns
out that a good choice for the function g that satisfies the two requirements is g(x) = cosh(2πrxi),
where cosh(x) = 1

2(ex + e−x) is the hyperbolic cosine function. Intuitively, this choice works because
g is relatively small when |xi| is small (which is where most of the measure of D lies), but becomes
very large when |xi| is large.

With the tail inequality in hand, the expectation E [|xi|p] can be expressed as an integral:

E [|xi|p] =
∑
x∈Λ

|xi|p ·D(x) =
∑
x∈Λ

(∫ |xi|
r=0

prp−1 dr

)
D(x) =

∫ ∞
r=0

prp−1

( ∑
x∈Λ, |xi|≥r

D(x)

)
dr

=
∫ ∞
r=0

prp−1 · Pr [|xi| ≥ r] dr ≤ p
∫ ∞
r=0

rp−1 exp(−Θ(r2)) dr. (2)

The final integral is the definition of the Γ function, and evaluates to approximately (
√
p)p. When

plugged into Equation (1), this yields

E[‖x‖p] ≤
√
p · n1/p.

5In the general case, x may be drawn from DΛ,s,c for any parameter s and arbitrary centers c. In order to illuminate
the key ideas, we focus on the simpler case in this overview.
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That is, for any fixed `p norm (for finite p), a sample from an n-dimensional discrete Gaussian has
expected norm ∼ n1/p, just as is the case for a continuous Gaussian. For the `∞ norm, a similar
argument shows that the norm is bounded by ∼

√
log n with good probability.

We devote the remainder of this section to the full statement of the result and its proof.

5.2 Main Results

Here we state our central claims concerning discrete Gaussians, deferring their proofs to Section 5.3.
Let U = {u1, . . . ,ud} be a set of d ≥ 1 orthonormal vectors in Rn. Define the “U norm” as

‖x‖U =
∑

i∈[d]
|〈x,ui〉|

for any x ∈ Rn. For example, consider the case d = 1. Then ‖x‖U is simply the magnitude of the
component of x parallel to the unit vector u1. More generally, the U norm is akin to the `1 norm
within the subspace spanned by U.

When a U norm is clear from context, it is convenient to use the following notation: for any
r ≥ 0 and any c ∈ Rn, define the open “U cylinder” Qr,c of radius r centered at c as

Qr,c = {x ∈ Rn : ‖x− c‖U < r} .

The following tail inequality is the central tool for proving our main results.

Lemma 5.1 (Tail Inequality). For any n-dimensional lattice Λ, any c ∈ Rn, and any r ≥ 0,

ρc(Λ \Qr,c) ≤ 2d · exp(−πr2/d) · ρ(Λ).

(Recall that d = |U|; the 2d term is a side effect of the proof techniques when working with the
U norm. Fortunately, we have d = 1 in all of our applications; the work of [PR07] also requires
d = 2, but no more.)

Our main theorem concerns the moments of discrete Gaussian distributions about their centers.
Of course, moments are defined for distributions over R, whereas a discrete Gaussian is distributed
over Rn. To be completely precise, we bound the moments of ‖x− c‖U, i.e., the distance (in the U
norm) of a discrete Gaussian sample x from its center c.

Theorem 5.2 (Main Theorem: Moments of discrete Gaussians). For any n-dimensional lattice Λ,
real p ∈ [1,∞), c ∈ Rn, and U as above,

E
x∼DΛ,c

[
‖x− c‖pU

]
≤ 2d ·

(
d

π

)p/2
· Γ
(p

2
+ 1
)
· ρ(Λ)
ρc(Λ)

.

The bound given by the above theorem is quite precise, but is cumbersome to work with directly.
We now present a corollary that is more suitable for our applications, in which we need to bound
the `p norm of the weighted sum of several independent samples from a discrete Gaussian over some
fixed lattice.

Corollary 5.3 (Weighted sums of discrete Gaussians). Let m be a positive integer, ε ≤ 1/(2m+ 1)
be a positive real, and let z ∈ Rm be a vector of m weights. Let Λ be an n-dimensional lattice, let
s ≥ ηε(Λ), and let C ∈ Rn×m.
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For any p ∈ [1,∞), there is a constant cp ≈
√
p (depending only on p) such that

E
xi∼DΛ,s,ci

[
‖(X−C)z‖p

]
≤ s ‖z‖2 · cp · n

1/p,

where the expectation is taken over independent samples xi ∼ DΛ,s,ci for each i ∈ [m].
For p =∞ and any r ≥ 0,

Pr
xi∼DΛ,s,ci

[‖(X−C)z‖∞ ≥ s ‖z‖2 · r] ≤ 2en · exp(−πr2).

In particular, for r =
√

log n and n ≥ 3 the above probability is at most 2/3, and for r = r(n) =
ω(
√

log n) the above probability is a negligible function in n.

We remark that Corollary 5.3 can be generalized further, e.g., to deal with samples xi ∼ DΛi,si,ci

for arbitrary n-dimensional lattices Λi and Gaussian parameters si ≥ ηε(Λi). We omit such
generalizations for simplicity, and because the current formulation is expressive enough for our
applications.

5.3 Proofs of Claims

We now prove the claims of the previous subsection. The proofs are technical in places; the reader
who is interested only in the complexity-theoretic applications may wish to skip to Section 6. We
first prove the main theorem on the moments of discrete Gaussians (Theorem 5.2) and its corollary,
assuming the tail inequality (Lemma 5.1). We conclude the section with the proof of the tail
inequality.

5.3.1 Proofs of Main Theorem and Corollary

Proof of Theorem 5.2. The proof closely follows the structure of Equation (2) from our overview,
but generalized to the U norm. We have

E
x∼DΛ,c

[
‖x− c‖pU

]
=
∑
x∈Λ

‖x− c‖pU ·DΛ,c(x) (def. of E)

= p

∫ ∞
r=0

rp−1 ·
∑

x∈Λ \Qr,c

DΛ,c(x) dr (calculus; see (2))

≤ 2d · p
∫ ∞
r=0

rp−1 exp(−πr2/d) · ρ(Λ)
ρc(Λ)

dr (Lemma 5.1)

= 2d · (d/π)p/2 · Γ
(p

2 + 1
)
· ρ(Λ)
ρc(Λ)

. (def. of Γ)

Proof of Corollary 5.3. The main idea behind the proof is to combine the m Gaussian samples
from the n-dimensional lattice Λ into one “super-sample” from a Gaussian over an nm-dimensional
lattice, at which point we can apply Theorem 5.2.

First, we may assume without loss of generality that z 6= 0 (otherwise, the result is trivially
true). Furthermore, we can assume that s = 1 by replacing Λ with Λ/s, C by C/s, and X by X/s.

Now define a new lattice Λ′ = Λ×· · ·×Λ as the Cartesian product of m copies of Λ (equivalently,
viewing Λ as an additive subgroup of Rn, Λ′ is the direct sum of m copies of Λ). Then Λ′ is an nm-
dimensional lattice in Rnm. Likewise, define c′ = (c1, . . . , cm) ∈ Rnm and x′ = (x′1, . . . ,x

′
m) ∈ Rnm.
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By a routine calculation using the definition of ρ, for any countable sets Ai ⊂ Rn and any
ai ∈ Rn for i ∈ [m], we have

ρ(a1,...,am)(A1 × · · · ×Am) =
∏

i∈[m]
ρai(Ai).

It follows that x′ is distributed according to DΛ′,c′ . Furthermore, by Lemma 2.8 and by hypothesis
on ε,

ρ(Λ′)
ρc′(Λ′)

≤
(

1 + ε

1− ε

)m
≤
(

1 +
1
m

)m
≤ exp(1) = e. (3)

We are now ready to analyze the `p norm of the weighted sum of Gaussians. For j ∈ [n], let ej
denote the jth standard basis element of Rn. Then the jth coordinate of (X−C)z is∑

i∈[m]

〈zi · (xi − ci), ej〉 =
〈
x′ − c′, (z1ej , . . . , zmej)

〉
= ‖z‖2 ·

〈
x′ − c′,wj

〉
, (4)

where wj ∈ Rnm is the unit vector parallel to (z1ej , . . . , zmej) ∈ Rnm (this is where we use the fact
that z 6= 0).

Suppose p ∈ [1,∞). We then have

E
[
‖(X−C)z‖p

]
= ‖z‖2 · E

[(∑
j∈[n]

∣∣〈x′ − c′,wj

〉∣∣p)1/p
]

(Equation (4))

≤ ‖z‖2 ·
(∑

j∈[n]
E
[∣∣〈x′ − c′,wj

〉∣∣p])1/p

(Jensen’s Inequality, linearity of E)

≤ ‖z‖2 ·
√

1/π · (2en · Γ (p/2 + 1))1/p (Theorem 5.2, Inequality (3))

≤ ‖z‖2 · cp · n
1/p. (constant cp ≈

√
p)

Now suppose p =∞. Here we use the tail inequality (Lemma 5.1) directly. By Equation (4),

‖(X−C)z‖∞ = ‖z‖2 ·max
j∈[n]

∣∣〈x′ − c′,wj

〉∣∣ .
By Lemma 5.1 and Inequality (3), for every j ∈ [n] we have

Pr
x′∼DΛ′,c′

[∣∣〈x′ − c′,wj

〉∣∣ ≥ r] ≤ 2e · exp(−πr2).

The claim follows by applying the union bound over all j ∈ [n].

5.3.2 Proof of Tail Inequality

Our proof of the tail inequality mirrors the discussion from the overview in Section 5.1, where the
main goal is to find a suitable function g that satisfies the two conditions.

Proof of Lemma 5.1. First, for any r ≥ 0 define the positive function gr : Λ→ R+ as:

gr(x) =
∏
k∈[d]

cosh(2πr 〈x− c,uk〉 /d).

The proof hinges on the following two inequalities (which we prove below):

22



Claim 5.4. For any r ≥ 0, ∑
x∈Λ

ρc(x) · gr(x) ≤ exp(πr2/d) · ρ(Λ).

Claim 5.5. For any r ≥ 0,∑
x∈Λ \Qr,c

ρc(x) · gr(x) ≥ exp(2πr2/d)
2d

· ρc(Λ \Qr,c).

Then we see that

exp(2πr2/d)
2d

· ρc(Λ \Qr,c) ≤
∑

x∈Λ \Qr,c

ρc(x) · gr(x) (Claim 5.5)

≤
∑
x∈Λ

ρc(x) · gr(x) (ρ, gr positive)

≤ exp(πr2/d) · ρ(Λ). (Claim 5.4)

Clearing the coefficient on the left completes the proof of Lemma 5.1.

To conclude, it remains to justify the two claims.

Proof of Claim 5.4. We start by analyzing terms of the following form, which appear when we
expand gr(x) according to its definition:

ρc(x) · exp
(∑

k∈[d]
2πr 〈x− c,±uk〉 /d

)
= ρc(x) · exp

(
2π
〈
x− c,

∑
k∈[d]
±ukr/d︸ ︷︷ ︸

c′

〉)

= exp
(
−π
(

(x− c)2 − 2
〈
x− c, c′

〉))
= exp

(
−π
(
x− (c + c′)︸ ︷︷ ︸

c′′

)2
+ π(c′)2

)
(5)

= exp
(
πr2/d

)
· exp

(
−π(x− c′′)2

)
(6)

= exp(πr2/d) · ρc′′(x)

Equation (5) is by completing the square. Equation (6) is by (c′)2 = ‖c′‖22 = r2/d, regardless of the
pattern of ±’s, by orthonormality of {uk}.

We now analyze the expression that appears in the statement of Claim 5.4. Expanding the
definition of gr using cosh(x) = 1

2(ex + e−x), we see that the expression ρc(x) · gr(x) contains 2d

terms of the form

1
2d
· ρc(x) ·

∏
k∈[d]

exp (±2πr 〈x− c,uk〉 /d) =
1
2d
· ρc(x) · exp

(∑
k∈[d]

2πr 〈x− c,±uk〉 /d
)
,
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which we analyzed above. Summed over all x ∈ Λ, each of these 2d terms becomes:

exp(πr2/d)
2d

· ρc′′(Λ) ≤ exp(πr2/d)
2d

· ρ(Λ),

where the inequality is due to Lemma 2.8. Combining all 2d terms, the claim follows.

Proof of Claim 5.5. By the definition of gr and the inequality cosh(x) ≥ 1
2 exp(|x|), we have

gr(x) ≥ 1
2d
∏
k∈[d]

exp (2πr |〈x− c,uk〉 /d|) =
1
2d
· exp (2πr ‖x− c‖U /d) .

Then because ‖x− c‖U ≥ r for any x ∈ Λ \Qr,c, and by positivity ρ, the claim follows.

6 Worst-Case to Average-Case Reductions

Here we use the results from the previous section (namely, Theorem 5.2 and Corollary 5.3) to provide
an analysis in `p norms of two prior worst-case to average-case reductions that rely on Gaussian
measures. The first, due to Micciancio and Regev [MR07], shows that finding “small” nonzero
solutions to random homogeneous linear systems over Zq (for an appropriate choice of modulus q) is
as hard as approximating several worst-case lattice problems in the `2 norm to within Õ(n) factors.
We extend this result to all `p norms, p ∈ [2,∞], maintaining essentially the same approximation
factors.

The second reduction, due to Regev [Reg05], shows that solving the “learning with errors” (LWE)
problem on the average (under a Gaussian-like error distribution) is as hard as approximating
worst-case lattice problems in the `2 norm to within factors as small as Õ(n) for quantum algorithms.
We also extend this result to all `p norms, p ∈ [2,∞], for essentially the same approximation factors.

We remark that our results were also used to analyze a worst-case to average-case reduction based
on so-called ideal lattices having special algebraic structure [PR07], and that it appears possible to
do the same for related reductions and the cryptographic schemes based upon them [Mic07, PR06,
LM06, LM08].

6.1 Random Homogeneous Linear Systems

Our exposition in this section closely follows the organization of Section 5 in [MR07]. Our goal is
to reduce worst-case lattice problems in `p norms to the average-case problem of finding “small”
nonzero solutions to random homogeneous linear systems over Zq, i.e., modulo q. This problem
goes all the way back to Ajtai’s seminal work [Ajt04]; we use the following definition from [MR07]:

Definition 6.1. The small integer solution problem (in the `2 norm), denoted SIS, is the following:
for an integer q, matrix A ∈ Zn×mq , and real β > 0, find a nonzero integer vector z ∈ Zm \ {0} such
that Az = 0 mod q and ‖z‖2 ≤ β.

For functions q(n), m(n), and β(n), the average-case problem SISq,m,β is defined to be the
ensemble over instances (q(n),A, β(n)) where A is a uniformly random n×m(n) matrix mod q(n).

When β ≥
√
m · qn/m, a simple pigeonhole argument implies that any instance of SISq,m,β always

has a nonzero solution [MR07, Lemma 5.2]. We implicitly take β =
√
m · qn/m when it is otherwise

left unspecified.
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The SIS problem is related to the shortest vector problem SVP on a suitably defined family
of random lattices, and its average-case hardness immediately implies a collection of one-way and
collision-resistant cryptographic hash functions (see, e.g., [MR07, Section 5.1]). More recently, SIS
has been used as the foundation for a “direct” construction of lattice-based trapdoor functions and
“hash-and-sign” signature schemes [GPV08].

Instead of reducing directly from, say, SIVP in the worst-case to SIS on the average, prior works
have introduced an intermediate (worst-case) lattice problem. The intermediate problem is at least
as hard as other well-studied lattice problems (such as SIVP), and yet also admits a reduction to the
relevant average-case problem. This serves two purposes: first, the reduction from the intermediate
problem better reflects the essence of the main technique and admits a simpler probabilistic analysis.
Second, the main results are more modular, because there are elementary (worst-case to worst-case)
reductions from several standard lattice problems to the intermediate problem. In [MR07], the
intermediate problem is called incremental guaranteed distance decoding (a variation of the problem
first introduced in [Mic07]). As with other lattice problems, it can be defined relative to any norm
‖·‖, and we affix a superscript p to indicate the `p norm.

Definition 6.2 (Incremental Guaranteed Distance Decoding). An input to IncGDDφ
γ,g is a tuple

(B,S, t, r) where B is a basis of an n-dimensional lattice, S ⊂ L(B) is a set of n linearly independent
lattice vectors, t ∈ Rn is a target vector, and r > γ(n) · φ(L(B)) is a real number. The goal is to
output a lattice vector s ∈ L(B) such that ‖s− t‖ ≤ ‖S‖ /g + r.

Typically, g is some small constant (say, 8), and φ is some parameter of the lattice (say, the
smoothing parameter ηε or the nth successive minimum λn). Informally, the goal of IncGDD is to
decode an arbitrary target vector t to a lattice vector s ∈ L(B) that is within a distance not much
larger than ‖S‖ /g. Intuitively, this task appears difficult because the polynomial-time nearest plane
algorithm [Bab86] (which is the standard algorithm for decoding on lattices) is only guaranteed to
produce a lattice vector within distance (

√
n/2) ‖S‖2 (in the `2 norm) of the target.

In [MR07], the core worst-case to average-case reduction is from IncGDD to SIS, and is described
in Theorem 5.9 of that work. An examination of its proof (specifically, the analysis of the reduction’s
success event) reveals the following specific details about the reduction.

Proposition 6.3. Let ‖·‖ denote any norm on Rn, let g(n), γ(n) > 0, let ε(n) be negligible in n,
and let m(n), β(n) = poly(n), q(n) ≥ n · g(n) ·β(n) ·

√
m(n). Let F be an oracle that solves SISq,m,β

(in the `2 norm) on the average with non-negligible probability.
There is a probabilistic polynomial time oracle algorithm (making a single call to F) that, given

an instance (B,S, t, r) of IncGDDηε
γ,g, and conditioned on an event that occurs with non-negligible

probability, outputs a lattice vector s ∈ L(B) of the form s = t + u− (X−C)z, where:6

1. ‖u‖ ≤ ‖S‖ /g(n),

2. z ∈ Zm and ‖z‖2 ≤ β,

3. X,C ∈ Rn×m and the columns xi are distributed independently according to DL(B),s,ci, for
s = 2r/γ(n) ≥ 2ηε(L(B)).

6For the reader interested in checking these claims against the proof of [MR07, Theorem 5.9], we have condensed
some notation, using u in place of x−Cz, and C in place of C + T.
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We remark that Condition 1 is a consequence of Lemma 5.8 in [MR07], which is stated only
in terms of the `2 norm. However, the relevant part of its proof relies only on the basic norm
axioms, and therefore applies for any norm. We also remark that a recent work [GPV08] has given
a simplified and slightly tighter form of Proposition 6.3, in which the u term is removed and the
modulus q(n) is smaller.

Using Proposition 6.3, we can now show that solving SIS on the average (in the `2 norm) is as
hard as solving IncGDD in the `p norm.

Theorem 6.4. For any p ∈ [1,∞), there is a constant cp such that the following holds: for
any g(n) > 0, negligible ε(n), polynomially-bounded m(n), β(n) = poly(n), and q(n) ≥ n · g(n) ·
β(n)

√
m(n), there is a probabilistic polynomial time reduction from solving IncGDDp,ηε

γ,g in the worst
case for γ(n) = 4cpn1/p ·β(n) to solving SISq,m,β (in the `2 norm) on the average with non-negligible
probability.

For p =∞, the same holds for γ(n) = 2β(n)
√

log n.

Proof. The reduction is exactly the algorithm described in Proposition 6.3; all that remains is the
analysis. Let (B,S, t, r) be the input IncGDD instance. We show that with non-negligible probability
(over all the randomness of the reduction and its oracle), the reduction outputs an s ∈ L(B) such
that ‖s− t‖p ≤ ‖S‖p /g(n) + r (by a standard repetition argument, the probability of success can
then be made negligibly close to 1). Proposition 6.3 states that, conditioned on an event E that
occurs with non-negligible probability, the output is some s ∈ L(B) of the form s = t+u− (X−C)z
satisfying the three conditions. In particular, by the triangle inequality,

‖s− t‖p ≤ ‖u‖p + ‖(X−C)z‖p ≤ ‖S‖p /g(n) + ‖(X−C)z‖p ,

where the inequality is due to Condition 1. Therefore it suffices to show that, conditioned on
any fixed values of C and z that may arise when event E occurs, ‖(X−C)z‖p ≤ r with some
non-negligible probability (say, at least 1/2).

Recall that by Condition 2, ‖z‖2 ≤ β(n), and by Condition 3, the xi ∼ DL(B),s,ci are independent
for s = 2r/γ(n) ≥ 2ηε(L(B)).

Suppose p ∈ [1,∞), and recall that γ(n) = 4cpn1/p · β(n). Applying Corollary 5.3, we have

E
[
‖(X−C)z‖p

]
≤ (2r/γ(n)) · β(n) · cpn1/p = r/2.

Then by Markov’s inequality, it follows that ‖(X−C)z‖p ≤ r except with probability at most 1/2,
as desired.

Now suppose p =∞, and recall that γ(n) = 2β(n) ·
√

log n. Applying Corollary 5.3, we have

Pr
[
‖(X−C)z‖p ≥ r

]
≤ Pr

[
‖(X−C)z‖p ≥ s ‖z‖2 ·

√
log n

]
≤ 2e/nπ−1,

which is at most 1/2 for all sufficiently large n.

6.1.1 Connection to Other Worst-Case Problems

As shown in Lemmas 5.10 through 5.12 of [MR07] (using some reductions from [Mic07]), the IncGDD
problem is at least as hard as several other lattice problems, via straightforward worst-case to
worst-case reductions. However, in some cases their analysis is specific to the `2 norm. (Specifically,
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they rely on the fact that a vector of `2 norm r orthogonal to a subspace H ⊂ Rn is at `2 distance r
from H, which is not true in all norms.) In order to generalize the reductions to arbitrary norms, we
use the following lemma. Technically, the second claim of the lemma assumes that the norm satisfies
a mild boundedness condition and is efficiently computable (in particular, all `p norm satisfy these
requirements). For the remainder of the paper, we implicitly restrict our attention to such norms.

Lemma 6.5. For any norm ‖·‖ on Rn and any proper subspace H ⊂ Rn, there is an xH ∈ Rn such
that ‖xH‖ = 1 and dist(xH , H) = 1.

Furthermore, there is a polynomial-time algorithm for finding such an xH given a basis for H.

Proof. Let v ∈ Rn be any point such that dist(v, H) = 1. (Such a point always exists because
for any w 6∈ H we have dist(w, H) > 0, so it suffices to let v = w/ dist(w, H).) Let u ∈ H be
such that ‖v − u‖ = 1. We claim that xH = v − u serves to prove the claim. We have already
established that ‖xH‖ = 1. Now if dist(xH , H) < 1, then there exists some t ∈ H such that
‖xH − t‖ = ‖v − (u + t)‖ < 1, and since u + t ∈ H, we have dist(v, H) < 1, a contradiction.

For the second claim, note that the above description of xH is constructive in the following
sense: if, given a basis for H and any v ∈ Rn, we can efficiently find some u ∈ H such that
‖v − u‖ = dist(v, H), then we can compute the desired xH . Finding such u reduces to minimizing
the convex function f(u) = ‖v − u‖ subject to the constraint u ∈ H ′ ⊂ H, where H ′ is a sufficiently
large convex bounded subset of H. For this purpose we may use any polynomial-time algorithm
for convex optimization, e.g., the ellipsoid or interior point methods. See, e.g., [NN94] for details
on the interior point method, including a formal treatment of the computability and boundedness
conditions.

We also need the following lower bound on the covering radius in an arbitrary norm. Our proof
is an adaptation of the proof (for the `2 norm) of Theorem 7.9 in [MG02].

Lemma 6.6. In any norm and for any n-dimensional lattice Λ, µ(Λ) ≥ λn(Λ)/2.

Proof. Write µ = µ(Λ) and λn = λn(Λ). Suppose for contradiction that λn > 2µ, and let ε > 0
be such that ε < λn − 2µ. To obtain a contradiction, we iteratively construct a set of linearly
independent lattice vectors s1, . . . , sn ∈ Λ such that ‖si‖ < λn for all i ∈ [n].

For any i ∈ [n], let Hi−1 = span(s1, . . . , si−1). Let ti = (µ + ε) · xHi−1 , where xHi−1 is
the point guaranteed by Lemma 6.5 for subspace Hi−1. Therefore we have ‖ti‖ = (µ + ε) and
dist(ti, Hi−1) = (µ + ε). Let si ∈ Λ be such that ‖si − ti‖ ≤ µ. Then si 6∈ Hi−1, because by the
triangle inequality, the distance from si to Hi−1 is

dist(si, Hi−1) ≥ dist(ti, H)− ‖si − ti‖ = (µ+ ε)− ‖si − ti‖ ≥ ε > 0.

Therefore, si is linearly independent from s1, . . . , si−1. Furthermore, by the triangle inequality,
‖si‖ ≤ ‖ti‖+ ‖si − ti‖ ≤ (µ+ ε) + µ < λn. By induction on i, the proof is complete.

We can now generalize Lemmas 5.10 through 5.12 from [MR07] to hold for any norm. For
completeness, we include sketches of their proofs, which are very similar (or identical) to the
originals.

Lemma 6.7. For any γ(n) ≥ 1, any φ, and any norm ‖·‖, there is a deterministic polynomial-time
reduction from GIVPφ8γ to IncGDDφ

γ,8.
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Proof. Given a basis B, we use an iterative process to produce n linearly independent vectors
S ⊂ L(B) such that ‖S‖ ≤ 8γ(n)φ(L(B)). Let S = B initially. At each iteration, choose some
longest vector si ∈ S. Compute a vector t = xH · ‖S‖ /2, where H = span(s1, . . . , si−1, si+1, . . . , sn)
and xH is the point guaranteed by Lemma 6.5. Then apply the IncGDD oracle on the instance
(B,S, t, ‖S‖ /8). If it fails, abort and output S. Otherwise, we obtain a lattice vector u ∈ L(B)
such that ‖t− u‖ ≤ ‖S‖ /8 + ‖S‖ /8 = ‖S‖ /4, which we substitute for si and continue the process.

Note that by the triangle inequality, we have dist(u, H) ≥ dist(t, H) − ‖t− u‖ ≥ ‖S‖ /2 −
‖S‖ /4 > 0, so u 6∈ H and therefore S always contains n linearly independent vectors. When the
oracle fails, by definition of IncGDD it must be the case that ‖S‖ ≤ 8γ(n)φ(L(B)), as desired.
Finally, to analyze the runtime we observe that ‖u‖ ≤ ‖t‖ + ‖S‖ /8 ≤ 3 ‖S‖ /4, so

∑
i log ‖si‖

decreases by a constant with every iteration. Because ‖·‖ is efficiently computable, the initial value
of
∑

i log ‖si‖ is polynomial in the input size.

Lemma 6.8. For any γ(n) ≥ 1, any φ, and any norm ‖·‖, there is a deterministic polynomial-time
reduction from GDDφ

3γ to IncGDDφ
γ,8.

Proof. The proof is identical to the proof of Lemma 5.11 in [MR07]. Given a basis B and a vector
t, the goal is to find a vector u ∈ L(B) such that ‖t− u‖ ≤ 3γ(n)φ(L(B)). First, we apply the
reduction claimed by Lemma 6.7 to obtain a set of n linearly independent lattice vectors S ⊂ L(B)
such that ‖S‖ ≤ 8γ(n)φ(L(B)). We then apply a binary search to find a value r for which an oracle
call on (B,S, t, r/2) fails, but an oracle call on (B,S, t, r) succeeds. Because the former call fails, it
must be the case that r ≤ 2γ(n)φ(L(B)). The latter call yields a lattice vector u ∈ L(B) such that
‖t− u‖ ≤ ‖S‖ /8 + r ≤ γ(n)φ(L(B)) + 2γ(n)φ(L(B)) = 3γ(n)φ(L(B)), as desired.

Lemma 6.9. For any γ(n) ≥ 1 and any norm ‖·‖, there is a randomized polynomial-time reduction
from GapCRPγ to GDDλn

γ/4.

Proof. The proof is identical to the proof of Lemma 5.12 in [MR07]. Given a basis B, the goal is to
decide whether µ(L(B)) ≤ 1 or µ(L(B)) > γ. The reduction chooses a point t ∈ P(B) uniformly at
random, then calls the GDD oracle on the instance (B, t) to obtain a lattice vector x ∈ L(B) such
that ‖t− x‖ ≤ (γ/4)λn(L(B)). If ‖t− x‖ ≤ γ/2 the reduction accepts, otherwise it rejects.

Suppose the input is a YES instance, i.e., µ(L(B)) ≤ 1. Then ‖t− x‖ ≤ γλn(L(B))/4 ≤
γµ(L(B))/2 ≤ γ/2, where we have used Lemma 6.6 for the second inequality. Therefore, YES
instances are always accepted by the reduction. Now suppose the input is a NO instance, i.e.,
µ(L(B)) > γ. By Lemma 4.1 of [GMR05] (which holds for any norm), a random t chosen as above
satisfies dist(t,L(B)) ≥ µ(L(B))/2 with probability at least 1/2. Therefore, dist(t,L(B)) > γ/2
with probability at least 1/2, and the instance is rejected.

From now on, we consider certain “good” choices of the parameters m(n) and q(n), and fix
β(n) =

√
m(n) · q(n)n/m(n) to guarantee the existence of solutions to SISq,m,β.

Corollary 6.10. For any p ∈ [1,∞) and any m(n) = Θ(n log n), there exist some q(n) = O(n2 log n)
and γ(n) = O(n1/2+1/p ·

√
log n) such that for any negligible function ε(n), solving SISq,m on the

average with non-negligible probability is at least as hard as solving both GIVPp,ηεγ and GDDp,ηε
γ in

the worst case.
For p =∞, the same holds for some γ(n) = O(n1/2 log n).
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Proof. Let g(n) = 8; then there is a q(n) = O(n2 log n) that satisfies the conditions of our
Theorem 6.4. The claim follows by Lemmas 6.7 and 6.8.

Finally, by connecting the smoothing parameter ηε to the nth successive minimum λn in the `p
norm for p ∈ [2,∞], we obtain the following end result.

Theorem 6.11. For any p ∈ [2,∞) and any m(n) = Θ(n log n), there exists some q(n) = O(n2 log n)
such that for any function γ(n) = ω(n log n), solving SISq,m on the average with non-negligible
probability is as hard as solving the following problems in the worst case: SIVPpγ, GDDp,λn

γ , and
GapCRPpγ.

For p =∞, the same applies for any γ(n) = ω(n log1.5 n).

Proof. Let γ′(n) = O(n1/2+1/p ·
√

log n) be the function guaranteed by Corollary 6.10 for which we
can solve GIVPp,ηε and GDDp,ηε in the worst case to within γ′(n) factors. Define

α(n) =
γ(n)

γ′(n) · n1/2−1/p
=

γ(n)
O(n ·

√
log n)

= ω(
√

log n).

Then by Lemma 2.7, there is a negligible ε(n) such that ηε(Λ) ≤ λ(p)
n (Λ) · n1/2−1/p · α(n).

Suppose p ∈ [2,∞). By the above bound on ηε relative to λ(p)
n , this implies that we can solve

SIVPp and GDDp,λn to within γ′(n) · n1/2−1/p · α(n) = γ(n) factors, as desired. (For p = ∞, an
identical argument uses the γ′(n) = O(n1/2+1/p · log n) guaranteed by Corollary 6.10.)

The result for GapCRP follows by combining the result for GDD with Lemma 6.9.

Remark on the case 1 ≤ p < 2. We point out that Theorem 6.4 and Corollary 6.10 apply for
all `p norms, 1 ≤ p ≤ ∞. The difficulty in obtaining Õ(n) approximation factors for p < 2 arises
from the relationship between the smoothing parameter ηε and λ

(p)
n . Unlike the case p ≥ 2, we

cannot conclude that ηε ≤ Õ(n1/2−1/p) · λ(p)
n . Instead, the best bound we can obtain is ηε ≈ λ

(p)
n ,

which yields an overall approximation factor of γ(n) = Õ(n1/2+1/p) = Õ(n3/2) for SIVP and the
other problems above.

6.1.2 Connection to Shortest Vector Problem

The above results do not immediately imply a reduction that solves the shortest vector problem in
the worst case (even its decision version). This is because the minimum distance λ1 of a lattice
may be significantly smaller than the smoothing parameter ηε, but the reduction from Theorem 6.4
may “stop working” once the Gaussian parameter drops below ηε. For the worst-case problem
GapSVP, Theorem 5.23 of [MR07] applies the core worst-case to average-case reduction to the dual
lattice. Using additional techniques from [AR05], the theorem demonstrates that solving SIS on
the average is at least as hard as solving GapSVPγ in the `2 norm (in the worst case) for some
γ(n) = O(n

√
log n) factor. A close examination of the reduction and its analysis yields the following

more specific restatement of the theorem.

Proposition 6.12. Let ‖·‖ denote any norm on Rn, let γ′(n) ≥ 1, let q(n),m(n), β(n) = poly(n)
with odd q(n) ≥ 4

√
m(n) · n1.5 · β(n), and let F be an oracle that solves SISq,m,β on the average

with non-negligible probability δ(n) (where the probability is taken over the choice of the input SIS
instance and F ’s internal randomness).
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There is a probabilistic oracle algorithm running in time poly(n)/δ that, given access to F and
an input basis B for an n-dimensional lattice Λ = L(B), has the following behavior:

• If λ(2)
1 (Λ) ≤ 1, the algorithm always accepts. (Note that the minimum distance here is measured

in the `2 norm.)

• If λ1(Λ) > γ′, the algorithm rejects with overwhelming probability, provided that all the
conditions on Λ stated below hold. (Note that the minimum distance here is measured in the
given norm ‖·‖.)

The conditions on Λ are as follows:

1. s ≥ 2ηε(Λ∗) for some negligible function ε(n), where s is a Gaussian parameter used by the
algorithm (whose value can be computed from the input as desired).

2. s · β(n) ≤ 1/8π.

3. For any w, c ∈ Rn and any v ∈ Rn such that dist(v,Λ) > γ′, it is the case that∣∣∣∣ E
x∼DΛ∗,s,c

[cos(2π 〈x + w,v〉)]
∣∣∣∣ ≤ 1/3.

For the reader interested in checking this restatement against the original Theorem 5.23, we have
made the following observations and changes (the uninterested reader can safely skip this paragraph).
We have fixed the parameter d = 1 without loss of generality (by scaling the input instance) to
match our definition of GapSVP. Our acceptance condition (λ(2)

1 (Λ) ≤ 1) is exactly the same as in
the original proof. The rejection condition generalizes the original analysis for NO instances, which
was done in three parts. First, it is shown that “N calls to W succeed” assuming that s ≥ ηε(Λ∗)
for ε = 2−n, but it is clear that any negligible ε(n) suffices (this is our Condition 1). Second, it is
shown that “Pr[fW(t) ≥ 1/2] is small” by giving a 2−n+1 upper bound on the expression from our
Condition 3 and applying Hoeffding’s bound; it is clear that a 1/3 bound suffices. Third, it is shown
that “test (c) [the eigenvalue test] is satisfied with high probability,” using Lemma 5.20 and the fact
that sβ ≤ 1/8π (our Condition 2). Proving the hypotheses of Lemma 5.20 is done using only the
fact that s ≥ 2ηε(Λ∗) and other facts that are independent of the given norm ‖·‖.

Using Proposition 6.12, we obtain a reduction that solves GapSVPγ in the `p norm for any
γ(n) = ω(n log n) factor. Note that this is an ω(

√
log n) factor looser than the reduction obtained

in Theorem 5.23 of [MR07]. This is due entirely to the slightly looser bounds on the smoothing
parameter relative to the dual minimum distance in the `p norm versus the `2 norm (see the
discussion following Lemma 3.5).

Theorem 6.13. For any p ∈ [2,∞], any q(n),m(n), β(n) = poly(n) with odd q(n) ≥ 4
√
m(n)·n1.5 ·

β(n), and any γ(n) = 16π
√
n · β(n) · ω(

√
log n), solving SISq,m,β on the average with non-negligible

probability is as hard as solving GapSVPpγ in the worst case.
In particular, for any m(n) = Θ(n log n), there exists an odd q(n) = O(n2.5 log n) such that for

any function γ(n) = ω(n log n), solving SISq,m on the average is as hard as solving GapSVPpγ.
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Proof. Let Λ = L(B), where basis B is the input instance of GapSVP. By scaling, without loss of
generality we can assume that YES instances are such that λ(p)

1 (Λ) ≤ n1/p−1/2, and NO instances

are such that λ(p)
1 (Λ) > γ′(n) def= γ(n) · n1/p−1/2 = 16πn1/p · β(n) · α(n) where α(n) = ω(

√
log n).

The reduction is the one claimed by Proposition 6.12, using a Gaussian parameter

s =
2n1/p · α(n)

γ′(n)
.

If B is a YES instance, then by the properties of `p norms, we have λ(2)
1 (Λ) ≤ n1/2−1/p·λ(p)

1 (Λ) ≤ 1,
so the reduction always accepts. If B is a NO instance, then λ

(p)
1 (Λ) > γ′(n), so the reduction

rejects (with overwhelming probability) as long as the conditions in Proposition 6.12 are satisfied.
We now show that this is the case.

For Condition 1, observe that by Lemma 3.5, there exists a negligible function ε(n) such that

ηε(Λ∗) ≤
n1/p · α(n)

λ
(p)
1 (Λ)

<
n1/p · α(n)
γ′(n)

< s/2,

so s > 2ηε(Λ∗), as desired. For Condition 2, by definition of s and γ′(n) we immediately obtain
s · β(n) = 1/(8π). For Condition 3, we apply Lemma 2.9. Note that by definition of s, we have
γ′(n) ≥ ω(n1/p/s), and in particular, γ′(n) ≥ cpn

1/p/s for any positive constant cp and all large
enough n. Now if dist(v,Λ) > γ′ ≥ cpn

1/p/s, then dist(sv, sΛ) > cpn
1/p, so by Corollary 3.2 we

have
ρ1/s(Λ− v)
ρ1/s(Λ)

=
ρ(sΛ− sv)
ρ(sΛ)

< 1/4.

Then by Lemma 2.9, we see that Condition 3 is satisfied.

6.2 Learning With Errors

Regev defined the learning with errors (LWE) problem (a generalization to larger moduli of the
“learning parity with noise” problem), and showed that LWE is hard on the average unless there are
efficient quantum algorithms for approximating the worst-case problems SIVP and GapSVP in the
`2 norm [Reg05]. (We remark that there are no known quantum algorithms that outperform the
best known classical algorithms for worst-case lattice problems.) Regev used LWE to construct a
public-key cryptosystem, and more recently, LWE has served as the foundation for several other
cryptographic schemes, including chosen ciphertext-secure cryptosystems [PW08], oblivious transfer
protocols [PVW07], and identity-based encryption [GPV08].

The essence of the worst-case to average-case reduction from [Reg05] is a quantum strategy that,
given an oracle for solving LWE on the average, generates samples from the discrete Gaussian DΛ,s.
The process continues for iteratively smaller values of s, all the way down to a value of s that can
be as small as Θ(

√
n) · ηε(Λ).

We now give some background for defining the LWE problem and stating the quantum reduction.
Let T = R/Z be the additive group on the interval [0, 1) with modulo 1 addition. For positive
integers n and q ≥ 2, a vector s ∈ Znq , and a probability distribution χ on T, define As,χ as the
distribution on Znq ×T obtained by choosing a vector a ∈ Znq uniformly at random, choosing an error
term e ∈ T according to χ, and outputting (a, 〈a, s〉 /q + e), where the addition is performed in T.
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Definition 6.14. For an integer function q = q(n) and an error distribution χ on T, the goal of
the (worst-case) LWEq,χ problem is to find s, given access to samples from As,χ for some s ∈ Znq .

As described in [Reg05, Section 4], there are a number of variants of LWE (such as an average-case
version, and a version where the samples are from Znq × Zq) that are at least as hard as the version
of the problem from Definition 6.14.

We are primarily concerned with a version of LWE in which the error distribution χ over T is
Gaussian-like. For any α > 0, define the continuous one-dimensional Gaussian distribution Dα over
R to have density function exp(−πx2/α2)/α for all x ∈ R. Define Ψα to be the distribution on T
obtained by taking a sample from Dα and reducing modulo 1.

As in [Reg05], we define the following intermediate worst-case problem to make the results more
modular. The main theorem from that work follows.

Definition 6.15 (Discrete Gaussian Sampling Problem). An input to DGSφ is a basis B of an
n-dimensional lattice Λ = L(B) and a parameter s ≥ φ(Λ). The goal is to output a sample
distributed according to DΛ,s.

Proposition 6.16 ([Reg05, Theorem 3.1]). Let ε(n) be any negligible function, let q(n) be an integer,
and let α(n) ∈ (0, 1) be such that α(n) · q(n) > 2

√
n. Then there is a quantum polynomial-time

reduction from solving DGSφ for φ(Λ) =
√

2n · ηε(Λ)/α(n) to solving LWEq,Ψα given a poly(n)
number of samples.

In order to reduce SIVP to DGS, we need a few lemmas. The reduction follows in Corollary 6.20.

Lemma 6.17 ([Reg05, Claim 2.13]). There is a constant c > 0 such that for any n-dimensional
lattice and any ε ∈ (0, 1

2), we have ηε(Λ) ≥ c · λ(2)
n (Λ)/n.

Lemma 6.18 ([Reg05, Corollary 3.14]). Let Λ be an n-dimensional lattice and let s ≥
√

2 · ηε(Λ)
for some ε ≤ 1

10 . Then a set of n2 vectors, each chosen independently from DΛ,s, contains n linearly
independently vectors, except with probability exponentially small in n.

Lemma 6.19. Let p ∈ [1,∞], let Λ be an n-dimensional lattice, let s ≥ ηε(Λ) for some ε ≤ 1/3,
and let r ≥ 0. Then for a sample x ∼ DΛ,s, we have ‖x‖p ≤ s · n1/p · r except with probability at
most 2en · exp(−πr2).

Proof. Because ‖x‖p ≤ n1/p · ‖x‖∞, it suffices to consider p =∞. The lemma follows immediately
from Corollary 5.3, for the special case m = 1, z = (1), and C = 0.

Corollary 6.20. Let p ∈ [2,∞] and ε(n) ≤ 1/10. For any function φ(Λ) ≥
√

2 · ηε(Λ) and any
γ(n) = n1/p · ω(

√
log n), there is a polynomial time reduction from GIVPp,φγ to DGSφ.

In particular, for the parameters described in Proposition 6.16, solving LWEq,Ψα is as hard as
solving SIVPpγ′ with a quantum algorithm, for any γ′ = ω((n log n)/α(n)).

Proof. The second claim follows immediately from Proposition 6.16 and the second inequality of
Lemma 2.7 (relating ηε to λ(p)

n ).
The reduction and its analysis are almost exactly as in [Reg05, Lemma 3.15]. The main idea

is simply to take n2 samples from DΛ,s and choose an arbitrary subset of n linearly independent
vectors from among them, which exist with high probability by Lemma 6.18. To be precise, the
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function s(Λ) might not be efficiently computable, so the actual reduction tries a polynomial number
of different values for s.

In detail, the input is a lattice Λ represented by some basis B. We aply the LLL algorithm [LLL82]
to obtain a set S ⊂ Λ of n linearly independent lattice vectors, where ‖S‖2 ≤ 2n · λ(2)

n (Λ). For each
i ∈ {0, . . . , 2n}, call the DGS oracle n2 times on the input (B, si) for si = 2−i · ‖S‖2, and let Si be
the resulting set of vectors. When finished, look for a set of n linearly independent vectors in each
of S, S0, . . . , S2n, and output the shortest such set.

We now show that the reduction is correct. If φ(Λ) ≥ ‖S‖2, then ‖S‖p ≤ ‖S‖2 ≤ γ(n) ·φ(Λ), and
we are done. Otherwise, let i ∈ {0, . . . , 2n} be such that φ(Λ) ≤ si ≤ 2φ(Λ); such an i must exist
by Lemma 6.17. By Lemma 6.18, Si contains n linearly independent vectors with overwhelming
probability. Moreover, by Lemma 6.19, ‖Si‖p ≤ γ(n) · φ(Λ) with overwhelming probability. Hence
the reduction succeeds.

In order to reduce GapSVP to DGS, we need to introduce one more intermediate problem (which
is defined relative to any implicit norm).

Definition 6.21. An input to GapCVP′γ is a pair (B,v) where B is a basis of an n-dimensional
lattice and v ∈ Rn. It is a YES instance if dist(v,L(B)) ≤ 1, and is a NO instance if both
dist(v,L(B)) > γ and λ1(L(B)) > γ.

It is shown in [GMSS99] that for any γ(n) ≥ 1, there is a norm- and approximation-preserving
reduction from GapSVP to GapCVP′. Therefore, it suffices to show a reduction from GapCVP′ to
DGS in the `p norm. Essentially, the reduction just uses the DGS oracle to generate a witness for
the coNP verifier of [AR05].

Corollary 6.22. For any p ∈ [2,∞), there is a constant cp > 0 such that the following holds. For any
γ′(n) ≥ 1, there is a polynomial time reduction from GapSVPpγ to DGSφ, where γ(n) = 100cp

√
n·γ′(n)

and φ(Λ) = cpn
1/p · γ′(n)/λ(p)

1 (Λ∗).
For p =∞, the same is true for γ(n) = 100

√
n log n · γ′(n) and φ(Λ) =

√
log n · γ′(n)/λ∞1 (Λ∗).

In particular, for the parameters described in Proposition 6.16, solving LWEq,Ψα is as hard as
solving GapSVPpγ with a quantum algorithm, for some γ = Õ(n/α(n)).

Proof. The final part of the claim follows directly from Proposition 6.16 and Lemma 3.5.
First suppose p ∈ [2,∞). Recall the algorithm V from Section 4.1, which has the following

properties. Its input is a basis B for a lattice Λ = L(B), a point v ∈ Rn, and a matrix W ⊂ Λ∗ of N
dual lattice vectors, for some N = poly(n). When distp(v,L(B)) ≤ n1/p−1/2/100, V always rejects.
When distp(v,L(B)) ≥ cpn1/p (for appropriate constant cp), and wi are chosen independently from
DΛ∗ , then V accepts with overwhelming probability.

The reduction works as follows. The input is (B,v); assume without loss of generality (by
scaling) that either distp(v,Λ) ≤ n1/p−1/2/100, or both distp(v,Λ) and λ(p)

1 (Λ) exceed cpn1/p · γ′(n).
Call the DGS oracle N times on the basis B−T (which is a basis for Λ∗) and parameter s = 1 to
generate the columns of W. Call V(B,v,W), and accept if and only if V rejects.

We now show correctness. In the YES case, we have distp(v,Λ) ≤ n1/p−1/2/100, so V always
rejects (for any W). In the NO case, we have s = 1 > φ(Λ∗) = cpn

1/p · γ′(n)/λ(p)
1 (Λ), so the wi

are actual samples from DΛ∗ . Moreover, distp(v,Λ) > cpn
1/p · γ′(n) ≥ cpn

1/p, so V accepts with
overwhelming probability.

The proof is nearly identical for p =∞ using the properties of V relative to the `∞ norm.
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with rational coefficients. Mathematische Annalen, 261(4):515–534, December 1982.

[LLM06] Yi-Kai Liu, Vadim Lyubashevsky, and Daniele Micciancio. On bounded distance
decoding for general lattices. In APPROX-RANDOM, pages 450–461, 2006.

[LLS90] Jeffrey C. Lagarias, Hendrik W. Lenstra, Jr., and Claus-Peter Schnorr. Korkin-Zolotarev
bases and successive minima of a lattice and its reciprocal lattice. Combinatorica,
10(4):333–348, 1990.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are
collision resistant. In ICALP (2), pages 144–155, 2006. Full version in ECCC Report
TR05-142.

[LM08] Vadim Lyubashevsky and Daniele Micciancio. Asymptotically efficient lattice-based
digital signatures. In TCC, pages 37–54, 2008.

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: a crypto-
graphic perspective, volume 671 of The Kluwer International Series in Engineering and
Computer Science. Kluwer Academic Publishers, Boston, Massachusetts, 2002.

[Mic00] Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within
some constant. SIAM J. Comput., 30(6):2008–2035, 2000.

[Mic04] Daniele Micciancio. Almost perfect lattices, the covering radius problem, and applica-
tions to Ajtai’s connection factor. SIAM J. Comput., 34(1):118–169, 2004. Preliminary
version in STOC 2002.

[Mic07] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Computational Complexity, 16(4):365–411, December 2007. Preliminary
version in FOCS 2002.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
Gaussian measures. SIAM J. Comput., 37(1):267–302, 2007. Preliminary version in
FOCS 2004.

[NN94] Yurii Nesterov and Arkadii Nemirov. Interior-Point Polynomial Algorithms in Convex
Programming. Society for Industrial and Applied Mathematics (SIAM), 1994.

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In TCC, pages 145–166, 2006. Full version in ECCC
TR05-158.

[PR07] Chris Peikert and Alon Rosen. Lattices that admit logarithmic worst-case to average-
case connection factors. In STOC, pages 478–487, 2007. Full version in ECCC Report
TR06-147.

36



[PVW07] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. Cryptology ePrint Archive, Report 2007/348, 2007.
In submission. Full version available at http://eprint.iacr.org/2007/348.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
STOC, 2008. To appear. Full version available at http://eprint.iacr.org/2007/279.

[Reg04a] Oded Regev. Improved inapproximability of lattice and coding problems with prepro-
cessing. IEEE Transactions on Information Theory, 50(9):2031–2037, 2004. Preliminary
version in CCC 2003.

[Reg04b] Oded Regev. New lattice-based cryptographic constructions. J. ACM, 51(6):899–942,
2004. Preliminary version in STOC 2003.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, pages 84–93, 2005. Revised version available from author’s web page.

[RR06] Oded Regev and Ricky Rosen. Lattice problems and norm embeddings. In STOC,
pages 447–456, 2006.

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci., 53:201–224, 1987.

[vEB81] Peter van Emde Boas. Another NP-complete problem and the complexity of computing
short vectors in a lattice. Technical Report 81-04, University of Amsterdam, 1981.

37

http://eprint.iacr.org/2007/348
http://eprint.iacr.org/2007/279

	Introduction
	Our Results
	Techniques
	Open Questions
	Reader's Guide and Warning

	Preliminaries
	Notation
	Lattices
	Problems on Lattices
	Gaussian Measures

	Measure Inequalities for p Norms
	Smoothing Parameter

	Problems in coNP
	Closest Vector Problem
	Other Problems in coNP
	Easy Problems with Preprocessing

	Analysis of Discrete Gaussians
	Overview of Techniques
	Main Results
	Proofs of Claims
	Proofs of Main Theorem and Corollary
	Proof of Tail Inequality


	Worst-Case to Average-Case Reductions
	Random Homogeneous Linear Systems
	Connection to Other Worst-Case Problems
	Connection to Shortest Vector Problem

	Learning With Errors

	Acknowledgments

