
Completely Fair SFE and Coalition-Safe Cheap Talk

Matt Lepinski∗ Silvio Micali Chris Peikert Abhi Shelat
MIT CSAIL

32 Vassar Street, G636
Cambridge, MA 02139

{lepinski,silvio,cpeikert,abhi}@csail.mit.edu

ABSTRACT
Secure function evaluation (SFE) enables a group of players,
by themselves, to evaluate a function on private inputs as
securely as if a trusted third party had done it for them. A
completely fair SFE is a protocol in which, conceptually, the
function values are learned atomically.

We provide a completely fair SFE protocol which is secure
for any number of malicious players, using a novel combina-
tion of computational and physical channel assumptions.

We also show how completely fair SFE has striking ap-
plications to game theory. In particular, it enables “cheap-
talk” protocols that

(a) achieve correlated-equilibrium payoffs in any game,

(b) are the first protocols which provably give no addi-
tional power to any coalition of players, and

(c) are exponentially more efficient than prior counter-
parts.

Categories and Subject Descriptors: F.0 [Theory of
Computation]: General

General Terms: Theory, Security, Economics

Keywords: Game Theory, Secure Function Evaluation,
Correlated Equilibrium, Mechanism Design

1. INTRODUCTION

Prior Secure Function Evaluation
Suppose a group of n players — each possessing his own pri-
vate input xi — wish to evaluate on their inputs a function
f(x1, . . . , xn) = (y1, . . . , yn) so that each player i learns ex-
actly yi. This would not be a problem if our players trusted
an external party, but they trust no one. What they need
is, at a minimum, an SFE protocol, and better yet, a com-
pletely fair one.

∗This material is based upon work supported under an NSF
Graduate Research Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’04,July 25–28, 2004, St. Johns, Newfoundland, Canada.
Copyright 2004 ACM 1-58113-802-4/04/0007 ...$5.00.

Quite informally, an SFE protocol is an efficient commu-
nication protocol enabling our players to evaluate f both
privately and correctly by themselves, even though some of
them may arbitrarily deviate from their prescribed instruc-
tions. No matter what they might do, bad players can-
not learn anything about an honest party’s input or output
(other that what is implied by their own inputs and out-
puts), nor can they cause any honest party to compute an
incorrect or inconsistent value as his output.

An SFE protocol is called completely fair if it additionally
guarantees that all outputs are learned by the respective
players in a conceptually “atomic” step. That is, no matter
what dishonest players might do, if any player learns any
partial knowledge about his own output, then all players
learn their outputs entirely. Complete fairness is indeed a
useful property, and from now on an SFE protocol should
be assumed not to be completely fair unless explicitly so
described.

SFE protocols were introduced in the two-party setting
by Yao [30] in 1986. General SFE and completely fair SFE
were introduced and first exemplified by Goldreich, Micali
and Wigderson [16] in 1987. More precisely, they proved two
results under standard complexity assumptions and using
broadcast channels for communication. First, they showed
that any n-input/n-output function f has an SFE protocol
withstanding any number of bad players. (We shall refer
to this protocol as GMWa.) Second, they showed that any
n-input/n-output function f has a completely fair SFE pro-
tocol withstanding any minority of bad players.

Unfortunately, completely fair SFE protocols require the
presence of an honest majority whenever security is solely
based on computational assumptions. (This follows from
a result of Cleve [10], which implies that unless physical
assumptions are made, even simple functions do not have
completely fair SFE protocols without an honest majority
among the players.1) Completely fair SFE protocols solely
relying on physical assumptions (namely, the perfect secu-
rity of the communication channels between every pair of
players) have also been discovered [4, 9, 25], but they too
require an honest majority of players —indeed, even for be-
ing correct, let alone fair!

Without an honest majority, only weaker notions of fair-
ness were known to be achievable. The first such notion
was originally proposed by Blum [?] and Even, Goldreich
and Lempel [?] in special contexts such as contract signing.

1In particular, n players, each having a secret random bit,
cannot fairly and securely compute the exclusive-or of their
bits unless a majority of the players are honest.

In essence, a protocol is considered fair if, at any point of
its execution, the computational effort required to compute
the outputs is roughly equal for all parties. Formally prov-
ing such fairness, however, is extremely hard and requires
unusually strong complexity assumptions. Recently, Garay,
MacKenzie and Yang [14] presented a general SFE protocol
that is provably fair in this sense provided that, in addi-
tion to very strong complexity assumptions, (1) an upper-
bound to the running time of malicious players is known in
advance and (2) the good players must sometimes compute
more than this upperbound. A second, weaker notion of fair-
ness was put forward (and first exemplified under traditional
complexity assumptions) by Luby, Micali and Rackoff [20].
According to this notion a fair protocol is one in which (1)
each player’s probability of correctly guessing his own out-
put slowly approaches 1, and (2) all players’ probabilities
of correctly guessing their own outputs are guaranteed to
remain close to one another. This notion was extended and
shown to hold for general SFE by Goldwasser and Levin [17]
(who actually were the ones to coin the term “completely
fair SFE” to differentiate it from this second, weaker notion).
Neither of these two weaker definitions of fairness, however,
suffices for our game theoretic applications: what we need is
a reasonable model to achieve completely fair SFE without
an honest majority.

Our Completely Fair SFE
We put forward an SFE protocol that is completely fair for
any number of players and for any number of bad players
(i.e., from 1 to n− 1, and trivially even n itself).

Notably, our protocol relies on both computational as-
sumptions and physical assumptions about our communica-
tion channel. Our reliance on physical assumptions is nec-
essary in view of the mentioned result of Cleve [10]. Specifi-
cally, we assume that the players have access to communica-
tion channels akin to ideal envelopes (see Section 2.2). We
note that similar physical assumptions are actually standard
in the game theory community.2

Our Applications to Game Theory
It is well known in game theory that correlated equilibria,
introduced by Aumann [1], are a desirable generalization of
traditional Nash equilibria. Not only do correlated equilibria
yield higher and more flexible payoffs, but they are always
computable in polynomial time from the binary representa-
tion of a game — a property which is not known to be the
case for Nash equilibria. Unfortunately, correlated equilibria
cannot be achieved by the players themselves, but require
the use of an external trusted party or device. Starting with
Bárány [2] in 1988, many ways have been proposed [5, 15,
28, 11, 27], in various restricted settings, to replace any such
external device by cheap talk (i.e., by a protocol in which
the players alone engage in non-binding communication be-
fore choosing their actions in the game) while guaranteeing
the same correlated-equilibrium payoffs.

2For example, Bárány’s protocol — though often informally
described to be implementable via ordinary phone lines —
requires a communication channel between each pair of play-
ers which is publicly auditable: at the request of any player,
all past message traffic is publicly and correctly revealed.
Indeed, hand delivery of messages in envelopes (which will
be opened upon request) almost implements these require-
ments.

Prior protocols, however, require an amount of computa-
tion that is exponential in the binary representation of the
correlated equilibrium.3 But, much more crucially, they are
extremely vulnerable to coalitions (i.e., to the coordinated
action of bad players) when the number of players is greater
than 2. (Coalitions are of course meaningless in 2-player
games.) Indeed, all such cheap-talk protocols always em-
power a coalition of just two players to choose the payoffs
of all players in an undetectable way! Under these circum-
stances, perhaps, players should avoid cheap talk altogether:
in an attempt to get correlated equilibrium payoffs, players
de facto put themselves at the mercy of just two rational,
collusive players.

In sharp contrast, we prove that completely fair SFE yields
efficient cheap-talk protocols that provably do not introduce
any coalition power that is not intrinsic to the sought-after
correlated equilibrium. We argue that complete fairness is
the key ingredient to achieve this property of coalition safety.

Secure protocols, game theory, and distributed computa-
tion all deal with complex interactions among parties; we
hope this paper contributes to a deeper understanding of
their interconnections.

2. DEFINING COMPLETELY FAIR SFE
To define a completely fair SFE for a function f , we follow

the general GMW paradigm [16]. First, we define an ideal
evaluation of f , that is, one in the presence of an adver-
sary but with the help of an external trusted party. (Con-
ceptually, this provides our golden standard: no protocol
could possibly be more secure!) Second, we define a real
evaluation of f (i.e., one obtained by running a real proto-
col in the presence of an adversary and without the aid of
any trusted party). Third, we recall a traditional measure
of “closeness” in cryptography (i.e., computational indistin-
guishability). Finally, we define a completely fair SFE to be
a real evaluation of f that closely mimics an ideal one in
this sense.

This original paradigm has been refined over the years so
as to capture important additional desiderata (most notably,
dynamic adversaries [8] and universal composability [7]). In
order to focus on a strong definition of a completely fair SFE
without honest majority, however, we choose to work in a
simpler setting: namely, we envisage the set of bad players
to be fixed at the start, and that the protocol is executed in
a stand-alone manner. Still, this setting is complex enough
and we shall rely on the ideas of [21] to formalize it properly.

2.1 Ideal Evaluation
Let f be an efficiently computable function (without loss

of generality a deterministic one) mapping n inputs to n
outputs. Informally, in an ideal evaluation of f , the n players
hand their private inputs to a trusted party, T , who then
evaluates f and returns the outputs to the corresponding
players. It is assumed that there exist a set of good players,
G, a corresponding set of bad players, B, and an efficient
ITM, the simulator, S, who acts on behalf of all bad players.
The dynamic of this interaction is detailed in the 2-round
protocol below, where z is a binary string and xi the binary,
secret input of good player i.

A random ideal evaluation of f with security parame-
ter k, auxiliary input z, set of good players G (and cor-

3This is not self-evident, but we provide constructive proofs
of it in Section 5.

responding set of bad players B), good inputs ~xG = {xi ∈
{0, 1}∗ : i ∈ G}, and adversary S is generated as follows:
first, the random tape of S is initialized with a random
string RS . Then, on inputs z and 1k, S computes for each
bad player j an effective input xj ∈ {0, 1}∗∪ ⊥. In the
first round, all x1, . . . , xn are privately sent to T . In the
second round, if any xj =⊥, then T returns the output
⊥ to every good player. Else, T computes the outputs
(y1, . . . , yn) = f(x1, . . . , xn) and, for every good player i,
privately returns yi to i, and, for every bad player j, pri-
vately returns yj to S. Upon receiving the bad players’
outputs, S computes a final string, ω, and halts.

We denote by idealf
S(1k, z, G, ~xG) the random variable

consisting of the following three components:

1. the sequence of inputs and effective inputs (x1, . . . , xn);

2. the sequence of outputs: either (⊥, . . . ,⊥) or (y1, . . . , yn);

3. the final string ω output by S.

2.2 Real-Protocol Execution
We assume that the reader is familiar with efficient (i.e.,

probabilistic polynomial time) interactive Turing machines
(ITMs), which are the standard formalization of parties in
a protocol. Protocol executions proceed in rounds, with the
players sending their messages over communication channels
— in our case, authenticated broadcast and ideal envelopes.
(Formal details on how a protocol is executed, in a setting
similar to ours, can be found, for example, in [13].)

Adversaries and Protocols. A (static) adversary is an
efficient ITM. An n-party protocol Π is a sequence of n ITMs:
Π = (P1, . . . , Pn). We say that Π is efficient if each of its
ITMs is efficient.

Communication Channels. Our “envelope channel” satis-
fies the following properties: (1) every envelope has a visible,
distinct identifier; (2) every envelope hides all information
about its content for as long as it stays sealed, (3) an en-
velope reveals its full original content once opened; (4) an
envelope can be opened either privately by a single player —
in which case its content will be learned only by that player
— or publicly — in which case its content will be learned by
all players; and (5) it is possible to deliver different envelopes
to different parties so that no envelope is opened before all
envelopes are properly delivered. Then, every envelope is
privately opened by its recipient.

Executing a Protocol with an Adversary. Let Π =
(P1, . . . , Pn) be an n-player protocol and A an adversary.
In an execution e of Π with A, security parameter k, set of
good players G ⊂ {1, . . . , n}, and good inputs ~xG = {xi ∈
{0, 1}∗ : i ∈ G},

• A starts with common input 1k, private inputs n and
the set of bad players B = {1, . . . , n} − G, auxiliary
input z ∈ {0, 1}∗ and a random tape RA ∈ {0, 1}∞;

• for all i ∈ G, player i runs Pi with common input 1k,
private input xi and random tape Ri ∈ {0, 1}∞.

(Notice that honest players are not explicitly told the com-
position or the existence of B, but may deduce something
about it from the way the execution unfolds.) We envis-
age the strongest, natural form of bad players’ behavior.
Namely, e proceeds by having all players compute and post
their messages over the right channels, except that we al-
low A to invisibly replace and thus “perfectly coordinate”

all bad players. Each message that should be sent by a bad
player j over a given channel is actually computed and sent
by A over the same channel (and is received by all the good
players as though coming from j). Every message sent by
a good player i over a given channel is actually received by
A (knowing that it came from i) whenever it should be re-
ceived a bad player j. If i ∈ G and Pi halts, then prior to
halting Pi produces a private output string.

A random execution of Π with A is one in which each bit of
every random tape is randomly and independently selected.

An execution of a protocol Π with adversary A terminates
at round r if r is the first round in which all good players
have halted. A protocol is a r-round protocol if (1) in any
execution without an adversary it terminates at round r and
(2) in any execution with any adversary it terminates at a
round ≤ r.

Augmented views. Consider an execution e of a protocol
Π with an adversary A (with auxiliary input z and random
tape RA), and denote by MA the sequence of messages re-
ceived by A (in the order in which they are received) and,
for any integer r, by Mr

A be the sequence of messages re-
ceived by A up to and including round r. Then, we define
(1) the augmented adversary view of e, denoted viewA(e),

to be the quadruple (z, RA, MA, Â) — where Â denotes the
description of ITM A in some standard encoding — and (2)
the augmented adversary view up to round r of e, denoted
viewr

A(e) to be the quadruple (z, RA, Mr
A, Â).

2.3 Completely Fair SFE Protocols
We say that a quadruple ((n, r, ρ), Π,AI,AO) is a (n-

player, r-round) potential SFE if there exists positive inte-
gers r and n such that

• n, r, and ρ are integers, where n and r are greater than
2 and ρ, referred to as the effective-input round, is less
than r,

• Π is an efficient, n-player, r-round protocol,

• AI, the effective-input function, is an efficient function
which, for any execution e of Π with an adversary A
and set of bad players B, maps the augmented view
viewρ

A(e) to a vector ~xB = {xe
j : j ∈ B}, where either

xe
j is a binary string for every j ∈ B, or xe

j =⊥ for
every j ∈ B.

• AO, the effective-output function is an efficient func-
tion such that, for any execution e of Π with an adver-
sary A and set of bad players B, maps the augmented
view viewA(e) to a vector ~yB = {ye

j : j ∈ B}, where
either (a) ye

j is a binary string for every j ∈ B, or (b)
ye

j =⊥ for every j ∈ B.

Let ((n, r, ρ), Π,AI,AO) be a potential SFE. Then, let-
ting e be a random execution of Π with A, security param-
eter k, set of good players G, set of good inputs ~xG = {xj :
j ∈ G} and auxiliary input z, and letting yi be the output of
Pi for each good player i ∈ G in e and B the set of bad play-
ers in e, we denote by realΠ

A(1k, z, ~xG) the random variable
consisting of the following three components:

1. the sequence (x1, . . . , xn), where ∀j ∈ B, xj = xe
j ;

2. the sequence (y1, . . . , yn), where ∀j ∈ B, yj = ye
j ; and

3. the final view of the adversary, viewρ
A(e).

Computational Indistinguishability. Our intuitive no-
tion of a secure protocol is one in which the real execution is
“close” to ideal evaluation. In cryptography, a standard no-
tion of closeness is computational indistinguishability. Two
sequences of probability distributions {Xk} and {Yk} over fi-
nite binary strings are computationally indistinguishable if,
as k grows large, Xk and Yk become essentially interchange-
able. That is, if it becomes infeasible to determine whether
a given sample has been drawn from Xk or Yk, because all
efficient experiments (i.e., those whose results we hope to
“see in our lifetime”) yield essentially identical results.

It is often useful to write computational indistinguisha-
bility in terms of general ensembles — i.e., probability dis-
tributions indexed by a countable subset I of {0, 1}∗ —
using polynomial-size (distinguishing) circuits rather than
polynomial-time (distinguishing) algorithms.4

By ν(k) we denote some negligible function, i.e., one such
that, for all c > 0 and all sufficiently large k, ν(k) < 1/kc.

Definition 1. Two ensembles {Xw}w∈I and {Yw}w∈I with
identical index set I are said to be computationally indistin-
guishable (over I) if for every polynomial-size circuit fam-
ily {Dk}k∈N, every sufficiently large k, and every w ∈ I ∩
{0, 1}k, we have

|Pr[Dk(Xw) = 1]− Pr[Dk(Yw) = 1]| < ν(k).

We are now ready to define a completely fair SFE for a
function f . For generality, we allow all inputs of f to grow
polynomially with the security parameter k.

Let n be an integer greater than 1, and G a subset of
{1, . . . , n}. We say that an infinite set I ⊂ {0, 1}∗ is a n-G-
allowable input set if

• every member of I is (the standard encoding of) a
quadruple (1k, z, G, ~xG) such that k ∈ N , z ∈ {0, 1}∗,
G ⊂ {1, . . . , n}, and ~xG = {xi ∈ {0, 1}∗ : i ∈ G}; and

• there exists a constant c > 0 such that if (1k, z, G, ~xG) ∈
I, then the length of z and that of each component of
~xG is upper-bounded by kc.

Definition 2 (Completely Fair SFE). Let f be an
efficiently computable function from n inputs to n outputs.
We say that a 4-tuple (Π, ρ,AI,AO) as above is a com-
pletely fair SFE for f if, for every efficient adversary A,
there exists a simulator S such that for all n > 2, G ⊂
{1, . . . , n}, and n-G-allowable input sets I, the ensembles

{idealf
S(1k, z, G, ~xG)}(1k,z,G,~xG)∈I

and

{realΠ
A(1k, z, G, ~xG)}(1k,z,G,~xG)∈I

are computationally indistinguishable over I.

A Simple Enhancement
The ideal evaluation we have described — where the trusted
party outputs ⊥ to all players whenever the simulator wishes
to abort — is the standard one, and thus, in some sense,
so is our definition of completely fair SFE. For our game-
theoretic applications, however, we need to consider the fol-
lowing slight variant.

4Recall a polynomial-size circuit family is a sequence {Dk}
of combinatorial circuits with AND and NOT gates, such
that there exists a constant d for which each Dk has at
most kd gates.

First, we enhance an ideal evaluation so that a single bad
player is identified in case of abort. That is, whenever the
simulator chooses ⊥ to be the effective input of a bad player
j, we require that (1) the adversary does not choose ⊥ as
the effective input of any other player, (2) the trusted party
sends the pair (j,⊥) to all players, and (3) the second com-

ponent of idealf
S consists of ((j,⊥), . . . , (j,⊥)).

Then, we require that (Π, ρ,AI,AO) be such that idealf
S

and realΠ
A are computationally indistinguishable. We call

such a protocol aborter-identifying, and note that the pro-
tocol described in Section 3.2 is aborter-identifying.

3. ACHIEVING COMPLETELY FAIR SFE
We construct our completely fair SFE protocol by suitably

modifying the unfair version (GMWa) of the SFE protocol
in [16] (hereafter, we refer to it as GMW). Let us first recall
the tools we shall use.

3.1 Tools of Our Construction

Secret-Data Testing
Secret-data testing (SDT) is a crucial element of our com-
pletely fair SFE. While this sub-protocol was originally pre-
sented in [3], we feel the need to define this primitive in full
because the original paper only dealt with it in an intuitive
manner.

SDT enables a prover to prove any given predicate Q
about any given secret string σ to a verifier so that the only
knowledge that the verifier may gain is that the prover’s
string (whatever it may be) satisfies Q. (For instance, σ is
the binary representation of a positive integer, and Q is the
predicate “ this number is prime.”) To make such a proof
meaningful, Q is publicly known while σ is perfectly “hid-
den and committed:” conceptually it is the content of ideal
envelope. To make such a proof possible, σ is actually en-
coded in a special, redundant fashion as a sequence of other
strings, σ1, σ2, . . ., each one of which is individually put into
its own envelope. The proof consists of the verifier asking
for a certain subsequence of envelopes to be opened, and
then performing a check on the revealed strings.

Definition: An SDT protocol is a 4-tuple of polynomial
time algorithms (E, D, P, V), along with positive bivariate
polynomials p and q, called the expansion rate and the proof
length respectively, such that:

• E and D are respectively the probabilistic encoding
algorithm and the deterministic decoding algorithm.
When E is given as input an `-bit string σ and a unary
security parameter k, it generates a tuple of p(k, `)
strings (σ1, . . . , σp(k,`)). On input a unary integer and
a tuple of binary strings, D produces either a binary
string or the special symbol ⊥. Additionally, E and D
satisfy the following property: For all σ ∈ {0, 1}∗ and
for all integers k,

Pr[D(1k, E(1k, σ)) = σ] = 1

• P and V are interactive Turing machines (ITMs), the
latter consisting of two separate algorithms, a chal-
lenge algorithm C and an acceptance predicate A. In
an execution of (P, V), both machines receive two com-
mon inputs: a security parameter 1k, and a g-gate

predicate Q. P also receives as private input, the tu-
ple of strings (σ1, . . . , σp(k,`)) — a random output of

E(1k, σ), for some string σ. V receives no additional
private input. The joint computation starts with P
internally computing strings τ1, . . . , τq(k, g), and in-
volves the following two rounds:

1. V selects a random string, β, uniformly at ran-
dom and sends it to P .

2. P runs C(β) to compute two sets of challenge in-
dices Iβ ⊂ {1, . . . , p(k, `)} and Jβ ⊂ {1, . . . , q(k, g)}.
Then, P sends V strings σi and τj for each i ∈ I
and j ∈ J .

Afterwards, V runs A(1k, Q, β, {σi : i ∈ Iβ}, {τj : j ∈
Jβ}) to determine whether to accept or reject.

Definition 3 (SDT System). We say that a SDT sys-
tem (E, D, P, V) with positive polynomials p and q is secure
if it satisfies the following three properties:
Completeness: for all g-gate predicates Q, σ such that
Q(σ) = 1, and integers k, the probability that V accepts
in any execution with public inputs Q and 1k and private
prover input E(1k, σ) is 1.
Soundness: for all g-gate predicates Q, `, sufficiently large
k, and strings σ′1, . . . , σ

′
p(k,`), τ1, . . . , τq(k,g) such that either

(1) D(σ′1, . . . , σ
′
p(k,`)) = ⊥ or (2) Q(D(σ′1, . . . , σ

′
p(k,`))) = 0,

Prβ [A(1k, Q, β, {σi : i ∈ Iβ}, {τj : j ∈ Jβ}) = accept] ≤ 2−k

Zero-Knowledge: There exists a probabilistic, polynomial-
time algorithm S such that for all g-gate predicates Q, σ ∈
{0, 1}` such that Q(σ) = 1, strings β ∈ {0, 1}∗, and inte-
gers k, the output distribution of S(1k, Q, β) is equal to the
distribution obtained by:

1. generating (σ1, . . . , σp(k,`)) via a random execution of

E(1k, σ),

2. generating (τ1, . . . , τq(k,g)) via a random execution of

P (1k, Q, σ1, . . . , σp(k,`)),

3. outputting (β, {σi : i ∈ Iβ}, {τj : j ∈ Jβ}).

Lemma 1 ([3]). Secure SDT protocols exist.

Non-interactive zero knowledge
Non-interactive zero-knowledge (NIZK) proofs [6] have be-
come essential components of modern cryptographic proto-
cols. Much like their interactive counterparts, NIZK proofs
allow a prover to prove any NP-statement in a manner that
(a) allows all true theorems to be proven (completeness),
(b) prevents false theorems from being proven except with
negligible probability (soundness), and (c) reveals nothing
other than the verity of the theorem (zero-knowledge). Un-
like traditional ZK proofs, however, NIZK proofs do not
require any interaction, but instead require there to be a
uniform random string available to both the prover and ver-
ifier. An NIZK system consists of two algorithms: (1) an
efficient prover algorithm PN , which accepts a theorem, a
witness, and a common random string, and produces a proof
string, and (2) a deterministic verifier algorithm VN which
accepts a theorem, a proof string, and a common random
string, and outputs whether or not the proof string is accept-
able. Giving control over the choice of the CRS to either

the prover or verifier destroys the soundness or the zero-
knowledgeness (respectively) of the proof system. Indeed,
the zero-knowledge property of an NIZK system is usually
proven by constructing a simulator which chooses the CRS
so that, for any (possibly false) statement, it can construct
a proof that the verifier accepts.

The GMW protocol in a nutshell
The GMW protocol consists of two parts. The first part is
to define and construct an SFE protocol for “honest-but-
curious” players. (Such players — whether good or bad —
send every message according to their prescribed instruc-
tions. However, those who are bad may share informa-
tion with one another and try to deduce as much as they
can about good players’ inputs and outputs.) The second
part is a general compilation technique which transforms
the honest-but-curious SFE protocol into an SFE that also
works in the presence of malicious players.
The honest-but-curious protocol. The honest-but-curious
protocol consists of a protocol in which parties communicate
via private channels.

The key property of this protocol is that it ensures pri-
vacy: that is, even if n − 1 curious players share all the
information that they learn during the execution, they can-
not deduce anything at all about the input or output of the
remaining party, other than what is implicit from their own
inputs and outputs. Correctness and complete fairness are
easily shown, given the honesty of all parties.
The compiler. In the compiled protocol, players instead
communicate via broadcast, encrypting all their private mes-
sages to the proper recipients. Additionally, all players prove
publicly and in zero-knowledge that the ciphertexts they
send are encryptions of messages that are properly com-
puted according to the honest-but-curious protocol. This
forces even malicious players to behave honestly, lest they
be detected.

More specifically, the compiled protocol works in the fol-
lowing way:

1. In a pre-processing stage, the players interact so that
each player i produces a secret value and three pub-
lic values. The secret value is a decryption key ski of
a public key cryptosystem. The first public value is
the corresponding encryption key pki, the second is an
encryption (relative to pki) of a random initial state
for Pi (the ITM of player i in the honest-but-curious
protocol), and the third is an encryption of i’s input
(again relative to pki). The difficulty in this step is to
guarantee the mutual independence of the secret ran-
dom tapes (which are part of the players’ initial states)
and of the players’ inputs, given that bad players may
try to correlate their inputs to those of good players.

2. The players emulate the honest-but-curious protocol:
every time a player i is to send a message m to player
j, player i instead broadcasts an encryption of m un-
der pkj , then provides a zero-knowledge proof that the
ciphertext is constructed properly. The proof is rela-
tive to the state of the honest-but-curious program Pi

at that point, which in turn is based on the initial,
encrypted state and input, and all the encrypted mes-
sages intended for Pi thus far. (Note that the state-
ment of correctness is efficiently verifiable given the

witness ski, so the statement can be proved in zero-
knowledge.)

These proofs are interactive, and are actually performed
n− 1 times during which the role of the verifier cycles
through the n− 1 other players.

3. In the final stage, each player is left with a single fi-
nal message for each player (including himself). These
messages are sent exactly as in Step 2, and each player
computes his final output based entirely upon these
messages. (We note that until the final messages are
received, no player has any knowledge about his final
output.)

3.2 Our Construction
The GMW protocol presented in the previous section ig-

nores fairness. In particular, the last player who is scheduled
to broadcast her shares during the final stage might simply
refuse to do so, and therefore deny output to all of the other
players (after having seen her own outputs). Even using a si-
multaneous broadcast channel does not solve the problem—
one malicious party who encrypts and then broadcasts junk
creates a situation in which only she receives her output and
other players do not. In order to guarantee fairness, a tighter
coupling of the encrypt-broadcast-prove paradigm must be
employed. All parties must be convinced that they are going
to receive legitimate shares before any party is allowed to
exchange a single share.

Our approach embraces this requirement through a set of
complicated envelope manipulations during the final stage
of GMW. A high-level description of the protocol follows:

• Partially Run GMW. Run the original GMW pro-
tocol as before until the final stage of the compiled
protocol. At this point, each player i has privately
computed the share yij for every player j.

(Comment: Notice that up to now, the protocol is com-
pletely fair in the sense that no coalition of bad play-
ers has any knowledge about the input or output of any
honest player.)

• Create Envelopes. The players generate a common
random string, CRS, of suitable length.

In order to generate such a string, the players engage
in the following 2n round process: Each of the players
from 1 to n selects a random string ri, and announces
a (probabilistic) encryption, Epki(ri). Then, in reverse
order, starting with player n, the players reveal ri and
the coin-tosses ci used to encrypt it.

Every player verifies the encryption EPKi(ri) was in-
deed the encryption of ri using the random coins ci.
If all agree, then all players set CRS =

Ln
1 ri.

Using an NIZK proof system (PN , VN) and the com-
mon random string CRS selected in the previous step,
each player i produces a sequence of NIZK proofs,
{πij}, one for each share yij , for the following state-
ment:

The share yij is precisely what the honest-
but-curious machine Pi would have computed
on the initial state and input whose encryp-
tions were sent earlier, and all of the message
traffic that has been subsequently received

by Pi. (The NP-witness for this statement
is ski, player i’s secret decryption key.)

Let (E, D, P, V) be a SDT-system as described in Sec-
tion 3.1 and let σij be the concatenation of the share
yij and its proof πij of correctness. Let m = p(k, |σij |)
where p() is the expansion rate of the encoding algo-
rithm E.

Each player i runs the encoding algorithm E on each
string σij in order to generate a sequence of sets, {Sij},
one for each player, where each Sij = {σij

1 , . . . , σij
m}.

Let Qij(π) be the predicate which is true if the NIZK
verifier VN accepts proof string π relative to CRS, and
let gij be the number of gates in Qij .

Player i now runs the SDT prover P on 1k, Sij and Qij

in order to generate an internal set of strings, T ij =
{τ ij

1 , . . . , τ ij
q(k,gij)}.

Each player generates n piles of closed but publicly
viewable envelopes. The jth pile of envelopes gener-
ated by player i, denoted eij , consists of one envelope
for each string in Sij .

(Comment: Again, the protocol is completely fair at
this point. The channel restricts any player from run-
ning off with envelopes that have been filled.)

• Verify Envelopes. Players engage in a coin-flipping
protocol (as described above) in order to generate sev-
eral random strings, which we denote βij , where 1 ≤
i, j ≤ n index all pairs of players.

Each player i runs the challenge algorithm, C(βij), for
all 1 ≤ j ≤ n in order to generate two sets of challenge
indices, Iβij and Jβij .

At this point, each player i opens the envelopes in-
dexed by Iβij and broadcasts those strings from the

set T ij which are indexed by Jβij for 1 ≤ j ≤ n.

Finally, each player j, for each i, runs the SDT accep-
tance predicate A(1k, Qij , βij , {σij

k : k ∈ Iβij}, {τ
ij
k :

k ∈ Jβij}).
If any acceptance predicate returns false, then the pro-
tocol is aborted, the player who created the bad en-
velopes is identified as the aborter, and all of the en-
velopes are destroyed.

(Comment: Since the SDT protocol is perfect zero-
knowledge, no information about the strings in the en-
velopes has been released. Thus, the protocol at this
point remains completely fair.)

• Exchange Envelopes. Otherwise, each player j, for
each i, collects the pile of envelopes eij addressed to
him. The channel forbids any interference or interrup-
tion of the envelope exchange. With these envelopes,
player j can reconstruct yj as in the GMW protocol.

(Comment: The envelopes are exchanged only after all
parties have verified the envelopes that are “on the ta-
ble.” This feature ensures our complete fairness.)

Theorem 1. If trapdoor permutations and ideal envelopes
exist, the protocol described above is an aborter-identifying
completely fair SFE for general functions.

We defer the proof of Theorem 1 to the final version.

4. APPLICATIONS TO GAME THEORY

4.1 Basic Game Theory Concepts
In this work, we focus on non-cooperative games written

in normal form5. In a game G = (I, (Ai)i∈I , (ui)i∈I), the
set of players is I, and each player i ∈ I has a finite, public
set of actions, Ai, and a public utility function, ui. Each ui

maps an n-tuple of actions (a1, . . . , an) ∈ A1×· · ·×An to a
real number, referred to as i’s payoff or utility. The game is
played in a single stage: every player independently chooses
an action from his action set, and all players receive their
corresponding payoffs.

For a player i, an individual strategy is a probability dis-
tribution over Ai, that is, a way for i to choose which action
to play. For a vector of strategies σ and a set of players C,
we denote by σC the vector of strategies for players in C,
and by σ−C the vector of strategies for players outside of C.
For ease of notation, we will often apply utility functions to
strategy vectors (rather than action vectors). When doing
so, we refer to the expected utility, taken over the distribu-
tion of actions within each strategy.

A Nash equilibrium [24] is a vector σ of individual strate-
gies, one for each player, such that no single player can im-
prove his expected payoff by switching to a different strat-
egy. Formally, σ is a Nash equilibrium if for all i and all σ′i,
ui(σ

′
i, σ−{i}) ≤ ui(σ). It is well known that every game has

a Nash equilibrium [24]. More generally, a correlated equilib-
rium [1] is a probability distribution, E, over A1 × · · · ×An

satisfying the following property: if an n-tuple is chosen ac-
cording to E and its ith component is privately given to
player i as his “recommended” action, then no single player
can improve his expected payoff by disobeying his recom-
mendation.

Correlated equilibria are more advantageous than their
Nash counterparts on two accounts. First, being more gen-
eral, they may (as for all games that are not strategically
zero sum [23]) yield strictly better payoffs to each player.
Second, they can always be found efficiently (i.e., in time
polynomial in the binary representation of the game) via lin-
ear programming — whereas the complexity of computing
Nash equilibria for general games is still unknown. How-
ever, while a Nash equilibrium can be implemented by in-
dividual players, achieving a general correlated equilibrium
requires the help of an external trusted party, T .6 A game
G = (I, (Ai), (ui)) extended by an external trusted party
T (implementing a correlated equilibrium E) is denoted by
GT = (I, (AT

i), (uT
i)) and proceeds as follows. First, T ran-

domly selects an n-tuple of actions, a1, . . . , an, according
to E and privately sends the recommendation ai to every
player i. Subsequently, the players choose which actions to
play in the original game G —a good player g choosing his
recommended ag— and receive the payoffs of G.

5Note that extensive-form games, which are played out in
several stages (with potentially imperfect information), can
be written in normal form.
6Often such a party is referred to as a “correlating device.”
But this psychologically benign term seems to hide the ex-
traordinary assumption that ALL players must trust the
SAME device to work properly. In general, a correlating de-
vice needs to be a complex special-purpose computer, and
can be manufactured so as to hide a malicious program “fa-
voring” some of the players!

In 1988, Bárány [2] envisioned replacing external trusted
parties by cheap talk : that is, by a communication protocol
in which the players exchange messages with each other over
a suitable communication channel. Each cheap-talk proto-
col essentially transforms an ordinary game G into a corre-
sponding extended game G′ in which the players (1) execute
the prescribed communication protocol, and then (2) play
actions in the original game G. Bárány showed that there
exists a chep-talk protocol such that, for any game G and
any correlated equilibrium E in G, the corresponding ex-
tended game G′ has strategies that form a Nash equilibrium
and have the same payoffs as E.

Unfortunately, however, Bárány’s and all subsequent cheap-
talk protocols are extremely vulnerable to even 2-player coali-
tions of deviating players. That is, two colluding players
(e.g., in Bárány’s case players 1 and 3, and in Ben-Porath’s
case players 1 and 2) may always and undetectably force the
payoffs received by all players to be any ones they want.
This is a very serious drawback, and we shall eliminate it
via our completely fair SFE without honest majority.

4.2 Coalitions and Coalition Safety
Modeling coalitions involves many subtleties, and the game

theory literature has explored several notions —e.g., [26, 22].
In this work we start with a simple, but most adversarial
model: the monolithic coalition.

A monolithic coalition is a subset of players who totally
trust one another, and thus perfectly coordinate their ac-
tions. Though such a total, mutual trust may be unrealistic,
monolithic coalitions have the best chance of controlling the
payoffs of the game, and thus is crucial for good players to
achieve protection against them. (In the final version of this
paper, we shall refine our results relative to more sophis-
ticated types of coalitions —e.g., the ones of Moreno and
Wooders [22].)

Monolithic Coalitions and Trusted Parties
If T is an external trusted party implementing a correlated
equilibrium E, a monolithic coalition in GT = (I, (AT

i), (uT
i))

is a single algorithm, C , controlling a subset of (bad) play-
ers, B. The interaction among C , T , and the good players,
with security parameter 1k, is as follows. First, T chooses
the recommended actions a1, . . . , an. Second, C chooses a
subset RB ⊆ B representing the bad players whose recom-
mended actions it wishes to receive.7 Third, C receives aj

for each bad player j ∈ RB . Fourth, C select an action
a′b for each bad player b in B. Finally, all players choose
their actions in G —the strategy of every good player g,
σg, is choosing ag, while every bad player b ∈ B chooses
a′b— and all receive G’s payoffs. In line with game-theoretic
tradition, such a coalition C corresponds to a vector of in-
dividual strategies, {σC

b : b ∈ B}, compactly denoted by
σC

B . (To ensure the monolithic nature of the coalition, each
strategy σC

b includes private, “extra” communication with
other bad players.8) Accordingly, the expected payoffs of
GT with the above C will be denoted by uT

k (σC
B , σ−B).

7In cryptography and non-cooperative game theory there
are no mechanisms to force a player to do anything. As
a consequence, some colluders may refuse to look at their
recommendations, if they so want!
8In particular, the bad players may share their recommen-
dations, or select a common random string if they wish to
coordinate their random choices.

(The security parameter 1k will be necessary, in the cheap-
talk setting, for upperbounding the computational resources
of an efficient coalition, and thus becomes necessary in the
trusted-party setting, too, in order to express that “what-
ever a coalition can do in one setting, it can also do —with
the same computational resources!— in the other. Notice,
however, that the security parameter does not constrains
the good players nor T , even if we require that they too be
efficient. In fact, all is required from a good player is to
read his recommended action, and in a finite game all ac-
tions are described by strings of constant size. As for T , it
is assumed that he has the correlated equilibrium E as an
additional input, and thus can perform its required selection
in time polynomial in the length of its total input, |E|+ k.)

Monolithic Coalitions and Cheap Talk
When trusted parties are replaced by n-party protocols, a
monolithic coalition is the already discussed adversary, that
is, a single ITM that totally controls a set B of bad players.

Let G = (I, (Ai), (ui)) be a game, E a correlated equilib-
rium for G, and CT = (s1, . . . , sn) a protocol. We say that
CT is a cheap-talk protocol implementing E if, a random ex-
ecution with an adversary and common input 1k, produces
outputs a1, . . . , an distributed according to E.

(Notice that our definition of cheap talk is much stronger
than envisaged so far. Indeed, up to now, all that was re-
quired was “to withstand a single-player adversary.”)

We denote by GCT = (I, (ACT
i), (uCT

i)) the extended
game in which the players first execute CT (with some com-
mon security parameter 1k) and then choose an action to
play in G and receive G’s payoffs.

Playing GCT with C controlling the set of bad players
B consists of executing CT with adversary C, and then
having C use its final view to choose the actions of the
bad players. To preserve again game-theoretic tradition,
our C corresponds to a set of individual bad strategies,
{sC

b : b ∈ B}, compactly denoted by sC
B . (Again, these strat-

egy include private, “extra-protocol” communication among
the bad players to achieve the desired coordination.) Thus,
the expected payoffs of GCT are denoted by uCT

k (sC
B , s−B).

We are now ready to define coalition-safe cheap talk. In-
formally, this refers to a cheap-talk protocol for which “any
advantage that an efficient coalition may obtain can also
be obtained by the same coalition when an external trusted
party is used instead of the cheap talk.”

Definition 4 (Coalition-Safety). Let E be a cor-
related equilibrium for a game G = (I, (Ai), (ui)), and let
T be an external trusted party and CT a cheap-talk proto-
col both implementing E. We say that CT is coalition-safe
if, for any set of players B, and any monolithic, efficient,
cheap-talk strategies sC

B there exist monolithic, trusted-party,
strategies σC

B such that the payoffs

{uCT
k (sC

B , s−B)}k∈N and {uT
k (σC

B , σ−B)}k∈N

are computationally indistinguishable.

Note that the above indistinguishability is between vec-
tors, and thus much stronger than simple indistinguishabil-
ity between individual components. In particular, therefore,
coalition safety not only prevents all bad players from im-
proving all their payoffs, but also prevents a single bad player
from improving his own payoff at the expense of another bad
(or good!) player.

4.3 Achieving Coalition-Safety

Theorem 2. Given completely fair, aborter-identifying,
SFE protocols for any efficient function f , then, for any
game G and any correlated equilibrium E for G, there ex-
ists an efficient, coalition-safe, cheap-talk protocol CT =
(s1, . . . , sn) such that the strategies in GCT consisting of
“following CT and then playing in G the finally computed
recommendations” form a computational Nash equilibrium9

with payoffs indistinguishable from those of E.

Proof Sketch: (Very informal)
It is immediately seen that there exists an efficient, func-

tion f which, on input a random kd-bit string ρ (where d > 0
is a constant), approximates E to within an exponentially
vanishing (in k) probability of error.10

Since f is probabilistic and we defined SFE only for de-
terministic functions, we now modify f (in a standard way).
First, define f1,j to be the deterministic j-input function
which computes the exclusive-or of all its inputs, and then
evaluates f on the resulting string. Consider now the follow-
ing cheap-talk protocol CT [1, n] in which (1) every player i
privately chooses a kd-bit long random string ρi, and then
(2) all players run a completely fair, aborter-identifying,
SFE protocol for f1,n on their inputs ρi.

Suppose that, in the cheap talk game GCT [1,n], a coalition
C controls a proper subset B of the players (otherwise, the
Theorem 2 follows trivially).

First let us analyze the distribution of the payoffs of the
extended game GCT [1,n] when C never induces an abort.
Because B is a proper subset of the players, there is at least
one honest player, and thus the exclusive-or of the play-
ers’ inputs is a truly random kd-bit string. Thus, because
CT [1, n] is a completely fair SFE for f1,n, no matter what
C does, all parties’ recommended outputs, a1, . . . , an, are
distributed according to E. At this point, without loss of
generality, C can perform some additional computation, C′,
to map the bad-players’ recommendations {ab : b ∈ B} to
new actions {a′b : b ∈ B}. Then all players play their actions
in G and receive G’s payoffs. We now argue that such payoffs
can essentially also be obtained by a monolithic coalition C
in GT .

In essence, C specifies the recommendation-receiving set
B′ to be equal to B. Thus, after the trusted party T selects
a random n-tuple of actions a1, . . . , an according to E, C
receives all recommendations {ab : b ∈ B}. At this point,
C runs the same algorithm C′ of C to transform the re-
ceived recommendations into the actions that the players in
B actually play in G. Every good player g plays instead his
originally received ag, and all players receive G’s payoffs.

Because the actions ultimately played in G, in the above
cheap-talk and the trusted-party scenarios, are computa-
tionally indistinguishable11, so are their relative payoffs, be-

9In a computational Nash equilibrium, defined by Dodis,
Halevi and Rabin [11], no single player has an efficient de-
viating strategy that yields a non-negligibly greater payoff
that the equilibrium strategy.

10I.e.,
P

A∈A1×···×An
|pE(A)− pf (A)| < 2−k, where pE(A) is

the probability of A according to E, and pf (A), the proba-
bility that, on inputs a random kd-bit string f outputs A.

11Actually, because we are dealing with finite functions here,
the two distributions of actions are even “statistically indis-
tinguishable.”

cause the latter —being finite functions— are certainly effi-
ciently computable.

Assume now that C induces an abort during CT [1, n].
Because CT [1, n] consists of a completely fair SFE for f1,n,
if an abort occurs, then no player, bad or good, learns any
recommendation. Nonetheless, the strategies of GCT must
specify which actions to play in G in every situation, and
thus in this one too. Fortunately, because our SFE also is
aborter-identifying, the players at least learn who caused the
abort. Without loss of generality, let it be (bad) player n. In
prior cheap-talks such as Bárány’s, the good players would
now “punish” player n by choosing actions that minimize n’s
payoff (which immediately guarantees the Nash equilibrium
of the prescribed strategies in the extended game G′). Such
an approach works relative to a single deviating strategy. In
our context, however, there are coalitions to consider: the
good players, while aware that n is bad, do not know who
else might be bad, and thus cannot adopt a good “punish-
ment strategy.” Assume, for example, that they choose to
play actions ā1, . . . , ān−1, as in Bárány. Then, if, without
loss of generality, player n−1 was also in C, he might play a
different action a′n−1, while player n plays an action a′n, so
that both colluding players may receive payoffs higher than
in E. Notice that the so generated payoffs do not have any
“counterpart” in the trusted-party setting, because there
good players always play the recommendation received from
T , without knowing who might be bad. Thus, this and all
other punishing procedures may both backfire and destroy
any hope of “payoff indistinguishability from GT .”

Our solution, instead, is to run a new cheap talk proto-
col for n − 1 players, CT [1, (n − 1)], in which every player
i ∈ [1, n− 1] selects a random string ρi, and then all players
run a completely fair, aborter-identifying, SFE which com-
putes the function f1,n−1 to obtain an n-tuple of actions,
a1, . . . , an, distributed according to E, and then returns ai

to player i for i = 1, . . . , n − 1. (In a sense, CT [1, n − 1]
implicitly computes an and then discards it.)

Once again, there are two cases to consider. If there are
no aborts during this second execution, then every good
player g is instructed to play ag in G. (The bad players
may instead run some other algorithm, C′′, to turn their
computed recommendations ab, for each bad player in B −
{n}, into actions {a′b : b ∈ B} to play in G.) It is easy to

see that “the payoffs so generated by C in GCT [1,n−1] can
be generated in an indistinguishable way by a corresponding
coalition C in GT .” If there is an abort, then the remaining
players run another cheap talk protocol, CT [1, n−2], and so
on. Eventually, all members of C who might trigger an abort
will be removed, and the remaining honest players (who are
never instructed to trigger an abort) will complete a cheap-
talk protocol and play their output recommendations in G.
We refer to this informally described cheap-talk protocol
(i.e., CT [1, n], possibly followed by CT [1, n − 1], possibly
followed by CT [1, n − 2], etc.) as CT . In the final paper
we shall prove that CT indeed is a coalition-safe cheap-talk
protocol for E and G, and that the strategies consisting of
following CT and then playing in G the finally computed
recommendations is a computational Nash equilibrium in
GCT with payoffs indistinguishable from E.

Let us now state an obvious consequence of Theorems 1
and 2.

Corollary 1. Given trapdoor permutations and ideal en-
velopes, then, for any game G and any correlated equilib-
rium E for G, there exists an efficient, coalition-safe, cheap-
talk protocol CT = (s1, . . . , sn) such that the strategies in
GCT consisting of following si and then playing CT ’s output
recommendation ai form a computational Nash equilibrium
with payoffs indistinguishable from those of E.

5. INEFFICIENCY OF PRIOR PROTOCOLS
Let us now prove that ours is the first, general cheap-talk

protocol to be efficient in the description of the correlated
equilibrium.

Proposition 1. The cheap-talk protocols of Bárány [2],
Ben-Porath [5], Gerardi [15], Dodis, Halevi, Rabin [11] and
Teague [27] may require communication that is exponential
in the size of the binary description of the desired correlated
equilibrium.

Proof. First, consider the following family of 2-player
games, parameterized by any perfect cube α > 8, which
we call “high-stakes chicken.” (Typically, α is large.) Each
player has two actions: C, for “chicken out,” and D, for
“dare.” The payoffs are as follows, where δ = α−2α2/3 and
γ = α + α2/3:

C D
C α, α δ, γ
D γ, δ 0, 0

A straightforward analysis shows that this game admits a
correlated equilibrium with probability mass q = α−1/3 on
each of (C, D) and (D, C), and the rest on (C, C). The ex-

pected payoff of this equilibrium is α−α1/3 for both players,
which exceeds those of the best mixed-strategy Nash equi-
librium by at least α1/3 —so the correlated equilibrium pro-
vides significant benefit. It is trivial to extend this game to
more players (who unconditionally receive 0 payoffs) with-
out changing the equilibria.

All of the cited works represent the correlated equilibrium
distribution by rational probabilities p1, . . . , pj written as
fractions. The central idea for all of these protocols (except
Teague’s [27]) is to generate a list of size L, the least common
denominator of the fractions. The problem with this list-
based approach is that L may be very large with respect to
the size of the representation of the pis.

In our example, L = α1/3. On the other hand, the game
and its correlated equilibrium can be written in O(log α)
bits because all of the payoffs are positive integral values
that are bounded by a constant multiple of α. Therefore, in
order to run any of the cited protocols, the communication
complexity is Ω(L) = Ω(α1/3), which is exponential in the
size of the game and correlated equilibrium.

Although Teague’s protocol does not explicitly create a
list of size L, the communication complexity is related to the
inverse of the smallest non-zero probability in the correlated
equilibrium. In our example, this value is still Ω(α1/3).

Acknowledgments
We would like to thank Alon Rosen for suggesting the use of
non-interactive zero knowledge for conceptually simplifying
our original construction.

6. REFERENCES
[1] R. Aumann. Subjectivity and correlation in

randomized strategies. J. Math. Econ., 1:67–96, 1974.

[2] I. Bárány. Fair distribution protocols or how the
players replace fortune. Mathematics of Operation
Research, 17:327–341, May 1992.

[3] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Hastad,
J. K. S. Micali, and P. Rogaway. Everything provable
is provable in zero-knowledge. In Proc. CRYPTO 88,
pages 37–56. Springer Verlag, 1988.

[4] M. Ben-Or, S. Goldwasser, and A. Wigderson.
Completeness theorems for fault-tolerant distributed
computing. In Proc. 20th STOC, pages 1–10. ACM,
1988.

[5] E. Ben-Porath. Correlation without mediation:
Expanding the set of equilibria outcomes by “cheap”
pre-play procedures. Journal of Economic Theory,
80:108–122, 1998.

[6] M. Blum, A. D. Santis, S. Micali, and G. Persiano.
Noninteractive zero-knowledge. SIAM J. Computing,
20(6):1084–1118, 1991.

[7] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Proc. 42nd
FOCS, pages 136–147. IEEE Computer Society, 2001.

[8] R. Canetti, U. Feige, O. Goldreich, and M. Naor.
Adaptively secure multi-party computation. In
Proc. 28th annual ACM Symposium on Theory of
Computing, pages 639–648. ACM Press, 1996.

[9] D. Chaum, C. Crepeau, and I. Damg̊ard. Multi-party
unconditionally secure protocols. In Proc. 20th STOC,
Chicago, 1988. ACM.

[10] R. Cleve. Limits on the security of coin flips when half
the processors are faulty. In 18th ACM Symposium on
the Theory of Computing, pages 364–369, 1986.

[11] Y. Dodis, S. Halevi, and T. Rabin. A cryptographic
solution to a game theoretic problem. In Advances in
Cryptology — CRYPTO 2000, volume 1880 of LNCS,
pages 112–130. Springer-Verlag, 2000.

[12] Y. Dodis and S. Micali. Parallel reducibility for
information-theoretically secure computation. In
Advances in Cryptology — CRYPTO 2000, volume
1880 of LNCS, pages 74–92. Springer-Verlag, 2000.

[13] P. Feldman and S. Micali. Byzantine agreement in
constant expected time (and trusting no one). In Proc.
26th FOCS, pages 267–276. IEEE Computer Society,
1985.

[14] J. A. Garay, P. MacKenzie, and K. Yang. Efficient and
secure multi-party computation with faulty majority
and complete fairness. Technical Report 9, Eprint,
January 2004. http://eprint.iacr.org/2004/009.

[15] D. Gerardi. Unmediated communication in games
with complete and incomplete information. Journal of
Economic Theory, to appear.

[16] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game. In Proc. 19th STOC, pages
218–229. ACM, 1987.

[17] S. Goldwasser and L. Levin. Fair computation of
general functions in the presence of an immoral
majority. In Proc. CRYPTO 90, pages 77–93. Springer
Verlag, 1990.

[18] S. Goldwasser and S. Micali. Probabilistic encryption.
Journal of Computer and System Science, 28(2), 1984.

[19] S. Goldwasser, S. Micali, and C. Rackoff. The
knowledge complexity of interactive proof-systems.
SIAM. J. Computing, 18(1):186–208, Feb. 1989.

[20] M. Luby, S. Micali, and C. Rackoff. How to
simultaneously exchange a secret bit by flipping a
symmetrically-biased coin. In FOCS, pages 11–21,
1983.

[21] S. Micali and P. Rogaway. Secure computation. In
J. Feigenbaum, editor, Proc. CRYPTO 91, pages
392–404. Springer, 1992. Lecture Notes in Computer
Science No. 576.

[22] D. Moreno and J. Wooders. Coalition-proof
equilibrium. Games and Economic Behavior,
17:80–112, 1996.

[23] H. Moulin and J. P. Vial. Strategically zero sum
games. Internat. J. Game Theory, 7:201–221, 1978.

[24] J. Nash. Non-cooperative games. Annals of
Mathematics, 54:286–295, 1951.

[25] T. Rabin and M. Ben-Or. Verifiable secret sharing and
multiparty protocols with honest majority. In Proc.
21st STOC, pages 73–85. ACM, 1989.

[26] I. Ray. Coalition-proof correlated equilibrium: A
definition. Games and Economic Behavior, 17:56–79,
1996.

[27] V. Teague. Selecting correlated random actions. In
Proc. Financial Cryptography, 2004.

[28] A. Urbano and J. E. Vila. Computational complexity
and communication: Coordination in two-player
games. Econometrica, 70(5):1893–1927, 2002.

[29] A. Yao. Theory and application of trapdoor functions.
In Proc. 23rd FOCS, 1982.

[30] A. C.-C. Yao. How to generate and exchange secrets.
In Proc. 27th FOCS, pages 162–167. IEEE Computer
Society, 1986.

