
Caching in HTTP Adaptive Streaming: Friend or Foe?

Danny H. Lee, Constantine Dovrolis
College of Computing

Georgia Institute of Technology
dannylee, constantine@gatech.edu

Ali C. Begen
Video and Content Platforms Research and

Advanced Development
Cisco Systems

abegen@cisco.com

ABSTRACT
Video streaming is a major source of Internet traffic today and
usage continues to grow at a rapid rate. To cope with this new
and massive source of traffic, ISPs use methods such as caching
to reduce the amount of traffic traversing their networks and serve
customers better. However, the presence of a standard cache server
in the video transfer path may result in bitrate oscillations and
sudden rate changes for Dynamic Adaptive Streaming over HTTP
(DASH) clients. In this paper, we investigate the interactions
between a client and a cache that result in these problems, and
propose an approach to solve it. By adaptively controlling the
rate at which the client downloads video segments from the cache,
we can ensure that clients will get smooth video. We verify our
results using simulation and show that compared to a standard
cache our approach (1) can reduce bitrate oscillations (2) prevents
sudden rate changes, and compared to a no-cache scenario (3)
provides traffic savings, and (4) improves the quality of experience
of clients.

Keywords
Dynamic Adaptive Streaming over HTTP, MPEG DASH, Cache
Servers, Traffic Shaping, Quality of Experience

General Terms
Performance, Evaluation, Algorithms

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems

1. INTRODUCTION
Entertainment video is arguably the “killer application” of the

Internet today, enabled by a combination of network infrastructure
improvements, advances in processing power and modern video
streaming protocols like Dynamic Adaptive Streaming over HTTP
(DASH).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
NOSSDAV ’14 March 19-21 2014, Singapore, Singapore
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2706-0/14/03$15.00.
http://dx.doi.org/10.1145/2578260.2578270 .

DASH is an ISO standard that specifies manifest and media
formats for adaptive streaming over the Internet. In DASH, the
same media is encoded at different resolutions, bitrates and/or
frame rates, called representations. Each representation is virtually
or physically divided into chunks, called segments [5]. This
allows high quality video to be served to clients over HTTP, using
client logic to adaptively download segments based on available
bandwidth. It has benefits like transparently crossing firewalls,
a major problem that hampered adoption of prior UDP-based
approaches. It also can be deployed on existing HTTP and CDN
infrastructure, making it popular among content providers. For
consumers, the proliferation of consumer electronic devices like
game consoles, smart TVs and cellphones that support video
streaming makes it easy to watch video content.

This popularity means video streaming is a huge source of
traffic, and Cisco predicts that it will account for 69 percent of all
consumer Internet traffic in 2017 [3]. Therefore, consumer access
ISPs have an incentive to mitigate this load on their networks. One
approach that ISPs may use is the deployment of cache servers
within the access network to cache and store DASH segments. This
allows clients to be served from the cache rather than retrieving
every video segment from the origin server. Besides that, segments
can be served to clients at higher speeds and with lower latency.

However, the client adaptation algorithm may overestimate the
available path bandwidth when the requested segment is cached
and served directly from the cache server. This overestimation
may trigger the client to upshift to a higher bitrate representation.
If the subsequent segment for the higher bitrate representation
is not already cached, the cache will have to retrieve it from the
upstream, potentially the origin server. The increased delivery
delay will be observed by the client as a lower throughput. The
client may then downshift to a lower bitrate representation in
response to the reduction in the observed throughput. If the
subsequent segment for the lower bitrate representation is cached,
the observed throughput will increase leading to an overestimation
again. This repeated cycle is known as bitrate oscillation and is
highly undesirable, manifesting as switches between high and low
bitrate video every few seconds. An extended period of oscillation
depletes the playback buffer and causes the client algorithm to take
drastic measures to refill it at the expense of video quality.

This paper aims to identify the conditions that can result in
bitrate oscillations when a cache server exists in the path between
the client and origin server. We show that oscillations are due
to the erroneously high estimates introduced by a cache hit. We
propose a cache-based solution that uses shaping to control the
client download rate with an objective to avoid oscillations and
keep the playback buffer full.

First, we describe how a typical DASH client operates, then
we explain how the interactions with a cache server can cause
oscillations and buffer drains. We then describe an algorithm
to be implemented on a cache. We perform a discrete-time
simulation comparing our solution with standard cache and
no-cache configurations. We perform tests under both constant and
fluctuating bandwidths, and show that our solution provides a better
experience than both the standard and no-cache configurations.

The rest of this paper is organized as follows: In Section 2
we describe related work. Section 3 describes the problem and
identifies the root cause. Section 4 describes our solution approach.
Section 5 provides details about our simulation environment.
Section 6 is an analysis of our results. Finally we have our
conclusion and future work in Section 7.

2. RELATED WORK
The problematic interactions that occur when a cache server is

introduced into a video streaming path is a relatively new topic, and
the effects are still being explored. Mueller et al. [8] focus on the
interactions of two or more clients through a proxy cache and aim
to mitigate the negative effects of competition with a client-based
solution. Our focus is on the simplest case where negative effects
can occur with a single client and the presence of a cache. We aim
to identify the most fundamental cause of oscillations, and solve it
directly with a cache-based shaping solution.

Other authors have leveraged web distribution network
infrastructure such as cache servers as a benefit instead of a
problem source. Liu et al. [6] specifically use the distribution
property of CDN servers to achieve higher video streaming rates
by using parallel downloads from multiple different servers. In
this case, they assume that the CDN network does the work of load
balancing, ensuring that every request will result in a cache hit.

There has been work to modify cache servers to improve video
scalability by co-locating video data near to clients [1], cache-based
selection and prefetching of video streams based on popularity [10]
and its application to RTSP [9]. Traffic shaping has been proposed
to improve quality of experience by controlling requested bitrates
from competing video streaming clients [4]. Although these papers
were written in different contexts, they include several concepts
that are fundamental to cache servers and shaping video streams
that we would like to leverage in our work.

3. INTERACTIONS LEADING TO
OSCILLATIONS

One DASH characteristic is that video segments are transferred
over HTTP. This has the side effect that video segments are eligible
to be stored in cache servers. Another property is that the quality
of video playback is adaptive, based on a client algorithm. Our
earlier study [2] explored the behavior of selection algorithms
for various clients, and a common concept was identified. If the
current transfer indicates the available bandwidth can support a
higher representation bitrate, the client will use that higher bitrate
when requesting the next segment. Similarly, when the bandwidth
is insufficient, a lower representation bitrate will be used.

Cache servers are primarily deployed as a method of reducing
upstream bandwidth. A typical cache server intercepts HTTP
transfer requests coming from clients and checks if that file exists
on the cache. If it exists and has not expired, it is served at
the highest available speed, allowing lower latency and higher
bandwidth than requests to the origin server. If the file does not
exist or has expired, the cache server makes a request to the origin

server and serves it to the client at a speed limited by the upstream
bandwidth.

Now consider the scenario when a cache server exists in the path
between the origin server and the client. We assume that the fair
share available bandwidth between the origin server and the cache
server Cs (Server-cache) is lower than the bandwidth between the
cache server and the client Cc (cache-Client). This is a common
situation, such as an access ISP cache server experiencing high
traffic and multiple requests to a popular video content server, while
the path to the customer watching the video is uncongested.

For a completely uncached video, clients should not experience
any bitrate oscillations from the presence of the cache server. The
cache server will act as a pass through, retrieving segments from the
origin server through the bottleneck link. As playback progresses,
the client algorithm will converge to download segments at the
representation bitrate supported by Cs. By the end of playback,
the cache will be populated with sequential segments belonging to
that representation. Now let us examine the situation that results in

ClientCache ServerOrigin Server

Request Segment

with 1.5 Mbps bitrate

Cache Hit

Increase

requested

bitrate

Return Segment

at 5 Mbps

Request Segment

with 2 Mbps bitrate

Cache MissRequest Segment

with 2 Mbps bitrate

Return Segment

at 1.6 Mbps

Return Segment

at 1.6 Mbps

Decrease

requested

bitrate
Request Segment

with 1.5 Mbps bitrate

Cache Hit

Return Segment

at 5 Mbps

Increase

requested

bitrate

Figure 1: Bitrate Oscillation Sequence Diagram

bitrate oscillations. LetBf be a representation bitrate of a segment,
Bf+1 be the next higher bitrate, Bmax be the maximum bitrate.
Consider following conditions:

1. Segments with representation bitrate Bf are cached
2. Bf < Bmax

3. Bf < Cs < Bf+1 < Cc

When the client requests segments at bitrate Bf , they are delivered
from the cache at the maximum rate. Therefore the client will
use the higher rate Cc to estimate the representation bitrate for the
next segment and select Bf+1. However, since the higher bitrate
segment is uncached, the request will be served at the lower rate
Cs. As Cs is unsustainable for the representation bitrate Bf+1,
the streaming algorithm will choose a lower bitrate Bf for the next
segment. This request results in a cache hit and starts the cycle
again. One oscillation is shown in Figure 1, where Cs = 1.6 Mbps,
Cc = 5 Mbps, Bf = 1.5 Mbps, and Bf+1 = 2 Mbps.

Another consequence of selecting a high bitrate segment based
on an erroneous bandwidth reading is that transfers will be
slower than real time, as Bf+1

Cs
> 1. The client maintains a

playback buffer to hold downloaded segments, and the download
process needs to be at least as fast as the playback rate, or the
playback buffer will eventually drain. In some clients, the selection
algorithm will resort to a sudden reduction in bitrates so the
download process can refill the buffer as soon as possible. In the
worst case, playback can pause if the buffer is empty.

We believe that this oscillation scenario can occur independent of
the cache replacement policy, as we are dealing with a single client
and video. If we expand the number of clients and videos, cache
replacement policy and disk sizes may become a factor, but for our
current scenario, we assume that the cache server has sufficient disk
capacity to hold all representations of a video.

4. THE VISIC CACHE
In this section we describe our approach to create a video-aware

cache server, and implementation issues that need to be considered.
We term our solution ViSIC, for Video Shaping Intelligent Cache.

4.1 Monitoring Path Bandwidths
We collect path bandwidth measurements as inputs to our

shaping algorithm, monitoring transfers to origin servers and
clients. There are other methods of collecting available bandwidths
in DASH transfers [7], but we wish to leverage the unique
properties of cache servers for our measurements.

Cache servers typically run on powerful hardware and serve a
large number of clients, and also service both video and standard
HTTP requests. This means that bandwidth measurements can
be derived from multiple sources, not just a single video stream.
In addition to taking point measurements, we use an exponential
moving average in our algorithm to help reduce the impact of
fluctuations. Let A(t) be the instantaneous rate of the segment at
time t, and the averaged bandwidth Â is calculated in (1).

Â =


(1− α)Â(t− 1) + αA(t) if t >0
A(t) if t = 0

(1)

This is calculated from the cache server to both clients and origin
servers, producing Âs for the averaged server bandwidth and Âc

for client bandwidth. We maintain the last T samples of these
values, taken once every second, for identifying long duration
changes in bandwidth. We set α to 0.1 to compute the weighted
average to reduce the impact of temporary fluctuations and T to 15
seconds to have a long history of measurements to detect changes.

4.2 Shaping of Traffic from the Cache
As we identified in Section 3, the main problem of oscillations

results from the false bandwidth readings from segments served
from the cache. To prevent this, we propose a cache-based
algorithm that uses traffic shaping to ensure clients will not request
segments that exceed the path bandwidth.

Our secondary objective is to provide a high quality of
experience with as few bitrate transitions as possible. This
means the shaping algorithm should be resistant to temporary
bandwidth spikes and dips. When the bottleneck lies between the
origin server and cache server, our algorithm can compensate for
both bandwidth spikes and dips, but if the bottleneck is between
the cache server and client, shaping can only compensate for
bandwidth spikes.

The first part of the algorithm is to find a target bitrate with index
φtarget that we want the client to use as a result of shaping. Let the

set of representation bitrates be B sorted in ascending order, with
each element Bi ∈ B having an index φ. Let Breq be the bitrate
requested by the client with index φreq . We calculate candidate
bitrates based on the averaged bandwidths: Bs1 at index φs1 is the
maximum bitrate supported by the instantaneous transfer rate As,
Bs2 at index φs2 is the maximum bitrate supported by Âs. Bc1

at index φc1 and Bc2 at index φc2 are defined similarly for client
transfer rates Ac and Âc, respectively. This can be expressed using
the formulae in (2).

φs1 = argmax
i
{Bi < As}

φs2 = argmax
i
{Bi < Âs}

(2)

We define three conditions for detecting long duration bandwidth
changes: increaseBWs, increaseBWc and decreaseBWs.
increaseBWs is true if (1) φs1 > φreq and (2) the last T
samples of Âs are greater than Breq . This indicates a bandwidth
increase if the average bandwidth over the last T seconds is
consistently higher than the requested bitrate. The condition
increaseBWc is defined similarly using the client values φc1 and
Âc. decreaseBWs is true if (1) φs1 < φreq and (2) the last T
samples of Âs are smaller than Breq , indicating that the client is
requesting a bitrate that is too high. We set T to 15 seconds, to
limit the number of bitrate changes per minute to four.

Using the above information, we implement the shaping as
described in Algorithm 1. The main case we want to handle is
when Âs ≤ Âc and a segment is cached (lines 3 to 7): we choose
between φreq or φs1 for the target rate. We use φs1 if As can
support a higher bitrate, otherwise we keep the client at the same
bitrate. Note that a bandwidth decrease is treated the same as
steady bandwidth, as we want to leverage the chance that the next
segment is also cached. In the case where the requested segment is
not cached, we smooth out temporary fluctuations by only reacting
to long duration increases and decreases (lines 9 to 13).

If Âs > Âc, we can only compensate for transient bandwidth
increases (lines 16 to 20), and use the candidate index derived from
client measurements. Note that the available bandwidth Cc may be
lower than the shaped rate, and may be an external limiting factor.

Once φtarget is decided, simply using the corresponding bitrate
Btarget directly for shaping is not ideal, as it does not maximize a
high bandwidth path from cache server to client. Therefore in lines
22 and 23 we derive a target shaping rateRtarget, which is the next
higher representation bitrate multiplied by β, a constant less than
1. The objective is to serve segments at a higher rate than Btarget,
but lower than a rate that will cause the client to upshift. For the
simulation, we set β to 0.9 to maximize the bandwidth.

4.3 Determining Representation Bitrates
The key to our approach is for the cache server to recognize

client requests for segments with specific representation bitrates,
and shape eligible transfers. This information can be directly read
from the Media Presentation Description (MPD) file as part of
the setup phase of a DASH stream, or by inference methods. A
ViSIC implementation can use the following ways to access this
information depending on the situation:

1. Directly reading the MPD file:
If the content provider uses a plaintext MPD file sent over
an unencrypted channel, the file can be read directly by the
cache server before it is sent to the client.

2. Duplicating the MPD request:
If the client requests the MPD file over an encrypted channel
like HTTPS, the cache server can have additional logic to
identify this event and duplicate the request. One approach

Algorithm 1 ViSIC shaping algorithm

1: if Âs ≤ Âc then
2: if isCached(Segment) = True then
3: if increaseBWs then
4: φtarget ← φs1

5: else
6: φtarget ← φreq

7: end if
8: else
9: if increaseBWs or decreaseBWs then

10: φtarget ← φs1

11: else
12: φtarget ← φreq

13: end if
14: end if
15: else
16: if increaseBWc then
17: φtarget ← φc1

18: else
19: φtarget ← φreq

20: end if
21: end if
22: j ← φtarget + 1 {Choose the next higher bitrate}
23: Rtarget ← β ∗Bj {Reduce the rate slightly for shaping}

is by masquerading as a client and requesting a new stream
to get the MPD.

3. HTTP transfer inference:
DASH transfers follow certain characteristics, such as
requesting successive segment files at regular intervals in
steady state. This knowledge can be used to infer information
about video segments. E.g., file names can be directly read
from HTTP request headers, and patterns in the naming of
files can be used to get the segment sequence. The bitrate
of each segment can be estimated by dividing file size by
segment duration.

5. SIMULATION
We created a discrete-time simulator written in python to validate

our results. This simulator includes clients, servers and caches, and
we describe their behavior in this section.

5.1 Simple Client
The simplified player consists of a download process, a playback

process and a playback buffer. The download process fills the
buffer with segments and the playback process consumes segments
in the buffer. Each segment contains τ seconds of video, and the
buffer can hold up to 30 seconds of segments. Let buffer(t) be
the amount of buffered seconds at time t, and θ be the low buffer
threshold. The playback process starts when the playback buffer is
full, and consumes segments in real time. Playback pauses when
the buffer is empty and resumes when the buffer exceeds θ. We set
τ to two and θ to 10 seconds.

The download process operates in two states: buffering state and
steady state. In buffering state, it downloads segments one after
the other without delay. In steady state it retrieves a segment once
every τ seconds. The client starts in buffering state, and switches
to steady state when the playback buffer is full. For each segment,
an algorithm is used to select representation bitrates based on
throughput measurements and current buffer size. Throughput
measurements use the exponential moving average Â based on

instantaneous throughput A(t), where t is the current time. This
is shown in (3). For our simulation, δ is set to 0.2 to compute the
weighted average towards historical values.

Â =


(1− δ)Â(t− 1) + δA(t) if t >0
A(t) if t = 0

(3)

Let Bi be an element in the set of representation bitrates sorted
in ascending order, where i is the index in the set. The client
determines two candidate bitrate indices φ1 and φ2 using the
formulae in (4). We use c = 0.9 to leave a buffer so small
fluctuations in bandwidth do not cause the client to switch bitrates.

φ1 = argmax
i
{Bi < c ∗A}

φ2 = argmax
i
{Bi < c ∗ Â} (4)

Let Bf be the current representation bitrate, with index φf . At the
start of the simulation, Bf is initialized to B0. During runtime,
if buffer(t) < θ and φ1 < φf , ‘Panic Mode’ is triggered. The
client goes into buffering state and sets Bf to B0, aiming to refill
the buffer as soon as possible. Algorithm 2 describes the bitrate
selection process.

Algorithm 2 Client segment bitrate selection
1: if buffer(t) > θ then
2: if φ2 <φf and φ1 <φf and φf >0 then
3: Decrease Bf to the next lower bitrate
4: else if φ2 >φf and φ1 >φf and φf <φmax then
5: Increase Bf to the next higher bitrate
6: end if
7: else if buffer(t) ≤ θ and φ1 < φf {‘Panic Mode’} then
8: Bf ← B0

9: bufferingMode← True
10: end if

5.2 Origin Server
The origin server holds segments that can be requested by the

client, stored internally as a list of file names. When a request is
made to the server, it will check if the file exists before accepting
the transfer. For our simulation, we assume that the origin server
holds all the possible representations and their segments specified
in the MPD.

5.3 Standard Cache
In our simulation we model the cache servers as cut-through,

that is, uncached requests do not need to be fully downloaded by
the cache server before they are served to clients. The standard
cache operates as follows: it intercepts requests and checks if the
file exists on disk. If it exists, the file will be served out at the
cache-client bandwidth Cc. If not, a new transfer from the origin
server will be started and the file will be served to the client with
an increased delay accounting for the path between the cache and
origin server. If the bottleneck link lies in the path to the origin
server, the overall effective transfer rate will be Cs.

6. EVALUATION

6.1 Test Setup
For our evaluation of ViSIC, we implemented the network

depicted in Figure 2 with a single origin server, cache server and
client connected by links with variable bandwidths. The cache
servers that we evaluated are a standard cache and a ViSIC cache.

Cache

Server
Client

Origin

Server

Cs Cc

Figure 2: Simulation Topology

We also evaluated the no-cache scenario. For all simulations,
we used five representation bitrates: 256 Kbps, 768 Kbps, 1.5
Mbps, 2.8 Mbps, 4.5 Mbps. The cache servers were populated
with 1.5 Mbps segments. We varied the simulation bandwidths
for each test to compare the performance (1) under constant
bandwidth and (2) under varying bandwidth. All experiments were
performed on a Windows 7 Home Premium 64-bit host running
on an Intel R©CoreTMi5-3320M 2.6 GHz processor with 16 GB of
RAM. The python version used was 2.7.3.

6.2 Constant Bandwidth
In this test, we wanted to verify that clients would experience

bitrate oscillation under the situation described in Section 3, and
that ViSIC could avoid that. We set the bottleneck bandwidth Cs

to a constant 2 Mbps and Cc to 5 Mbps. In Figure 3, we can see

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200

R
eq

ue
st

ed
 R

ep
re

se
nt

at
io

n
B

itr
at

e
(in

 K
bp

s)

Time (in Seconds)

No-Cache
Standard Cache

ViSIC
Avail BW

Figure 3: Bitrates Requested by the Client

that for a standard cache with the 1.5 Mbps segment cached, the
download occurs at a high rate causing the client to switch up to
use the 2.8 Mbps bitrate for the next segment, triggering a cache
miss. This repeats multiple times, resulting in almost constant
bitrate oscillations.

The problem of buffer draining manifests in the standard cache
test at 120 s: There is a sudden drop from the 2.8 Mbps to
the 256 Kbps bitrate due to the client going into ‘Panic Mode’.
The no-cache and ViSIC cache avoid this disruptive behavior
completely and stay at a constant 1.5 Mbps representation.

6.3 Variable Bandwidth
In this test, we wanted to evaluate the performance of ViSIC

against the no-cache and standard cache under varying bandwidths.
KeepingCc constant at 5 Mbps, we variedCs to produce the graphs
shown in Figure 4. From 0 to 200 s we test the effect of bandwidth
spikes and dips when the client retrieves cached segments, with
varying durations of 5, 15 and 30 seconds. ViSIC causes the client
to increase bitrate only if the bandwidth increase is longer than 15
seconds, and ignores all bandwidth dips.

From 200 to 320 s we test how bandwidth decreases affect
non-cached segments by raising the available bandwidth to 4 Mbps
and then reducing it to 2 Mbps to trigger a cache hit. ViSIC

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100 200 300 400 500

R
e

q
u

e
s
te

d
 R

e
p

re
s
e

n
ta

ti
o

n
 B

it
ra

te
 (

in
 K

b
p

s
)

Time (in Seconds)

No-Cache
ViSIC

Avail BW

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100 200 300 400 500

R
e

q
u

e
s
te

d
 R

e
p

re
s
e

n
ta

ti
o

n
 B

it
ra

te
 (

in
 K

b
p

s
)

Time (in Seconds)

Standard Cache
Avail BW

(a) Avail BW and Standard Cache

(b) Avail BW, No-Cache and ViSIC

Figure 4: Available BW and Bitrates Requested

shaping causes the client to request uncached segments if the
available bandwidth is high, but reverts to shaping to cached
segments when the bandwidth decrease is longer than 15 seconds.

The last section from 320 s onwards shows the behavior of
clients requesting uncached segments in the presence of bandwidth
spikes. ViSIC’s algorithm causes the client to retrieve cached
segments even if Cs is very low.

As can be seen from the graphs in Figure 4(a), standard cache
causes the client to start oscillating when it serves cached segments,
and reacts quickly to changes in bandwidth, resulting in sudden
bitrate changes. In Figure 4(b), we can see that in the no-cache
scenario, the client also reacts quickly to drops in bandwidth. We
discuss this reaction in the following section using metrics.

6.3.1 Bitrate Stability
We define the instability metric as the ratio of consecutive bitrate

changes over the number of segments retrieved, and calculated this
for every five segments in the video. A higher instability metric
indicates a poorer quality of experience for the viewer, manifesting
as sudden bitrate increases or drops.

The results are shown in Figure 5. The average instability for
ViSIC is lower than the no-cache and standard cache scenarios.
ViSIC has a maximum instability of 0.4 at the start of the
simulation, and can be explained by the client successively
increasing bitrates during initial buffering. Following that, there

are no other major bitrate changes, only single level transitions of
metric 0.2. The no-cache scenario performs poorly in reaction to
sudden changes in available bandwidth, and the standard cache
constantly oscillates, resulting in higher instability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

In
st

ab
ili

ty
 M

et
ric

Segment Count

No-Cache
Standard Cache
ViSIC

Figure 5: Instability Metrics

6.3.2 Buffer Fullness
Another quality of experience measurement is how the buffer

level varies with time. Ideally, the initial buffering stage of video
playback should be as short as possible, and the buffer should
be close to full over the course of playback. We examine the
buffer levels in Figure 6: ViSIC fills the playback buffer and starts
playback at 11.9 s, compared to no-cache at 14.2 s and standard
cache at 15.6 s.

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500

S
iz

e
of

 C
lie

nt
 B

uf
fe

r
(in

 S
ec

on
ds

)

Time (in Seconds)

No-Cache
Standard Cache

ViSIC

Figure 6: Playback Buffer Levels1

Besides preventing ‘Panic Mode’ in clients, a full playback
buffer also allows the viewer to seek forward or backward in
the buffered range. Throughout the simulation, ViSIC keeps
the playback buffer near full regardless of bandwidth changes.
The no-cache case drains the buffer in the presence of drops in
available bandwidth at 180 and 320 s. The standard cache performs
the worst, going into ‘Panic Mode’ at 120, 180 and five more times
between 330 and 480 s.

1Due to data density, markers have been omitted. Better in color.

7. CONCLUSIONS AND FUTURE WORK
In this paper we described how the introduction of a cache

server can result in bitrate oscillations in DASH systems. We
identified that cache hits cause erroneous bandwidth readings in
clients, which may then request uncached higher quality segments
and result in oscillations. We also found that oscillations drain the
playback buffer, causing playback disruptions as clients attempt
to refill the buffer. We introduced ViSIC, a cache-based approach
that uses shaping to eliminate oscillations. We used simulations to
prove ViSIC has higher stability and buffer fullness than standard
cache and no-cache configurations under different bandwidth
scenarios. ViSIC retains cache server benefits like reducing
upstream traffic and serving segments at high bandwidth.

For future work, we are in the process of conducting experiments
on a testbed setup using real clients and modified Squid cache
server software. We also plan to study the application of the
shaping algorithm when multiple clients with different Cc values
watch the same video through a cache server. Scalability is another
concern, as the algorithm needs to be able to scale to monitor
servers in the order of hundreds and clients in thousands. Another
area for future work is to compare DASH-aware cache replacement
policies in relation to cache server throughput and latency.

8. ACKNOWLEDGMENTS
The authors are grateful to Ashok Narayanan and Saamer

Akhshabi. Ashok described the instability problem at the Adaptive
Media Transport Workshop, organized by Cisco, in June 2012.
Saamer provided guidance and contributed to discussions that led
to this paper.

9. REFERENCES
[1] S. Acharya and B. Smith. Middleman: A video caching

proxy server. In Proceedings of ACM NOSSDAV, 2000.
[2] S. Akhshabi, A. C. Begen, and C. Dovrolis. An experimental

evaluation of rate-adaptation algorithms in adaptive
streaming over HTTP. In Proceedings of ACM MMSys, 2011.

[3] Cisco Systems Inc. Cisco Visual Networking Index: Forecast
and Methodology, 2012 - 2017. Technical report, May 2013.

[4] R. Houdaille and S. Gouache. Shaping HTTP adaptive
streams for a better user experience. In Proceedings of ACM
MMSys, 2012.

[5] ISO Standard: Information technology – Dynamic adaptive
streaming over HTTP (DASH) – Part 1: Media presentation
description and segment formats, 2012.

[6] C. Liu, I. Bouazizi, M. M. Hannuksela, and M. Gabbouj.
Rate adaptation for dynamic adaptive streaming over HTTP
in content distribution network. Signal Processing: Image
Communication, 27(4):288–311, 2012.

[7] R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang.
QDASH: A QoE-aware DASH system. In Proceedings of
ACM MMSys, 2012.

[8] C. Mueller, S. Lederer, and C. Timmerer. A proxy effect
analysis and fair adaptation algorithm for multiple competing
dynamic adaptive streaming over HTTP clients. In
Proceedings of VCIP, 2012.

[9] R. Rejaie and J. Kangasharju. Mocha: A quality adaptive
multimedia proxy cache for internet streaming. In
Proceedings of ACM NOSSDAV, 2001.

[10] R. Rejaie, H. Yu, M. Handley, and D. Estrin. Multimedia
proxy caching mechanism for quality adaptive streaming
applications in the Internet. In Proceedings of IEEE
INFOCOM, 2000.

