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Preface by Tom Mitchell

Understanding the process of learning, and giving this capability to com-
puters, is among the most ambitious goals of modern computer science. The
past decade has seen research progress toward this goal along several fronts:
developing new learning algorithms, modelling human learning processes, and
theoretically characterizing the complexity of learning.

Among the most significant new themes over this decade is the exploration
of how the learner’s goals and prior knowledge drive the learning process. Before
1980, the vast majority of research on learning focussed on the task of estimat-
ing or hypothesizing an unknown function given only a sample of its inputs and
outputs, with no explicit notion of the learning goal. This research grew out of
the tradition of earlier work on statistical pattern recognition, and early stud-
ies in psychology on learning “nonsense” concepts such as abstract geometric
patterns. But over time many researchers became convinced that this was too
simple a formulation of the learning problem to model the surprising learning
skills exhibited by humans.

To see the issue here, consider learning to play a game such as chess. Suppose
you have just lost your queen, and wish to learn the general pattern of board
pieces that led to this failure. Inductive learning methods require hundreds or
thousands of such failures (and non-failures), to hypothesize which of the many
board features distinguish the positions in which you lose your queen from those
in which you do not. But people are typically able to learn such concepts from
only a handful of examples. How? People appear to direct learning towards
concepts relevant to their goals — by explaining the cause of their failure, and
thereby noticing the relevant board features (e.g., the opposing knight that was
simultaneously threatening your King and Queen) while ignoring the irrelevant
(e.g., the three pawns in the second row). The oversimplification of early work
on learning was that it omitted any reference to the learner’s goals, and therefore
could not model this kind of learning by explaining.

During the 1980’s researchers began exploring the role of explanations, goals,
and explicit prior knowledge in the learning process. Explanation-based learn-
ing algorithms were developed that generalized more accurately than earlier
inductive approaches, by explicitly taking into account the learning goal (e.g.,
to avoid losing the queen) and related prior knowledge (e.g., the legal moves
of chess). The key insight underlying this work was that learning is much eas-
ier to understand and duplicate in computers if the learning goal and related
knowledge are explicitly manipulated by the learning algorithm.

This initial work led to a flurry of research on goal-driven learning, ex-
ploring more broadly the ways in which learning processes are influenced by
learning goals. Whereas initial research considered how learning goals influence
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the process of generalizing from examples, more recent work has considered how
learning goals drive other processes as well, such as the process of experiment-
ing to collect new training data, and the process of generating useful learning
subgoals. Whereas the initial research produced simplified, brittle algorithms
for using the learning goal to guide generalization, more recent work has pro-
duced significantly more robust and practical methods and has raised questions
concerning the origins of learning goals, the role of goals in guiding other learn-
ing tasks, and how to choose appropirate learning strategies to achieve learning
goals.

Current research in goal-driven learning deals with a wide range of issues
dealing with how and when learning goals arise and the ways in which goals
influence a broad range of learning processes. These issues, which are now
being addressed in machine learning, cognitive psychology, and education, are
the focus of this volume, which summarizes recent work on goal-driven learning,
and presents a number of new research results in this area. As you will see from
many of the chapters, the field is actively exploring new directions, and many
of the approaches are still under development. Although we still lack a full
understanding of how to best use goals to guide the learning process, it seems
obvious that if we are to progress in understanding learning, then we must take
into account more and more of the the rich context in which it occurs. Taking
learning goals into account is one essential step, and it is difficult to imagine a
future for machine learning or cognitive science in which this does not play a
central role.

Professor Tom M. Mitchell Carnegie Mellon University Pittsburgh, PA



Editors’ Preface

In cognitive science, artificial intelligence, psychology, and education, a grow-
ing body of research supports the view that the learning process is strongly
influenced by the learner’s goals. Several experimental studies have shown that
people with different goals process information differently. Studies in educa-
tional contexts have shown that different types of goals influence learning in
different ways, and have attempted to use this insight in the design of effec-
tive educational environments. The importance of learner goals is supported by
computational machine learning models, which provide functional arguments
for goal-based focusing of learner effort, and from psychological evidence for
the importance of student goals in educational settings. Investigators in each
of these areas have independently pursued the common issues of how learning
goals arise, how they affect learner decisions of when and what to learn, and
how they guide the learning process.

The fundamental tenet of goal-driven learning is that learning is largely an
active and strategic process in which the learner, human or machine, attempts to
identify and satisfy its information needs in the context of its tasks and goals, its
prior knowledge, its capabilities, and environmental opportunities for learning.
It is increasingly evident that investigation of goal-driven learning can benefit
from a multidisciplinary effort employing diverse perspectives on a common
research agenda. To this point, however, research in goal-driven learning has
largely been confined to isolated efforts; with little framework to connect related
results and to aid in their analysis. The purpose of this book is to establish such
a framework, to collect and solidify existing results on goal-driven learning, and
to point the way for future investigations of goal-driven learning.

The book begins with a discussion of fundamental questions for goal-driven
learning: the motivations for adopting a goal-driven model of learning, the
basic goal-driven learning framework, the specific issues raised by the framework
that a theory of goal-driven learning must address, the types of goals that can
influence learning, the types of influences those goals can have on learning,
and the pragmatic implications of the goal-driven learning model (chapter 1).
The remainder of the book is divided into two parts. The first is a collection
of recent research papers that serve as case studies in goal-driven learning.
Each paper addresses a piece of the goal-driven learning puzzle, reflecting a
particular research perspective from one of the several disciplines that have been
investigating this area in recent years. These works address issues such as the
justification of goal-driven learning models through functional arguments about
the role and utility of goals in learning (chapters 2-4), the justification of such
models through cognitive results (chapters 5, 6, 14), goal-based processes for
deciding what to learn (chapters 7, 8) and for guiding learning and the learning
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process (chapters 4, 7, 9-13), and pragmatic implications of goal-driven learning
for design of instructional environments (chapters 14, 15).

The second part of the book is based on the Symposium on Goal-Driven
Learning organized by David Leake and Ashwin Ram at the Fourteenth Annual
Conference of the Cognitive Science Society in Bloomington, Indiana, in 1992.
It presents an overview of the workshop discussion and a collection of papers
from the symposium panelists representing their individual perspectives on fun-
damental issues and their proposals for fruitful future directions in goal-driven
learning research.

The works in this volume reflect both the diversity of goal-driven learning
research and the fundamental relationship of different approaches within the
broader goal-driven learning framework. Together, they provide a comprehen-
sive overview of recent research in goal-driven learning and illuminate on-going
investigations and open issues to provide a foundation for future study of goal-
driven learning.
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Chapter 1

Learning, Goals, and Learning

Goals

Ashwin Ram and David B. Leake

1 Why goals?

In cognitive science, artificial intelligence, psychology, and education, a grow-
ing body of research supports the view that learning is largely a goal-directed
process. Experimental studies show that people with different goals process in-
formation differently; work in machine learning presents functional arguments
for goal-based focusing of learner effort. Recent work in these fields has focussed
on issues of how learning goals arise, how they affect learner decisions of when
and what to learn, and how they guide the learning process. It is increasingly
evident that investigation of goal-driven learning can benefit from bringing these
perspectives together in a multidisciplinary effort (Leake & Ram, 1993).

The central idea underlying goal-driven learning is that, because the value of
learning depends on how well the learning contributes to achieving the learner’s
goals, the learning process should be guided by reasoning about the information
that is needed to serve those goals. The effectiveness of goal-driven learning de-
pends on being able to make good decisions about when and what to learn, on
selecting appropriate strategies for achieving the desired learning, and on guid-
ing the application of the chosen strategies. Research into such topics includes
the development of computational models for goal-driven learning, the testing
of those models through psychological experiments and empirical experiments
with computer programs, the justification of the models through functional ar-
guments about the role and utility of goals in learning, and the use of models
of goal-driven learning in guiding the design of educational environments. The
common themes in these research efforts are the investigation of types of learn-
ing goals, the origins of learning goals, and the role of goals in the learning
process.

Research on goal-driven learning in artificial intelligence has been motivated
largely by computational arguments. The problem of combinatorial explosion
of inferences is well known; in any realistic task domain, time and resource



constraints prohibit consideration of all but a few of the possible inferential
paths. Consequently, any reasoner, human or machine, must focus its attention
and resources on pursuing those inferential paths that are likely to be most
useful. Similarly, in any realistic situation, there are several different types of
learning that a reasoner might perform, several kinds of new knowledge that a
reasoner might acquire, and several kinds of reformulation or reorganization of
existing knowledge that a reasoner might carry out. Again, due to time and
resource constraints it is only practical to perform a few of these operations.
Consequently, the reasoner must focus its attention and resources on executing
the learning operations that are likely to be most useful. Because the utility of
an inference or a piece of knowledge can best be evaluated relative to a particular
task or goal, goal-based considerations must guide reasoning and learning.

In addition to these computational arguments for goal-driven learning, re-
search in goal-driven learning has a cognitive basis in psychological research.
This research has established much evidence for the influence of goals and be-
liefs on human learning, and for the use of active, strategic, and goal-driven
processes in many kinds of learning that humans perform. However, many
questions remain concerning the kinds of goals that people pursue, the condi-
tions under which those goals influence learning, and the kinds of learning that
are influenced by those goals.

Research in cognitive science combines the cognitive perspective of psychol-
ogy with the computational perspective of artificial intelligence, developing com-
putational models of human learning that are evaluated using computational
metrics as well as by comparison with human performance. Research in edu-
cation has also been concerned with psychological data about human learning,
but from a pragmatic perspective. This research has attempted to use empirical
evidence to guide the design of instructional and educational scenarios so as to
facilitate learning, taking as its starting point the evidence for facilitation of
certain kinds of learning by particular kinds of goals. These scenarios have also
been used as the basis for further psychological experimentation to validate the
underlying theories. In this chapter, we describe a framework for goal-driven
learning and its relationship to prior and current theories from each of these
perspectives.

2 An everyday example

Goal-driven learning is triggered when a reasoner needs to learn in order to
improve its performance at some task. A goal-driven learner determines what
to learn by reasoning about the information it needs, and determines how to
learn by reasoning about the relative merit of alternative learning strategies in
the current circumstances. For example, for a first-time stereo buyer, the goal of
getting good buy on a stereo may give rise to at least two learning goals: a goal
to learn the best sources for sound equipment and to a goal to learn how to judge



the merits of competing equipment. Each of these learning goals may trigger
learning subgoals. In order to learn the best place to buy sound equipment, the
buyer may first have to learn general criteria for what constitutes a good store for
buying sound equipment, and then specifics about prices, service, etc. to classify
different stores. In order to learn how to judge particular equipment, the buyer
will have to learn about the classes of alternatives available and about specific
equipment within those classes. Thus some learning goals involve gathering
information in the external world, while others involve reformulating or changing
information that is already known, by operations such as forming generalizations
OT Teorganizing memory.

In order to perform the desired learning, the stereo buyer must select strate-
gies for accomplishing each of its learning goals. For example; the buyer may
choose between learning strategies including asking others’ opinions, reading
magazine articles, forming inductive or explanation-based generalizations from
demonstrations of equipment, or even disassembling equipment to determine
the quality of its electronic components. Learning strategy selection depends
on factors such as the buyer’s prior knowledge, the buyer’s resources (e.g., how
much time the buyer can spend on the shopping process), opportunities (e.g.,
happening to meet an expert on sound equipment at a party), and the buyer’s
own abilities (e.g., whether the buyer has the expertise to judge the quality of
equipment by disassembling it).

This example illustrates the value of goal-driven learning in focusing learner
effort, and also suggests the range of roles that goals can play in influencing
learning. Goals determine how much effort to allocate to performance tasks
(e.g., the task of buying a stereo), indirectly influencing the resources available
for the learning that will be performed as part of that task. Goals also determine
the focus of attention when new information is received as input (e.g., focusing
attention on announcements of stereo sales). They determine what should be
learned (e.g., determining that it is worthwhile to generalize about relationships
between store types and prices). They give criteria for evaluating the results of
learning and deciding what learned information to store (in this example, the
value of learning is its usefulness for guiding the shopping decision). Table 1
summarizes these and other possible roles of goals in learning. In the following
sections we concentrate on developing a framework and terminology on which to
base our analysis of goal-driven learning, and after developing that framework
we return to the ways that goals affect learning in section 8.

3 Towards a planful model of learning

As the previous example illustrates, a goal-driven learner makes decisions about
what, how, and when to learn in order to further its goals. In this view, learning
can be considered a “planful” process (e.g., Etzioni, Hanks, Weld, Draper, Lesh,
& Williamson, 1992; Hunter, 1990/chapter 2; Leake/chapter 20; Michalski &



Guiding the performance task by:
e Determining the resources made available to the performance task
e Guiding the control or search procedure used in the performance task
e Guiding retrieval of plans, problem solutions, and other types of knowledge
e Focusing attention on certain aspects of the input
e Guiding the evaluation of the outcome of the performance task

Guiding the learning task, by:

Specifying the target of learning (desired output of a learning algorithm)

e Selecting the learning algorithms to be used

Constraining the learning process (for example, influencing the policies
under which the learning algorithms operate)

e Focussing the search for information needed to carry out the learning

e Determining when learning should be attempted

e Aiding evaluation of results of learning with respect to the desired output
Guiding storage, by:

e Selecting what to store

e Determining how learned knowledge is indexed

Table 1: Ways in which goals can influence learning.




Ram, chapter 21; Pryor & Collins, 1992/chapter 10; Ram & Cox, 1994 /chap-
ter 7; Ram, Cox, & Narayanan, chapter 18; Ram & Hunter, 1992/chapter 4;
Redmond, 1992; Quilici, in press; Schank & Abelson, 1977; Xia and Yeung,
1988 /chapter 12). This learning process is analogous to models of problem solv-
ing in which the reasoner uses task goals to formulate action plans for achieving
these goals (e.g., Newell & Simon, 1972; Greeno & Simon, 1988; VanLehn, 1989).
Learning actions or schemas are selected, combined, and invoked appropriately
on the basis of existing learning goals and available environmental opportunities
for learning. Learning is a behavior explicitly carried out to seek information,
driven by needs arising from the reasoner’s performance on a task that learning
is intended to facilitate, and mediated by the formulation and manipulation of
explicit learning goals.

The motivation for the goal-driven approach is to control processing in a rich
world. Simply put, knowledge that is valid in principle need not necessarily be
useful (Mitchell & Keller, 1983); thus, it is desirable to avoid the effort involved
in learning knowledge that does not contribute to the reasoner’s overall purpose.
For example, Ram and Hunter (1992/chapter 4) argue that, due to the com-
putational complexity of reasoning about the combinatorially large number of
inferences that are possible in any realistic situation, it is essential to focus infer-
ential and learner effort on deriving those pieces of knowledge that are likely to
be most useful. Hunter (1990/chapter 2) argues that inference during learning
(such as inductive inference) is also potentially combinatorially explosive and
that explicit consideration of desirable knowledge should be used to guide this
inference. Likewise, Leake (1992) argues for similar reasons that decisions about
what to learn about new situations must be driven by characterizations of the
learner’s information needs. Theoretical analyses (desJardins, 1992/chapter 8;
Etzioni, 1992; Francis & Ram, 1993; Gratch & DeJong, 1993), as well as em-
pirical investigations of the utility of learning (Minton, 1990/chapter 3; Tambe,
Newell, & Rosenbloom, 1990) provide support for this argument. Active, goal-
driven learning implies the ability to make explicit decisions about what, when,
and how to learn (Ram, Cox, & Narayanan/chapter 18). Thus some of the
motivations for goal-based approaches include (see also Cox & Ram, 1994):

¢ Alleviating problems of computational complexity: The ability of a
reasoner to make decisions about its reasoning and learning processes helps
to alleviate problems caused by the computational complexity of reasoning
in an open world, by enabling the reasoner to focus its efforts towards
processing that serves its goals (Cox, 1993; Hunter, 1990/chapter 2; Leake,
1992; Leake/chapter 20; Ram & Hunter, 1992/chapter 4). An analysis
of the utility of learning can help in determining the target of learning
(desJardins, 1992/chapter 8), in guiding learning processes (Gratch &
DeJong, 1993; Gratch, DeJong, & Chien, 1994; Provost, 1994), and also
in deciding whether to learn at all (Markovitch & Scott, 1993; Minton,
1990/chapter 3).



¢ Facilitating the use of opportunities to learn: If a reasoner does not
have sufficient resources at the time it realizes it has a need to learn, or
if the requisite knowledge is not available at that time, the reasoner can
suspend its learning goals in memory so that they can be retrieved and pur-
sued at a later time (Hunter, 1990/chapter 2; Hammond, Converse, Marks,
& Seifert, 1993; Ram, 1991, 1993; Ram, Cox, & Narayanan/chapter 18;
Ram & Hunter, 1992/chapter 4).

¢ Improving the global effectiveness of learning: Taking goal priori-
ties and goal dependencies into account when deciding what to learn and
how to coordinate multiple learning strategies improves the effectiveness
of learning in a system with multiple goals. Learning strategies, repre-
sented as methods for achieving learning goals, can be chained, composed,
and optimized, resulting in learning plans that are created dynamically
and pursued in a flexible manner (Cox, 1993; Cox & Ram, 1994; Gratch,
DeJong, & Chien, 1994; Hadzikadic & Yun, 1988; Hunter, 1990/chap-
ter 2; Michalski, 1993; Michalski & Ram, chapter 21; Ram & Hunter,
1992/chapter 4; Redmond, 1992; Stroulia & Goel, 1994).

¢ Increasing the flexibility of learning: In situations involving multiple
reasoning failures, multiple active and suspended learning goals, multiple
applicable learning strategies, and limited resources, direct mapping from
specific types of failures to individual learning strategies is impossible; and
an active, planful approach becomes necessary. For a given failure, there
may be more than one algorithm which needs to be applied for successful
learning and, conversely, a given algorithm may apply to many different
types of failures (Cox, 1993; Cox & Ram, 1994; Krulwich, Birnbaum, &
Collins, 1993; Ram, Cox, & Narayanan/chapter 18). A planful model of
learning allows decoupling of many-to-many relationships, leading to more

flexible behavior (Cox, 1993, Cox & Ram, 1994).

¢ Improving management of interactions between learning pro-
cesses: Explicit formulation of learning goals facilitates detection of de-
pendency relationships, so that goal violations can be avoided (Cox, 1993,
Cox & Ram, 1994). When multiple items are learned from a single episode,
the changes resulting from one learning algorithm may affect the knowl-
edge structures used by another algorithm. Such dependencies destroy
any 1mplicit assumption of independence built into a given learning al-
gorithm that is used in isolation. For example, one learning algorithm
may split a concept definition into separate schemas or otherwise modify
the definition. Therefore, an indexing algorithm that uses the attributes
of concepts to create indices must necessarily follow the execution of any
algorithm that changes the conceptual definition.

Psychological evidence also supports the existence of goal-based influences



on human focus of attention, inference, and learning (e.g., Barsalou, 1991 /chap-
ter b; Faries & Reiser, 1988 Hoffman, Mischel, & Mazze, 1981; Ng & Bere-
iter, 1991 /chapter 14; Seifert 1988, Srull & Wyer, 1986; Wisniewski & Medin,
1991 /chapter 6; Zukier, 1986; see also discussion by Hunter, 1990/chapter 2).
These ideas are related to the “goal satisfaction principle” of Hayes-Roth and
Lesser (1976), which states that more processing should be given to knowledge
sources whose responses are most likely to satisfy processing goals, and to the
“relevance principle” of Sperber and Wilson (1986), which states that humans
pay attention only to information that seems relevant to them. Those principles
make sense because cognitive processes are geared to achieving a large cogni-
tive effect for a small effort. To achieve this, the understander must focus its
attention on what seems to it to be the most relevant information available.
Goals can facilitate learning even when they are not generated internally by the
reasoner; for example, Steinbart (1992) shows that asking users questions (i.e.,
“creating” knowledge goals in people) can help them learn from a computer-
assisted training program, and Patalano, Seifert, and Hammond (1993) show
that presenting users with a goal and a plan to achieve it can facilitate later
detection of relevant features of a situation. There is also much research on the
origins of goals; for example, Graesser, Person, and Huber (1992) discuss several
types of questions, or goals to seek information, and the cognitive mechanisms
that generate them. Many of these are related to the learning goal formulation
mechanisms discussed here.

The goal-driven learning framework does not imply that all processing is
explicitly goal-driven. A reasoner that was completely goal-driven would only
notice what it was looking for already; it would not be able to respond to
and learn from unexpected input. Instead, it is reasonable to assume that there
would be some automatic, bottom-up, or non-goal-driven processing during rea-
soning and learning, which would support strategic, top-down, or goal-driven
processes such as those discussed here (e.g., Barsalou/chapter 17; Kintsch, 1988;
Leake, 1992; McKoon & Ratcliff, 1992; Ram, 1991).

A significant body of psychological research points to the influence of
“metacognition” —cognition by a person concerning that person’s own cognitive
processes—in human performance (e.g., Forrest-Pressley, MacKinnon & Waller,
1985; Weinert, 1987; Wellman, 1985, 1992). Gavelek and Raphael (1985) discuss
a form of metacognition, called metacomprehension, which addresses the abil-
ities of individuals to adjust their cognitive activity in order to promote more
effective comprehension, in particular, the manner in which questions generated
by sources external to the learner (i.e., from the teacher or text), as well as those
questions generated by the learners themselves, serve to promote their compre-
hension of text. White and Gunstone (1989) argue that resolution of conflicting
beliefs and permanent conceptual change requires “metalearning” —control over
one’s learning. For example, they discuss a study by Gauld (1986) that shows
that students who learn new scientific beliefs often revert to their original beliefs
over time because they have merely accepted the new knowledge without any



real commitment to it. They argue that deep reflection on one’s beliefs is a key
part of the awareness and control over one’s learning, and suggest methods for
promoting metalearning in science classrooms.

It is clear, of course, that humans cannot exert explicit meta-control over
all their learning processes, and the level of control that can be exerted, as well
as how it is exerted, remain open questions. It is also possible (though, in our
opinion, unlikely) that it may turn out not to be efficient to use this frame-
work as a technological basis for the design of computer programs that learn.
Nevertheless, the framework presented here may be used to take an intentional
stance (Dennett, 1987) towards a reasoner for the purposes of building a com-
putational model of learning. In such a stance, the competence of the reasoner
can be modelled using goals, learning decisions, learning actions, and so forth as
the basic theoretical constructs in task-level and algorithm-level descriptions of
the reasoner. That stance can be taken without any commitment to existence
of these constructs at the implementational level of, say, neural representations
and processes in the human brain, or to the degree of conscious self-awareness
of these processes in human thought.

4 A framework for goal-driven learning

In order to form a unified view of the diverse research results on goal-driven
learning, we propose a general framework that describes the goal-driven learn-
ing process. While no single piece of research to date has investigated this
framework as a whole or exactly as stated, the framework serves to provide an
integrative structure into which individual research efforts fit as pieces of the
puzzle of goal-driven learning. The key idea behind our framework is to model
learning as an active (explicitly goal-driven) and strategic (rational and delib-
erative) process in which a reasoner, human or machine, explicitly identifies its
goals in learning and attempts to learn by determining and pursuing appro-
priate learning actions via explicit reasoning about its goals, its abilities, and
environmental opportunities.

In this framework, learning is motivated by the performance tasks that the
reasoner is attempting to perform in the world. The performance tasks give rise
to task goals, as well as subgoals of those goals, and subtasks to achieve them. As
the tasks and subtasks are performed, the reasoner formulates explicit learning
goals to perform types of learning which, if successful, would improve its ability
to carry out those performance tasks or subtasks. The learning goals, in turn,
guide the learning behavior of the reasoner, leading it to focus attention, allocate
resources, and select appropriate learning algorithms or learning strategies when
opportunities to learn arise. In our previous example, the top-level task goal
would be to get a good buy on a stereo, which would spawn subtasks such as
going to a store and purchasing the stereo. These subtasks give rise to learning
goals to learn information needed to select the store and the stereo to buy. Some



Reasoner

An intelligent system, human or machine.

Performance task(s)

Overall task(s) that the reasoner is performing that create an effect
on the external world.

Task goals

Specific goals and subgoals to be accomplished in order to accom-
plish the performance task.

Learning goals

Goals to learn (including learning by acquiring knowledge, reor-
ganizing or reformulating knowledge, verifying hypotheses, etc.).
These include both a description of the needed information and
information about the task for which the information is needed.

Strategies or methods

Processing steps that accomplish a goal.

Algorithms

Computational formulations of strategies.

Reasoning trace

Record including information on goal-subgoal decomposition of
goals, choice of methods to accomplish goals and subgoals, and
other decisions taken in pursuing those goals, as well as the bases
for these decisions, results of reasoning actions, alternative courses

of action, etc.

Table 2: Summary of terminology.

of those learning goals may seek to gather information about the external world,
while others may seek to create generalizations, test hypotheses, reorganize
memory, or otherwise change existing knowledge. Those learning goals prompt
the choice of learning strategies such as “shopping around,” looking at reviews
in magazines, and so forth.

The goal-driven learning process involves not only learning about the world,
but also learning to improve the reasoner’s own reasoning process. In order
to identify the learning that needs to occur, the reasoner needs to be able to
analyze its reasoning process in addition to the knowledge that the reasoner
invokes during the reasoning process. To facilitate this, the reasoner maintains
a reasoning trace of its internal decision-making. The reasoning trace provides
the basis for introspective reasoning or meta-reasoning to guide learning and
improve its reasoning performance. Table 2 summarizes the terminology we
will use in our framework.

More concretely, goal-driven learning can be modeled as a two-step process.
The first step involves the generation of learning goals based on the performance
tasks and task goals of the reasoner. This step can be thought of as the process
of deciding what to learn, and results in the formulation of learning goals that
specify the desired learning that is to occur as well as the origin of the need for
this learning. The second step involves the pursuit of learning goals based on
the reasoner’s needs, its resources, and on environmental factors that determine
the timeliness of pursuing certain learning actions in a given situation. This



step can be thought of as the process of deciding how and when to learn and
carrying out the learning. When the learning actually occurs, this step results
in the satisfaction of one or more of the reasoner’s learning goals.

Step 1: Generating learning goals: Figure 1 describes the process by
which learning goals are generated. The reasoner is assumed to be pursuing a
performance task that can be characterized in terms of the current situation
and task goals specifying the desired result of the task. In the stereo example,
the situation might be that the shopper lives in New York, knows nothing about
stereos, and has $500 to spend; the task goal would be to buy a stereo that was
a good value for the $500 price range.

Given the performance task, the reasoner performs reasoning in support of
that task and maintains a trace reflecting its reasoning process. The reasoning
trace records the goal-subgoal decompositional structure of the task goals, the
choice of methods for achieving them and other decisions taken, the factors
influencing those decisions, and descriptions of other reasoning actions (e.g.,
attempts to retrieve information) and their outcomes (Carbonell, 1986; Ram &
Cox, 1994 /chapter 7). For example, forming an executable plan to get a good
buy on a stereo requires knowing which stereo to buy and where to buy it. If the
reasoner does not know, a reasoning failure occurs because current knowledge
1s insufficient to make a decision.

At a suitable point in processing, the reasoning trace and its results are
evaluated in light of the reasoner’s task goals. If any problems arose during
processing, learning is needed to enable the reasoner to avoid similar problems
in the future. In being driven by deficiencies in the reasoner’s knowledge, the
process for generating learning goals is in the spirit of impasse-driven or failure-
driven learning (e.g., Chien, 1989; Collins & Birnbaum, 1988; Hammond, 1989;
Kocabas, 1994; Laird, Newell, & Rosenbloom, 1986; Mooney & Ourston, 1993;
Mostow & Bhatnagar, 1987; Newell, 1990; Owens, 1991; Park & Wilkins, 1990;
Ram & Cox, 1994/chapter 7; Riesbeck, 1981; Schank, 1982; Schank & Leake,
1989; Sussman, 1975; VanLehn, 1991a). There are several kinds of failures
that may be involved, for example expectation failures, retrieval failures, or
knowledge application failures. Expectation failures arise when the achieved
outcome conflicts with expectations, regardless of whether the outcome was
desirable (e.g., Collins & Birnbaum, 1988; Freed & Collins, 1993; Hammond,
1989; Leake, 1992; Owens, 1991; Ram & Cox, 1994 /chapter 7; Schank, 1986). In
our framework, an unexpected success is also treated as an expectation “failure.”
An example of a retrieval failure is the failure of a schema-based understanding
program to retrieve an applicable schema, even though that schema exists in
memory (Ram, 1993).

Knowledge application failures arise when retrieved knowledge structures fail
to apply fully to new situations, and trigger learning to reconcile the conflicts

(e.g., Kass & Leake, 1988; Leake, 1992; Mooney & Ourston, 1993; Park &

10



Performance task= Situation + task goals
+ is processed by

Selection and application of reasoning method

+ results in

Reasoning trace + result of reasoning
+ is input to

Evaluation of processing

+ detects

Reasoning failure

+ is input to

Analysis of reasoning failure

+ gives rise to

Learning goal= Goal specification + task specification

Figure 1: Generation of learning goals
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Wilkins, 1990; Ram, 1993; Schank & Leake 1989). Ram, Cox, and Narayanan
(chapter 18) present a taxonomy of possible types of failures and discuss their
relationship to goal-driven learning.

Even if no failure has yet occurred, anticipation of a reasoning failure may
trigger learning. For example, a reasoner may realize that it cannot perform a
task and decide to perform the necessary learning before even attempting the
task. In our framework, all these motivations for learning—reasoning failures,
difficulties, impasses, suboptimalities, surprises, and other types of processing
problems or anticipated processing problems—will be collectively and simply
referred to as fatlures.

Different kinds of failures give rise to different kinds of learning goals. For
example, a reasoner may need to acquire additional knowledge if its reasoning
reached an impasse due to missing knowledge, as in the case of a novice stereo
buyer who has no knowledge of which brand of stereo to buy. If the reasoner
possessed sufficient knowledge but did not retrieve it at an appropriate time,
it may need to reorganize memory (Ram & Cox, 1994/chapter 7; Ram, Cox,
& Narayanan/chapter 18). A reasoner may need to modify the underlying
representational vocabulary if its vocabulary is found to be inadequate (e.g.,
Schlimmer, 1987; Wrobel, 1988). In some situations, a reasoner might also need
to add to its repertoire of reasoning strategies (e.g., Leake, 1993).

When a reasoning failure is detected, the reasoning trace is analyzed, in a
process called credit/blame assignment, to find the source of the failure (Birn-
baum, Collins, Freed & Krulwich, 1990; Hammond, 1989; Minsky, 1963; Ram &
Cox, 1994 /chapter 7; Weintraub, 1991). Blame assignment may be thought of
as a process of model-based diagnosis of the reasoner itself (Birnbaum, Collins,
Freed & Krulwich, 1990; Stroulia, Shankar, Goel, & Penberthy, 1992). If the
failure is attributed to faulty knowledge, learning is needed to improve the rea-
soner’s performance, and a learning goal is generated to repair that knowledge.
In our framework, the learning goal is characterized in terms of two pieces of
information: The desired learning—what learning is needed—and a description
of the task that motivates learning—why learning is needed. The additional
information about why learning is needed is important to allow the reasoner
to carry out its tasks in an opportunistic manner, with learning goals (and the
tasks that they support) being suspended until circumstances are favorable to

their pursuit (Ram, 1989, 1991, 1993; Ram & Hunter, 1992/chapter 4).

Step 2: Pursuing learning goals: In the goal-driven view of learning, learn-
ing goals are treated analogously to task goals in the world. Just as task goals
are achieved through a planning process using available methods for reasoning
and action, learning goals are achieved through a knowledge planning process
using available learning methods or strategies (Hunter, 1990/chapter 2; Quilici,
in press; Ram & Hunter, 1992/chapter 4; Redmond, 1992). In the knowledge
planning process, explicit reasoning is done about learning goals, their relative
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priorities, and strategies by which they can be achieved. These learning goals,
also called knowledge goals (Ram, 1987, 1990; Ram & Hunter, 1992 /chapter 4),
can be represented in a goal dependency network (Michalski, 1993; Michalski
& Ram/chapter 21), which is used to select and combine learning actions into
learning strategies that are appropriate for current learning goals and for the
learning opportunities provided by the current environment.

Individual learning actions may include performing knowledge acquisition
(e.g., asking a friend to recommend a stereo) knowledge reorganization (e.g.,
grouping stores by the size of their stereo departments), knowledge reformula-
tion or transmutation (e.g., forming new generalizations from stored episodes
concerning others’” experiences with particular sound equipment), and so on.
Their application is guided by the learning goals of the reasoner (Gratch, De-
Jong, & Chien, 1994; Hunter, 1990/chapter 2; Michalski & Ram/chapter 21;
Pryor & Collins, 1992 /chapter 10; Ram & Cox, 1994 /chapter 7; Ram & Hunter,
1992/chapter 4). Figure 2 sketches the second step of the goal-driven learning
process. This step begins with reasoning about the relationships and relative
priorities of learning goals in order to form a goal dependency network. Based on
the information contained in the goal dependency network and on environmen-
tal factors affecting the appropriateness of different goals, the reasoner selects
the learning goals to pursue. Learning strategies for achieving those goals in
the current environment are then selected and applied.

Perspective on the framework: The model of learning embodied in the
above steps contrasts with the approach to learning taken in traditional ma-
chine learning systems in artificial intelligence. Typically, in those systems,
learning is primarily a passive, data-driven process of applying a single learn-
ing algorithm (or a predetermined combination of a few learning algorithms) to
training examples presented to the system. Goal-driven learning, in contrast,
is an active and strategic process driven by reasoning about information needs,
alternative learning strategies, and opportunities in the environment. In our
framework, the process of determining what to learn is an integral part of the
computational model of learning, as is the process of deciding (on a dynamic
basis) how and when to learn it.

Our view of goal-driven learning implies a tightly coupled relationship be-
tween learning and the “rest of reasoning.” This view is consistent with re-
cent models of intelligence that are framed as integrated intelligent architectures
(sometimes known as embedded systems), in which the knowledge and reason-
ing tasks underlying learning and performance are integrated into a complete
interacting system. Numerous approaches to such architectures were presented,
for example, at the 1991 AAAT Spring Symposium on Integrated Intelligent Ar-
chitectures (Laird, 1991), the 22nd Carnegie-Mellon Symposium on Cognition
(VanLehn, 1991b) and at the Integrated Learning Workshop at the 1993 Euro-
pean Conference on Machine Learning (see Plaza, Aamodt, Ram, van de Velde,
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Figure 2: Pursuing learning goals using appropriate learning strategies

& van Someren, 1993, for an overview). Some of these architectures propose
that one or a few primitive mechanisms underly intelligence (e.g., Soar (Rosen-
bloom, Laird, & Newell, 1993), ACT* (Andersen, 1983)), while others integrate
many (often higher-level) mechanisms that cooperate to achieve the agent’s
task and reasoning goals (e.g., PRODIGY (Carbonell, Etzioni, Gil, Joseph,
Knoblock, Minton, & Veloso, 1991 /chapter 11) and Theo (Mitchell, Allen, Cha-
lasani, Cheng, Etzioni, Ringuette & Schlimmer, 1991)). A common theme in
this research, and one that is compatible with the goal-driven learning frame-
work proposed here, is the explicit representation of task goals, reasoning goals,
and learning goals, and their role in a multistrategy reasoning process that inte-
grates learning with performance tasks such as problem solving or comprehen-
sion (e.g., see Ram, Cox, & Narayanan/chapter 18). This theme is also shared
with recent approaches that focus more on knowledge and knowledge-intensive
reasoning than on the underlying cognitive architectures, such as Aamodt’s

(1991) CREEK and Hinrich and Kolodner’s JULTA (Hinrichs, 1992).

5 Major issues in goal-driven learning

Our framework suggests several issues that must be addressed by a general
theory of goal-driven learning:
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What is a goal?

The term “goal” has been used to refer to several theoretical constructs
in previous theories of learning and reasoning, including tasks, problem
solving outcomes, desired states of the world, target concepts for learning,
policies and orientations for learning, and so on. Consequently, character-
izing goal-driven learning depends on determining the meaning of “goals”
as they apply to the learning process.

What are the types of goals?

Given the wide range of goals and other influences described in learning
research, another central issue is to identify different types of goals, how
they relate to one another, and how different formulations of goal-based
influences on learning can be placed in a unified framework.

How do goals influence processing and learning?

A premise of the goal-driven learning framework is that reasoning about
goals directs the learning process. A fundamental question is what effects
goals actually have on the learning process and how their influence is
achieved.

What are the functional and pragmatic implications of goal-
driven learning for the reasoner?

Given the differences between goal-driven learning and traditional learn-
ing models, one key question concerns the effects of goal-driven learning:
What are the functional implications of goal-driven learning for the rea-
soner’s own performance? What are the pragmatic implications of goal-
driven learning as a model of reasoning, and for the design of intelligent
systems?

What are the pragmatic implications of goal-driven learning as
a cognitive model?

Considering goal-driven learning as a cognitive model raises questions
about the pragmatic implications of that model. One key question con-
cerns the predictions that the model suggests, which have implications for
testing and validating theories of goal-driven learning. Another concerns
the implications of the model for practical applications such as the design
of instructional material and educational environments.

The following sections start with the first three of these points, illustrating
relevant distinctions using examples from artificial intelligence research, and
then take a broader view in considering the pragmatic ramifications of the goal-
driven learning model. In Leake and Ram (1993/chapter 16), we return to
these issues, discussing the individual perspectives on them that were advanced
by the panelists at the Symposium on Goal-Driven Learning held at the 1992
Conference of the Cognitive Science Society.
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6 What is a goal?

As Barsalou (chapter 17) observes, in some sense any reasoner executing a
built-in procedure can be viewed as having a “goal” to perform that type of
processing, so that any learner could be considered trivially “goal-driven”. To
distinguish between built-in behaviors and behaviors that are more explicitly
goal-driven, Barsalou differentiates between implicit background orientations
and explicit problem solving or task goals. Explicit task goals are the goals
that guide a problem solving process in which a person intends to achieve a set
of goals, assesses what must be performed to achieve them, and executes the
needed actions. In contrast, an implicit background orientation i1s a behavior
that is performed without explicit reasoning about when and how it should
be pursued. For example, one such implicit orientation is the orientation to
constantly maintain a world model that adequately represents the reasoner’s
environment (e.g., Barsalou/chapter 17, Leake, 1989, 1992), although in some
formalisms this is expressed in terms of an explicit goal (see, e.g., Van de Velde,
1988).

Explicit goals are traditionally expressed as specifications of a target or de-
sired outcome of a problem solving or learning task (e.g., Fikes, Hart, & Nils-
son, 1972; Newell & Simon, 1972). However, Ram and Hunter (1992/chapter 4;
Hunter, 1990/chapter 2; Ram & Cox, 1994 /chapter 7) argue that capturing the
introspective nature of the goal-driven learning process requires a richer charac-
terization in which a goal is not merely a specification of a target. They argue
that a target specification or an orientation is a goal only if the reasoner can
actively plan to accomplish the goal, can make decisions about it, and can even
decide to suspend it or not to pursue it.

In order for the reasoner to make such decisions, goals must be explicitly
represented, and the reasoner must be able to reflect on its goals, how to
achieve them, and their relative priorities and interdependencies. Ram and
Hunter (1992/chapter 4) discuss a representation of learning goals in terms of
the desired knowledge to be learned as well as the reason that the knowledge is
needed. Additional representational issues concern the kinds of decision-making
relationships that goals can enter into (Thagard & Millgram /chapter 19) and
the intergoal relationships and interdependencies in which goals can play a role
(Cox & Ram, 1994; Michalski & Ram/chapter 21; Schank and Abelson, 1977;
Slade, 1993; Wilensky 1983).

7 Types of goals
In order to understand how goals can relate to one another and to learning,
it is useful to consider the classes of goals that influence learning processes in

existing computational models of learning (implemented as computer systems
that learn). This section examines those classes. Our taxonomy is divided into
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the classes centered around task goals, learning goals, and specifications, policies,
and constraints. Broadly, task goals determine why the reasoner is learning in
the first place, learning goals specify what the reasoner needs to learn, and
specification, policies and constraints influence how learning occurs.’

7.1 Task goals

In many systems, goals are modelled as descriptions of desired results or states
in an external world, which we call “task goals.” Task goals, exemplified by early
planning programs such as STRIPS (Fikes, Hart, & Nilsson, 1972) and NOAH
(Sacerdoti, 1977), are specifications of desired outcomes from a performance task
in the external world, which are explicitly pursued through planful reasoning
processes or, in some recent models, goal-directed reactive processes (e.g., Earl
& Firby, 1994; Firby, 1987; Freed & Collins, 1994; Maes, 1990).

In order to pursue its task goals, a system may need to reason about the
task goals and reasoning goals of other agents. In order to understand a story
(or a real-world situation) involving other intelligent agents, a computer under-
standing system needs to model the goals and plans of those agents (Schank
& Abelson, 1977; Wilensky, 1978); in addition, consideration of such goals af-
fects the comprehension process of humans (Abbott & Black, 1986). Reasoning
about other actors’ goals also plays an important role in AT models of subjective
understanding (Carbonell, 1983; Ram, 1990). Representation of goals and goal
interactions is central in understanding as well as in planning (Wilensky, 1983).
Such representations must capture both task goals and reasoning goals of both
other agents and the system itself.

Because task goals characterize a desired state of affairs, they can also be
used to describe the need for information that a planner requires to achieve
that state of affairs (e.g., Etzioni, Hanks, Weld, Draper, Lesh, & Williamson,
1992; Leake, 1991b/chapter 9; Ram & Leake, 1991), to understand interactions
between task goals (e.g., Freed & Collins, 1994), and to influence or bias learning
strategies (e.g., Martin, 1994; Provost, 1994). In some models, task goals (and
resulting learning goals) are decomposed into subgoals or task structures to
facilitate planning and learning (e.g., Karlsson, 1994; Stroulia & Goel, 1994).
In planning systems that store prior plans, such as Hammond’s (1989) CHEF,
task goals drive the search for relevant plans in memory and trigger learning of
new plans and new indices for plan retrieval when failures arise. A similar role 1s
played by “problem goals” in Veloso and Carbonell’s (1993) model of case-based
reasoning in the PRODIGY system, and by functional specifications or “design
goals” in design programs (e.g., JULTA, Hinrichs, 1992; Kolodner, 1987).

'To clarify the differences and commonalities in different approaches, in this discussion
we will use a common vocabulary and framework to discuss individual pieces of research in
an attempt to present an integrated view of goal-driven learning, even at the expense of
sometimes differing from the terminology used by the original researchers.
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7.2 Learning goals

Other computational models explicitly describe goals for learning, rather than
implicitly characterizing it in terms of the external task. These learning goals
differ from task goals in that, while they too specify a desired state, the spec-
ified state is an internal or mental state—a state of knowledge or belief that
the learner is attempting to achieve. Task goals are satisfied through problem
solving in the external (usually physical) world, while learning goals are satis-
fied through a learning process that, in the goal-driven learning framework, is
viewed as problem solving in the “informational” world. These learning goals
have been characterized in the following ways:

¢ Knowledge acquisition goals or knowledge goals: Schank and Abel-
son (1977) describe a category of knowledge goals (called “D-KNOW”
goals) to determine needed information. In their model, such goals arise
when a planner requires knowledge of particular facts (e.g., the location of
a desired object) to achieve its other goals. The planner generates plans
for satisfying these goals using standard methods for seeking information
in the external world.

The term “knowledge goal” was introduced by Ram (1987), and general
knowledge goals are discussed in more detail in Ram & Hunter (1992/chap-
ter 4). Ram (1990) proposes the use of knowledge goals as the basis for
focus of attention in understanding and learning. Hunter’s (1990/chap-
ter 2) IVY and INVESTIGATOR programs identify and pursue “knowl-
edge acquisition goals” whose satisfaction constitutes learning in those sys-
tems. Ram and Cox’s (1994 /chapter 7) Meta-AQUA system uses knowl-
edge goals such as knowledge refinement goals, knowledge reconciliation
goals, and knowledge differentiation goals, to specify desired learning in
a multistrategy learning system. The system then reasons about and se-
lects the learning algorithms most appropriate for achieving its knowledge
goals (Cox & Ram, 1994). Knowledge acquisition goals in desJardins’s
PAGODA system (called “learning goals” in that system) represent con-
cepts which, if learned, would maximize the system’s expected utility (Des-

Jardins, 1992/chapter 8).

e Questions: Ram’s (1991, 1993) AQUA asks “questions” which are then
represented as “knowledge goals.” As in IVY, AQUA’s learning occurs
through satisfying knowledge goals, but using different methods; IVY
looks for desired information in diagnostic cases, and AQUA tries to an-
swer its questions by reading stories (Ram & Hunter, 1992/chapter 4).
In Oehlmann, Sleeman, and Edwards’ TULTAN (1992), questions and ex-
perimentation interact in an exploratory discovery process applied to the
domain of electrical circuits.
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e Learning goals: Michalski’s (1993) MTL framework uses “learning
goals” as the starting point for learning; relationships between “learn-
ing goals” are then used to combine basic knowledge transmutations into
learning actions and to prioritize learning activities. Such learning goals
subsume knowledge acquisition goals, knowledge organization goals to re-
organize existing knowledge, as in AQUA, Meta-AQUA, and IVY, and
knowledge reformulation goals as in Meta-AQUA and MTL.

In our further discussion we will consider that learning goals, in addition
to specifying the desired outcome of learning, specify the reason that the de-
sired learning is required (for example, AQUA’s “task specifications” specify
the suspended reasoning task that is awaiting the knowledge to be learned).

7.3 Specifications, policies, and constraints

Numerous computer systems reflect other types of influences and constraints on
learning that are goal-related. Although these are not properly “goals” in our
sense, because they do not drive the learning process in an explicit manner, they
may play an important role in influencing that process. One such influence is:

e Goal concepts or target concepts: Mitchell, Keller, and Kedar-
Cabelli’s (1986) EBG algorithm, implemented in several computer pro-
grams, takes as input a “target concept” or a “goal concept,” in or-
der to learn an operational description of that concept (see also Minton,

1990/chapter 3).

“Target concepts” are similar to “learning goals” in that they specify the
desired outcome of learning. However, in accordance with our earlier
discussion of goals, target concepts are better viewed as specifications
of the desired output of a learning strategy rather than an explicit goal
to learn, unless they are pursued through active, strategic, or planful
reasoning processes. In addition, target concepts (unlike learning goals)
do not specify the motivation for learning.

The following categories are all ways to characterize the value of learning for
the learner. In particular, they describe the policies under which the learning
task should operate in order to better achieve the overarching learning goals,
and describe relevant constraints on the processes that carry out the learning
task:

e Purposes: Kedar-Cabelli’s (1987) PURFORM uses “purposes” of arti-
facts, defined in terms of their role in enabling plans, to determine tar-
get concepts for learning. Leake’s (1991b/chapter 9, 1992) ACCEPTER
guides explanation evaluation in terms of tasks in the world which give
rise to “purposes” to build particular types of explanations, which in turn
provide the information needed to satisfy system learning goals.
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e Operationality criteria: In explanation-based learning systems, “op-
erationality criteria” (surveyed in Keller, 1988) characterize requirements
for useful concept descriptions.

¢ Preference criteria, inductive biases, and general policies and
constraints: Inductive learning systems such as PREDICTOR, (Gordon
& Perlis, 1989/chapter 13), LEX (Mitchell, 1982), and STABB (Utgoff,
1986) use an “inductive bias” to restrict the space of candidate hypothe-
ses. Michalski’s (1983) INDUCE method uses a lexicographic preference
criterion to rank candidate hypotheses for generalization. Laird, Rosen-
bloom, and Newell’s (1986) SOAR system incorporates a “policy” to learn
from each subgoal during problem solving.

e Utility metrics: Minton’s (1990/chapter 3) PRODIGY system uses a
“utility metric” to determine whether a piece of knowledge is worth learn-
ing or storing. Gratch and DeJong’s (1993) COMPOSER uses “expected
utility” to characterize the quality of a reasoner with respect to a task,
which increases with learning. desJardins’s (1992/chapter 8) PAGODA
computes the utility of plans and the costs of planning and learning to
guide learning. PAGODA’s “learning goals” represent concepts which, if
learned, would maximize the system’s expected utility.

Policies and constraints are not learning goals in the sense that the learner
does not actively seek to satisfy them; instead, they influence the learning pro-
cesses that the learner uses to achieve its learning goals. In particular, they
describe the policies under which the learning task should operate in order to
better achieve the overarching learning goals, and describe relevant constraints
on the processes that carry out the learning task. Note that a learner might
formulate explicit learning goals to learn these criteria. For example, a learner
might formulate an explicit goal to learn appropriate biases for a given type of
learning situation, and pursue an explicit learning agenda to learn such biases.

7.4 A unifying view

The underlying commonality among these constructs is that each reflects an in-
tention to influence learning according to needs that are external to the learning
process itself. However, quite different focuses are apparent in the formulations
described in the previous sections. Consequently, developing a general theory of
goal-driven learning depends on analyzing the relationships of these constructs
and their role in reasoning and learning.

To relate the previous perspectives, we will establish a uniform vocabu-
lary. In the following discussion, we will refer to the general class of goals to
describe theoretical constructs that refer to mental entities reflecting desired
states that are explicitly represented and actively pursued through a planful
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reasoning process.” Tusk goals will refer to goals which specify desired effects in

the world external to the reasoner. Learning goals or knowledge goals will refer
to goals which specify desired effects within the reasoner such as acquiring new
knowledge or augmenting, reorganizing, or reformulating existing knowledge.
Learning goals describe not only the desired processing outcome, but how the
desired knowledge will be used when it is acquired. Reasoning goals will refer to
more general internal goals to form conclusions or inferences through learning
or other reasoning processes.

We will also refer to target concepts that specify a desired concept to be
learned, but not necessarily learned through a goal-driven learning process; and
to general policies or orientations that influence learning without being explicitly
represented or available for manipulation by the reasoner’s reasoning or learning
process, including constraints on the formulation of hypotheses such as biases,
operationality criteria, and utility metrics. Our vocabulary makes the following
distinctions:

e Task goals vs. reasoning goals: Task goals are goals to be achieved in
the world external to the reasoning system; reasoning goals are achieved
within the reasoning mechanism of the system.

¢ Reasoning goals vs. learning goals/knowledge goals: Reasoning
goals span the broad range of deliberative activities, including activities
such as retrieval of relevant information, similarity assessment, etc. Learn-
ing goals/knowledge goals refer solely to goals to acquire or formulate
particular types of knowledge.

e Goals vs. policies/orientations/constraints: Goals involve specifi-
cations of internal or external states to be actively planned for; policies
specify background orientations that are implicit in the processes that
achieve these states.

¢ Learning goals vs. target concepts: Learning goals are manipulated
by an explicit, strategic planning process, while target concepts are spec-
ifications of desired results from a learning algorithm that uses the spec-
ification only to evaluate its results, rather than to guide the on-going
learning process.

Table 3 summarizes these distinctions. Note, however, that these classes of
goals can overlap and influence each other. Task goals have been used to guide
learning and performance in several systems, and can also be used to formulate
learning goals to acquire information necessary for a given task (Ram & Leake,
1991) or to come to a better understanding of the task itself (Freed & Collins,

?Note that this definition does not imply that goals or goal-driven processing must neces-
sarily be conscious, nor that the reasoner must necessarily be able to report externally about
this processing.
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Explicitly Range of effects  Influences Solution Effect on
represented?  (internal to selection of process solution
reasoner or in solution generation
external world)  algorithm?
Goals Yes Fither Yes Planning Guidance
Task goals Yes External Yes Planning actions Guidance
in external world
Reasoning goals/ || Yes Internal Yes Knowledge planning  Guidance
learning goals
Policies Sometimes Internal Sometimes  Unspecified Constraint
Target concepts Yes Internal No Unspecified Guidance
Operationality Yes Internal No Unspecified Constraint
criteria

Table 3: Types of goals and policies.

1994). In conjunction with knowledge or theories, they can guide learning pro-
cesses (Barsalou, 1991/chapter 5; Ng & Bereiter, 1991 /chapter 14; Wisniewski
& Medin, 1991/chapter 6). Likewise, although target concepts are generally
provided to a learning system as input by a human user, in some models target
concepts are generated from aspects of the performance task in a manner similar
to the generation of learning goals. For example, Kedar-Cabelli (1987) discusses
a method for generating target concepts from standard constraints on artifacts
to be used in particular plans. Keller (1987) also sketches a process for generat-
ing learning goals from higher-level performance objectives. Similarly, policies
(such as bias, which is usually formulated as a passive, background constraint
on learning) may be actively monitored and modified by the reasoner to guide
the learning task (Gordon & Perlis, 1989/chapter 13; Martin, 1994; Provost,
1994; Provost & Buchanan, 1992; Utgoff, 1986).

Several models include learning goals as an explicit part of their formulation
of the learning process. Learning goals have been used to guide resource alloca-
tion, information search, hypothesis evaluation, and other aspects of learning; to
select and combine learning strategies; to guide and to learn about the reason-
ing process itself; and to model active learning in educational contexts. These
models are discussed in the following sections.

8 Role of goals in learning

Given the range of goals that can influence learning, it is not surprising that
different models reflect different types and degrees of goal-based influence. Tha-
gard and Millgram (chapter 19) propose a broad distinction between learning
which is explicitly goal-driven and that which is goal-relevant. Goal-relevant
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processing is not explicitly directed by the goals of the reasoner, but results in
outcomes that are nevertheless useful with respect to those goals. Thus goal-
relevant processing is similar to Barsalou’s (chapter 17) orientations in which
the desired learning may occur as a side-effect of normal task-related process-
ing. For example, a reasoner may have an implicit orientation to maintain an
accurate model of the world around it (Barsalou, chapter 17; Leake, 1992).
Goal-driven learning, in contrast, is driven by explicit learning goals of the rea-
soner; those goals influence or even determine the content of what is learned.
As the reasoner’s goals change, so does the learning that results.

One of the issues involved in goal-driven learning is how to balance compet-
ing goals to determine the goals and goal priorities that form the background
for the goal-driven learning process (Thagard & Millgram, chapter 19). Once
learning goals have been identified and prioritized, they can influence the sys-
tem performance task, the system learning task, and the storage of results. The
ways that goals can exert their influences are summarized in table 1, and are
discussed in more detail in the following sections.

8.1 Guiding the performance task

In any goal-driven system, the influence of goals on the performance task also
influences what is learned, by determining the focus of processing or changing
the context in which learning is performed (Barsalou, chapter 17). For example,
in case-based reasoning systems, the goals that drive processing also influence
what is eventually learned (e.g., Kolodner, 1993; Hammond, 1989; Hinrichs,
1992; Ram, 1993; Veloso & Carbonell, 1993).

In addition, just as performance tasks can give rise to learning goals (e.g.,
the stereo buyer’s learning goals), learning goals can themselves prompt and
guide new performance tasks in service of the learning goals. For example,
learning goals may guide tasks to gather needed information in the world, or
to produce a situation in the world that is favorable to learning. Performance
tasks may include reasoning tasks that are largely internal to the reasoner. For
example, Leake (chapter 20) presents a model of explanation construction that
is an integral part of a goal-driven reasoning and learning system. The reasoner
can decide when explanations are needed, can characterize its information needs
(goals), and can use this characterization to focus the search for explanations.
Thus goals are used to guide the control procedure used in the performance
task (explanation construction) and to manage the resources available for that
task. Since explanation is a central part of learning, a goal-driven explainer
is necessarily a goal-driven learner as well. Many performance tasks involve
interaction with the outside world. For example, Ram (1991; Ram & Hunter,
1992/chapter 4) presents a model of natural language story understanding in
which goal-driven processes are used to analyze and interpret natural language
text (see also Carpenter & Alterman, 1994). Similarly, in Pryor and Collins’s
(1992 /chapter 10) model, goals are used to guide the perception of visual images.
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Xia and Yeung (1988/chapter 12) use goal-based considerations to learn new
classifications of problem-solving strategies, and Hunter (1990/chapter 2) uses
knowledge goals to guide the search for information by, for example, formulating
appropriate queries to a database.

8.2 Guiding the learning task

The central tenet of goal-driven learning, and the thesis of this book, is that
the learning i1s guided by explicit consideration of the reasoner’s goals. The
goal-driven learning framework involves first formulating explicit goals to find or
infer certain beliefs, and then using these goals to drive reasoning and learning—
which amounts to explicit decision-making and control. The resulting control
of learning can be realized in several ways as described below.

8.2.1 Specifying the target of learning

Barsalou (1991 /chapter 5) shows that people often derive categories in a dy-
namic, ad hoc manner during the construction of plans to achieve goals. For
example, while foods are normally categorized into grains, vegetables, fruits,
and so on, different category structures may be appropriate in the context of
particular goals, giving rise to categories such as “foods to eat while on a diet”.
Some of these goal-derived categories become reasonably well-established for
people or cultures in which the goal occurs often (such as dieting), but others
remain ad hoc (such as “activities to do on a vacation in Japan with one’s grand-
mother”). Thus learning can involve the construction of concepts that must be
determined in a dynamic manner based on the demands of the particular task
at hand. This is consistent with Ng and Bereiter’s (1991 /chapter 14) results on
task- and goal-driven learning in an educational setting.

Wisniewski and Medin (1991 /chapter 6) show that prior knowledge and in-
tuitive theories can also influence learning (see also Murphy & Medin, 1985).
They argue that tightly coupled interactions exist between knowledge and ex-
perience during learning. To the extent that learning is incremental, candidate
hypotheses and theories learned earlier can influence later learning. In addition
to previously learned theories, a goal-driven learner will also have previously for-
mulated and possibly only partially satisfied learning goals as part of its learning
context; these goals can also influence future learning (e.g., Ram, 1991, 1993).

In early artificial intelligence models of learning, goals were pre-specified as
targets of particular learning algorithms. Such models did not have explicit
learning goals; rather, they could be viewed as possessing background orienta-
tions to ensure that the learning actions are goal-relevant. However, task goals
can be used to determine learning goals which specify the desired outcome of the
learning task, whether it be a new piece of knowledge to be acquired or a new
organization or formulation of existing knowledge (Ram & Leake, 1991). For
example, Kedar-Cabelli (1987) and Keller (1987) propose extensions to earlier

24



models in which the reasoner proposes its own targets rather than relying on an
outside user to specify them.

In general, multiple learning goals are possible in any complex situation,
and complex reasoning processes may be needed to determine which learning
goals to generate (Krulwich, 1994; Ram, Cox, & Narayanan/chapter 18). Tt
has been proposed that if learning is integrated with the reasoning process
that it is in support of, an analysis of the reasoning process can be used to
formulate learning goals (Hunter, 1990/chapter 2; Leake/chapter 20; Ram &
Cox, 1994/chapter 7; Ram, Cox, & Narayanan/chapter 18; Ram & Hunter,
1992/chapter 4). For example, if a reasoner is unable to perform its task due
to a missing piece of knowledge, it can formulate an explicit goal to learn that
piece of knowledge. Learning goals may also seek to augment knowledge in
other ways (e.g., learning a new antecedent to a rule (Mooney & Ourston, 1993;
Park & Wilkins, 1990)), reorganize knowledge (e.g., learn a new index to an
existing knowledge structure (Hammond, 1989; Ram, 1993)) or to reformulate
existing knowledge (e.g., operationalization of abstract knowledge into a more
directly usable form (Keller, 1988; Mostow, 1983); generalization or abstrac-
tion of examples (Michalski, 1993); modification of representational framework
or vocabulary (Schlimmer, 1987; Wrobel, 1988)). Michalski (1993; Michalski
& Ram/chapter 21) presents a taxonomy of the kinds of “knowledge trans-
mutations” that may be used for various kinds of learning. As those learning
goals are pursued, new learning goals may be generated on the fly, or existing
learning goals abandoned, in response to changes in circumstances, the learner’s
knowledge, and overarching goals of the learner (Leake/chapter 20). Due to the
dynamic nature of learning goals, the learning process itself must be dynamic
as well.

8.2.2 Specifying the learning algorithms used

Many recent models of learning in humans and machines appeal to multiple
methods for learning and reasoning in general (e.g., Michalski & Tecuci, 1993).
For example, Ram, Narayanan, and Cox (1993) present a computational model
of troubleshooting, based on a study of human troubleshooters on an electron-
ics assembly line. In that model, several different learning strategies are used
to improve troubleshooting performance, including compilation of knowledge
through experience with specific problems, interactive acquisition of knowledge
from a human expert, postponement of a problem until a later time, and for-
getting knowledge that is made obsolete through changes in the manufacturing
process.

In a wide range of artificial intelligence systems, goals determine the learn-
ing algorithms used to accomplish needed learning (e.g., Hunter, 1990/chap-
ter 2; Michalski & Ram/chapter 21; Ram & Cox, 1994 /chapter 7; Ram, Cox,
& Narayanan, chapter 18; Ram & Hunter, 1992/chapter 4; Redmond, 1992;
Quilici, in press; Xia & Yeung, 1988/chapter 12). A central issue in such mod-
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els is how to select and combine appropriate learning algorithms in a given
learning situation. This multistrategy learning process can be modeled with an
explicit decision stage in which the appropriate learning strategy or strategies
are identified (as shown in figure 2), followed by a strategy application stage in
which the corresponding algorithm is executed (Ram & Cox, 1994 /chapter 7).
In addition, some models incorporate an explicit evaluatory phase in which the
quality of a learned piece of knowledge is assessed. In those models, learning
goals can be used to guide evaluation, such as in Leake’s (1991b/chapter 9,
chapter 20) use of goals to evaluate causal explanations.

8.2.3 Constraining the learning process

In some models of goal-driven learning, goals are used not to specify the de-
sired target of learning or to select learning strategies, but rather to provide
constraints to the process used for learning itself. For example, a reasoner that
learns through inductive generalization must select from among a potentially
very large number of possible hypotheses consistent with its inputs, and select-
ing the right candidate hypotheses can have an enormous effect on the ability of
the reasoner to perform a particular task. Because the inputs do not adequately
constrain the set of candidate hypotheses, hypothesis selection must be done via
some criterion external to the inputs themselves. Such a criterion is called a
“bias” (Mitchell, 1980) or “preference criterion” (Michalski, 1983). Although
many early models of inductive learning appealed to a pre-determined bias, it
is often advantageous for the learner to modify its bias (Utgoff, 1986). Gor-
don and Perlis (1989/chapter 13) discuss a computational model of inductive
learning in which the formation of useful generalizations is facilitated by use of
explicit biases; Provost and Buchanan (1992) discuss the use of “inductive poli-
cies” to automatically adjust the bias in a learning system based on explicitly
represented tradeoffs; and Hadzikadic and Yun (1988) argue that concept for-
mation should be viewed as a goal-driven, context-dependent process to assure
its flexibility, efficiency, and generality.

Similarly, some computational models of analogical learning include a mech-
anism by which the reasoner’s task goals can influence the analogical mapping
process (e.g., Forbus & Oblinger, 1990; Kedar-Cabelli, 1987). As with other
types of learning mechanisms, the functional justification for this influence is
to ensure that the inferences made during learning are actually relevant to the
overall performance task of the reasoner. Spellman and Holyoak (1993) present
evidence for the influence of goals on analogical mapping in human learners as
well.

8.2.4 Focusing search for information to carry out learning

Carrying out the desired learning may require acquisition of new information.
Consequently, learning goals may give rise to processes that attempt to seek
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that information from the outside world. Some of the possible methods include
reading text (Ram, 1991), querying a database (Hunter, 1990/chapter 2), ac-
tive experimentation (Carbonell & Gil, 1990; Cohen, Kulikowski, & Berman,
1993; Rajamoney, 1993), or other planful activity to gather needed information
(Etzioni, Hanks, Weld, Draper, Lesh, & Williamson, 1992; Leake/chapter 20;
Pryor & Collins, chapter 10).

8.2.5 Determining when learning should be attempted

Having identified what to learn and how to learn it, a reasoner, in general, still
needs to determine when (or whether) to perform the actions that will lead to
the desired learning. This decision can be broken down into two fundamental
aspects: identifying learning opportunities, and evaluating the potential utility
of learning.

Identifying learning opportunities: It would be naive to expect the real
world to be structured so as to facilitate the satisfaction of each individual’s
needs whenever they should arise. Instead, it is likely that goals (whether task
goals or learning goals) will not be immediately satisfiable at the time when they
are formulated. For example, a detective with the goal of identifying a criminal
will usually need to do much investigation before having sufficient information
to assign responsibility (Leake/chapter 20). Likewise, the reasoner may not
have the resources to pursue all its goals all the time, forcing the reasoner to
select particular goals to pursue (a detective performing multiple investigations
will prioritize them according to their importance).

Furthermore, the real world environment may not provide the opportunity
to pursue a particular goal even if the reasoner does decide to pursue it. For
example, pursuit of a learning goal may require environmental resources (such as
a library, or access to an expert) which may simply not be available at the time.
In Ram’s (1991) model of natural language story understanding, for example,
the reasoner’s questions about the story being read may not be answerable due
to insufficient information being available in the story. Determining whether
a suicide bombing is the work of a religious fanatic depends on having more
information about the bomber than is likely to be available in the first accounts
of the incident. Thus it is essential for the reasoner to be able to suspend
its pursuit of a goal, and to be able to resume its learning processes when an
opportunity to satisfy the goal presents itself (Ram & Hunter, 1992/chapter 4).
An analogous argument has been made for the opportunistic pursuit of task
or problem solving goals (Birnbaum & Collins, 1984; Hayes-Roth & Hayes-
Roth, 1979; Hammond, Converse, Marks, & Seifert, 1993; Patalano, Seifert, &
Hammond, 1993), and similar factors are relevant to learning behavior as well.

Evaluating the potential utility of learning: Not all learning is useful;
learning may sometimes be undesirable if it leads to the accumulation of knowl-
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edge that is seldom used, that is not expressed in an efficient manner, or that im-
pairs performance of the reasoner (Etzioni, 1992; Francis & Ram, 1993; Gratch
& DeJong, 1993; Minton, 1990/chapter 3; Tambe, Newell, & Rosenbloom, 1990).
Estimates of the potential utility of learned knowledge can be used to decide
what to learn about, based on an analysis of the expected utility of the learning
goals if they were to be achieved (e.g., desJardins, 1992/chapter 8). As men-
tioned earlier, while human learners may not be able to explicitly control their
own reasoning processes to such a fine-grained level of detail, it 1s nevertheless
possible to model human learning behavior in a goal-driven, utility-theoretic, or
rational formalism (e.g., Anderson, 1991).

8.2.6 Evaluating the results of learning

The final criterion for the effectiveness of learning is how well the results of
learning match the desired effects of the learning process. This question has
received less attention than the questions of how goals influence initial learning.
However, such evaluation has been used to determine whether to store the results
of the learning algorithm (Minton, 1988; 1990/chapter 3), and could be used to
formulate new learning goals in light of current results of the learning process.

8.3 Guiding storage

Evaluating the results of learning can a system to decide whether to store them,
and, if it does, to decide how to store them. Minton (1988; 1990/chapter 3)
proposes a learning process that estimates the usefulness of the generalized rules
that it forms before they are actually stored in the rule library. The estimate
is used to predict the utility of storing a new rule; only those rules expected
to actually improve performance are stored. Once a rule has been stored, the
effects of that rule on performance are monitored; rules that do not improve
performance are removed from the rule library.

This kind of selective storage and retention of learned rules is an instance
of a more general kind of goal-directed control of learning called information
filtering (Markovitch & Scott, 1993). Information filters can be used to decide
which learned items to store, which to retain in memory over time, which to
apply in a given situation, and even which training experiences it should seek
out and which it should learn from. The reasoner’s task goals guide the filters in
selecting what learning occurs and what products of learning are retained and
used.

Despite the practical benefits of using goals to guide storage, claims of cog-
nitive validity for such a model are controversial (see Barsalou/chapter 17 for
arguments against direct goal-based guidance in human learners). However,
regardless of whether explicit reasoning about goals affects individual storage
decisions, goals can still have a profound effect on what results are stored by de-
termining the course of processing. If goals determine processing and if process-
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ing determines storage, then goals determine storage indirectly. For example, in
dynamic memory systems, processing intrinsically changes memory without the
changes to memory necessarily being under explicit strategic control (Schank,
1982).

Goals also play a more direct role in storage in many Al systems. For ex-
ample, case-based planning systems index learned plans according to the goals
that those plans satisfy (e.g., Hammond, 1989; Hinrichs, 1992; Kolodner, 1987;
Veloso & Carbonell, 1993). In this way, these systems organize their memories to
facilitate re-use of those plans to accomplish similar goals. Likewise, case-based
explanation systems index explanations according to the knowledge goals that
the explanations were formulated to satisfy (e.g., Leake, 1991a, 1992; Ram, 1993;
Schank & Leake, 1989). Thus, these systems attempt to store learned informa-
tion to facilitate accomplishing similar future goals. Psychological experiments
by Patalano, Seifert and Hammond (1993) also suggest that, in humans, goal-
based factors can affect storage so as to facilitate noticing information relevant
to the pursuit of those goals.

The preceding sections show that goal-driven learning provides flexibility for
processing and the ability to tailor learning to current learner needs, helping to
perform effective learning of useful information. Insofar as learning is simply a
kind of reasoning (Ram, Cox, & Narayanan, chapter 18), many of the mecha-
nisms of attention focussing and goal-driven processing in learning and in other
reasoning will be identical. In particular, many of the results from research in
planning may, mutatis mutandis, carry over to goal-driven learning as well.

9 Pragmatic implications of goal-driven learn-
ing

The previous discussion shows how goal-driven learning can provide considerable
power in intelligent systems, whether those systems are viewed as computational
models of human intelligence, or purely as artificial intelligence systems. In
learning systems, goals can be used to focus learning and to avoid unrestricted
search and inferencing. They can also be used to guide the information-seeking
process and to make decisions about what, when, and how to learn.

Applying a planful model of learning promises to be fruitful for many appli-
cations, including perception (Pryor & Collins, 1992 10), intelligent information
retrieval (Ram & Hunter, 1991), learning through apprenticeship (Redmond,
1992), knowledge acquisition (Quilici, in press), information search during ex-
planation (Leake, chapter 20), medical diagnosis (Hunter, 1990), natural lan-
guage understanding (Carpenter & Alterman, 1994; Cox & Ram, 1994; Ram,
1991), and manufacturing (Perez, 1994; Ram, Narayanan, & Cox, 1993).

In addition, goals can be used as a theoretical device to build computational
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models of strategic and active reasoning and learning processes, and such mod-
els have practical ramifications for the design of instructional material. Ng and
Bereiter (1991 /chapter 14) show that different kinds of goals facilitate different
kinds of reasoning and result in different kinds of learning. Such results suggest
principles for the design of computer-based tools for education (Scardamalia &
Bereiter, 1991). For example, van Berkum, Hijne, de Jong, van Joolingen, and
Njoo (1991/chapter 15) use goal-driven learning both as a theoretical frame-
work for decomposing the education problem and as a guide toward design-
ing simulation-based instructional software. Schank proposes that because of
the importance of goals in motivating and guiding learning, instruction should
be conducted using a particular type of simulation environment—a goal-based
scenario—to exploit the role of learning goals (Schank, Fano, Jona, & Bell,
1993/1994). In goal-based scenarios, students play roles that are connected to
their goals, and whose successful completion requires acquisition of the skills to
be taught. In that way, goal-based scenarios provide a framework for students
to perform goal-driven learning to acquire the skills to be taught.

To design educational environments that facilitate learning, one must under-
stand the goal-driven information-seeking processes of the students who will be
interacting with the environment, in order to encourage development of those
processes. For example, in Scardamalia and Bereiter’s (1991) Teacher C model,
the teacher is concerned with helping students formulate their own goals, do
their own activation of prior knowledge, ask their own questions, direct their
own inquiry, and do their own monitoring of comprehension. Ng and Bere-
iter (1991 /chapter 14) identify three types of goal orientation in learning: task
completion, instructional, and knowledge-building. They show that students
with knowledge-building goal orientation learn better—those students actively
construct learning agendas, use prior knowledge in learning, and use the new
learning to reconsider their prior knowledge.

Cognitive science research has shown that people learn by interpreting and
constructing information (e.g., Resnick, 1983, 1987). Learning is viewed as a
constructive, knowledge-building process (and often a collaborative one) rather
than one of absorption (Bereiter, 1994; Roschelle, 1992). This principle has
been used as the basis for the design of instructional scenarios which facilitate
goal-driven interpretation and construction of knowledge (e.g., Edelson, 1993;
Ng & Bereiter, 1991; Schank, Fano, Jona, & Bell, 1993/1994). Van Berkum,
Hijne, de Jong, van Joolingen, and Njoo (1991 /chapter 15) discuss learning en-
vironments in which computer simulations are used for instruction. They too
distinguish between the learner’s goals and the instructor’s goals, and identify
four aspects of the design of such systems: simulation models, learning goals,
learning processes, and learning activity. In their model, learning goals have
three dimensions: knowledge category (type of knowledge), knowledge repre-
sentation (representation of that knowledge), and knowledge scope (generality
and applicability of that knowledge). Learning occurs through interaction with
simulated environments using four types of learning actions (orientation, hy-
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pothesis generation, testing, and evaluation) which are guided by the learning
goals. As in Ng’s model, learning is modelled as an active, constructive, and
exploratory process, and the educational environment is designed to support
such a process.

To this point, such applications of goal-driven learning models have been
pursued independently of investigations of computer models of the goal-driven
learning process itself. However, one of the goals of this volume is to show—
by bringing together perspectives from diverse communities—the contributions
that results from divergent research perspectives can make to one another, and
to highlight the common questions that remain to be addressed. The previous
discussion suggests the value of analyzing the goal-driven learning processes in
humans as the basis for the design of instructional material and educational
environments. In addition to its obvious practical value, this approach can be
useful in empirically validating theories of goal-driven learning.

10 Summary

Computational and psychological investigations of goal-driven learning have
addressed, broadly speaking, issues of what to learn, whether to learn, how
to learn, and when to learn. In goal-driven learning, decisions about what,
whether, how, and when to learn are determined by explicit reasoning about
the reasoner’s needs for information. Although many aspects of goal-driven
learning have been investigated in diverse fields, that research has been con-
ducted in a piecemeal fashion, largely segregated by field. Even when multiple
studies have been conducted in a single field, as is the case for artificial intel-
ligence, each study has tended to concentrate on a few aspects of the problem
without placing those aspects within a unifying framework and examining their
larger implications.

This chapter has presented a unifying picture of existing goal-driven learning
research in terms of a new framework for modeling goal-driven learning, in terms
of the types of goals that may guide learning, and in terms of the ways those goals
can influence learning. The chapter has also discussed some of the pragmatic
ramifications of the goal-driven learning model, both for intelligent systems
and for educational applications. Those ramifications provide motivations for
advancing our understanding of the goal-driven learning process.

The framework presented here is not suggested as a final theory of goal-driven
learning, but rather a device for understanding the relationships of different
results relevant to goal-driven learning and for suggesting issues that must be
addressed with further investigation through a coordinated multidisciplinary
research effort. The individual models and perspectives of the following chapters
illuminate specific aspects of the framework and the issues that remain to be
addressed in future research.

31



Acknowledgements

This research was supported in part by the National Science Foundation un-
der grants IRI-9009710 and TRI-9409348, by the Air Force Office of Sponsored
Research under contract F49620-94-1-0092, by the Georgia Institute of Tech-
nology, and by Indiana University. We would like to thank Betty Stanton for
her enthusiasm and support for our work on this volume, and to thank the
MIT Press anonymous reviewers for their detailed comments on this and the
other chapters in this volume, as well as on the composition of the volume itself.
We would also like to thank Michael Cox, Eric Domeshek, Susan Fox, Anthony
Francis, Janet Kolodner, Kenny Moorman, Paul Panaro, and Raja Sooriamurthi
for their many helpful comments on earlier drafts of this chapter.

32



References

Aamodt, A. (1991). A Knowledge Intensive Approach to Problem-Solving and
Sustained Learning . Ph.D. Dissertation. University of Trondheim, Norwegian
Institute of Technology, May, 1991.

Abbot, V., & Black, J. (1986). Goal-Related Inferences in Comprehension. In
J. Galambos, R. Abelson, & J. Black, editors, Knowledge Structures, pages
123-142, Lawrence Erlbaum Associates, Hillsdale, NJ.

Anderson, J. (1983). The Architecture of Cognition, Harvard University Press,
Cambridge, MA.

Anderson, J. (1991). The Place of Cognitive Architectures in a Rational Analy-
sis. In K. VanLehn, editor, Architectures for Cognition, pages 1-24, Lawrence
Erlbaum Associates, Hillsdale, NJ.

Barsalou, L. (1991 /chapter 5 of this volume). Deriving Categories to Achieve
Goals. In G.H. Bower, editor, The Psychology of Learning and Motivation:
Advances in Research and Theory, Volume 27, Academic Press, New York, NY.

Barsalou (chapter 17 of this volume). Storage Side Effects: Studying Processing to
Understand Learning. In A. Ram & D.B. Leake, editors, Goal-Driven Learning,
MIT Press/Bradford Books, Cambridge, MA.

Bereiter, C. (1994). Paper presented at the AAAT Spring Symposium on Goal-
Driven Learning, Stanford, CA.

Birnbaum, L. & Collins, G. (1984). Opportunistic Planning and Freudian Slips.
In Proceedings of the Sizth Annual Conference of the Cognitive Science Society,
pages 124-127, Boulder, CO.

Birnbaum, L., Collins, G., Freed, M., & Krulwich, B. (1990). Model-Based Diag-
nosis of Planning Failures. In Proceedings of the Eighth National Conference on
Artificial Intelligence, pages 318-323, Boston, MA.

Carbonell, J.G. (1986). Derivational Analogy: A Theory of Reconstructive Prob-
lem Solving and Expertise Acquisition. In R.S. Michalski, J.G. Carbonell,
& T.M. Mitchell, editors, Machine Learning 11: An Artificial Intelligence Ap-
proach; pages 371-392, Morgan Kaufman Publishers, San Mateo, CA.

Carbonell, J.G., Etzioni, O., Gil, Y., Joseph, R., Knoblock, C., Minton, S., &
Veloso, M. (1991 /chapter 11). Planning and Learning in PRODIGY: Overview
of an Integrated Architecture. SIGART Bulletin, 2(4).

Carbonell, J.G. & Gil, Y. (1990) Learning by Experimentation: The Operator Re-
finement Method. In Y. Kodratoff and R. Michalski, editors, Machine Learning
HI: An Artificial Intelligence Approach, pages 191-213, Morgan Kaufman Pub-
lishers, San Mateo, CA.

Carpenter, T. & Alterman, R. (1994). A Reading Agent. In Proceedings of the
Twelfth National Conference on Artificial Intelligence, pages 63-67.

Chien, S. (1989). Using and Refining Simplifications: Explanation-based Learning
of Plans in Intractable Domains. In Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, pages 590-595, Detroit, MI.

33



Cohen, D., Kulikowski, C., & Berman, H. (1993). Knowledge-Based Generation of
Machine Learning Experiments: Learning with DNA Crystallography Data. In
Proceedings of the Intelligent Systems for Molecular Biology Symposium, pages
92-100.

Collins, G. & Birnbaum, L. (1988). An Explanation-Based Approach to the Trans-
fer of Planning Knowledge Across Domains. In Proceedings of the 1988 AAAI
Spring Symposium on Ezplanation-based Learning, pages 107-111, Stanford,
CA.

Collins, G., Birnbaum, L., Krulwich, B. & Freed, M. (1991). Plan Debugging
in an Intentional System. In Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence, pages 353-358, Sydney, Australia.

Cox, M.T. (1993). Introspective Multistrategy Learning. Technical Report GIT-
(S-93/02, Cognitive Science Program, College of Computing, Georgia Institute
of Technology, Atlanta, GA.

Cox, M.T. & Ram, A. (1994). Managing Learning Goals in Strategy Selection
Problems. In Proceedings of the Second European Workshop on Case-Based
Reasoning, pages 85-93, Chantilly, France.

Dennett, D. (1987). The Intentional Stance. Bradford Books/MIT Press, Boston,
MA.

desJardins, M. (1992/chapter 8 of this volume). Goal-Directed Learning: A
Decision-Theoretic Model for Deciding What to Learn Next. In Proceedings
of the ML-92 Workshop on Machine Discovery, pages 147-151, Ninth Interna-
tional Machine Learning Conference, University of Aberdeen, Scotland.

Earl, C. & Firby, R.J. (1994). An Integrated Action and Learning System. In M.
desJardins & A. Ram, editors, Proceedings of the AAAI Spring Symposium on
Goal-Driven Learning, pages 22-27, Stanford, CA.

Edelson, D.C. (1993). Learning from Stories: Indering and Reminding in a
Socratic Case-Based Teaching System for Elementary School Biology. Ph.D.
dissertation, Technical Report #43, Northwestern University, Institute of the
Learning Sciences, Chicago, IL.

Etzioni, O. (1992). An Asymptotic Analysis of Speedup Learning. In Machine
Learning: Proceedings of the Ninth International Workshop, pages 129-136,
1992.

Etzioni, O., Hanks, S., Weld, D., Draper, D., Lesh, N.; & Williamson, M. (1992).
An Approach to Planning with Incomplete Information. In Proceedings of
the International Conference on Knowledge Representation, Morgan Kaufmann,
San Francisco, CA.

Faries, J. & Reiser, B. (1988). Access and Use of Previous Solutions in a Prob-
lem Solving Situation. In Proceedings of the Tenth Annual Conference of the
Cognitive Science Society, pages 433-439, Montreal.

Firby, J. (1987). Adaptive Execution in Complex Dynamic Worlds. Ph.D. Dis-
sertation, Research Report #672, Yale University, Department of Computer
Science, New Haven, CT.

34



Fikes, R.E., Hart, P.E., & Nilsson, N.J. (1972). Learning and Executing Gener-
alized Robot Plans. Artificial Intelligence, 3:251-288.

Forbus, K.D. & Oblinger, D. (1990). Making SME Greedy and Pragmatic. In
Proceedings of the Twelfth Annual Conference of the Cognitive Science Society,
pages 61-68, Cambridge, MA.

Forrest-Pressley, D.L., MacKinnon, G.E., & Waller, T.G. (1985), editors.
Metacognition, Cognition, and Human Performance, Volume 1 (Theoretical
Perspectives), Academic Press, New York.

Francis, A. & Ram, A. (1993). Computational Models of the Utility Problem and
their Application to a Utility Analysis of Case-Based Reasoning. In Proceed-
wngs of the ML-93 Workshop on Knowledge Compilation and Speedup Learning,
Tenth International Machine Learning Conference, University of Massachusetts,
Ambherst, MA.

Freed, M. & Collins, G. (1993). A Model-Based Approach to Learning from
Attention-Focusing Failures. In Proceedings of the Fifteenth Annual Conference
of the Cognitive Science Society, pages 434-439, Boulder, CO.

Freed, M. & Collins, G. (1994). Learning to Cope with Task Interactions. In M.
desJardins & A. Ram, editors, Proceedings of the AAAI Spring Symposium on
Goal-Driven Learning, pages 28-35, Stanford, CA.

Gauld, C. (1986). Models, meters and memory. Research in Science Education,
16:49-54.

Gavelek, J.R. & Raphael, R.E. (1985). Metacognition, Instruction and the Role
of Questioning Activities. In D.L. Forrest-Pressley, G.E. MacKinnon, & T.G.
Waller, editors, Metacognition, Cognition, and Human Performance, Volume 2
(Instructional Practices), pages 103-136, Academic Press, New York.

Gordon, D. & Perlis, D. (1989/chapter 13). Explicitly Biased Generalization.
Computational Intelligence, 5(2):67-81.

Graesser, A.C., Person, N., & Huber, J. (1992). Mechanisms that Generate Ques-
tions. In T.W. Lauer, E. Peacock, and A.C. Graesser, editors, Questions and
Information Systems, pages 167-187, Lawrence Erlbaum Associates, Hillsdale,
NJ.

Gratch, J. & DeJong, G. (1993). Assessing the Value of Information to Guide
Learning Systems. In Proceedings of the ML-93 Workshop on Knowledge Com-
pilation and Speedup Learning, pages 65—71, Tenth International Machine Learn-
ing Conference, University of Massachusetts, Amherst, MA.

Gratch, J., DeJong, G., & Chien, S.A. (1994). Deciding When and How to Learn.
In M. desJardins & A. Ram, editors, Proceedings of the AAAI Spring Symposium
on Goal-Driven Learning, pages 36—45, Stanford, CA.

Greeno, J.G. & Simon, H.A. (1988). Problem Solving and Reasoning. In R.C.
Atkinson, H. Hernstein, G. Lindzey, & R.D. Luce, editors, Stevens’ Handbook
of Experimental Psychology, Vol. 2: Learning and Cognition, pages 589-673,
Wiley, New York.

Hadzikadic, M. & Yun, D.Y.Y. (1988). Concept Formation by Goal-Driven,

35



Context-Dependent Classification. In Z.W. Ras & L. Saitta, editors, Method-
ologies for Intelligent Systems, 3:322-332, 1988.

Hammond, K.J. (1989). Case-Based Planning: Viewing Planning as a Memory
Task. Academic Press, Boston, MA.

Hammond, K., Converse, T., Marks, M., & Seifert, C.M. (1993). Opportunism
and Learning. Machine Learning, 10(3):279-309.

Hayes-Roth, B. & Hayes-Roth, F. (1979). A Cognitive Model of Planning. Cog-
nitive Science, 3(4):275-310.

Hayes-Roth, F. & Lesser, V. (1976). Focus of attention in a distributed logic
speech understanding system. In Proceedings of the IEEE International Confer-
ence on Accoustics, Speech and Signal Processing, pages 416-420, Philadelphia,
PA.

Hinrichs, T. (1992). Problem Solving in Open Worlds: A Case Study in Design.
Lawrence Erlbaum Associates, Hillsdale, NJ.

Hoffman, C., Mischel, W., & Mazze, K. (1981). The Role of Purpose in the
Organization of Information about Behavior: Trait-based versus Goal-Based
Categories in Human Cognition. Journal of Personality and Social Psychology,
39:211-255.

Hunter, L.E. (1990/chapter 2 of this volume). Planning to Learn. In Proceedings
of the Twelfth Annual Conference of the Cognitive Science Society, pages 261—
276, Boston, MA.

Karlsson, J. (1994). Task Decomposition in Reinforcement Learning. In M. des-
Jardins & A. Ram, editors, Proceedings of the AAAI Spring Symposium on
Goal-Driven Learning, pages 46-53, Stanford, CA.

Kass, A. & Leake, D.B. (1988). Case-Based Reasoning Applied to Constructing
Explanations. In J.L. Kolodner, editor, Proceedings of the Case-Based Rea-
soning Workshop, pages 190-208, Morgan Kaufmann Publishers, San Mateo,
CA.

Keller, R. (1987). The Role of Explicit Contextual Knowledge in Learning Con-
cepts to Improve Performance. Ph.D. Dissertation, Technical Report ML-TR-7,
Department of Computer Science, Stanford University.

Keller, R. (1988). Defining Operationality for Explanation-Based Learning. Ar-
tificial Intelligence, 35:227-241.

Kedar-Cabelli, S. (1987). Formulating Concepts According to Purpose. In Pro-
ceedings of the Swxth Annual National Conference on Artificial Intelligence,
pages 477-481, Seattle, WA.

Kintsch, W. (1988). The Role of Knowledge in Discourse Comprehension: A
Construction-Integration Model. Psychological Review, 95(2):163-182.

Kocabas, S. (1994). Goal-Directed Discovery and Explanation in Particle Physics.
In M. desJardins & A. Ram, editors, Proceedings of the AAAI Spring Symposium
on Goal-Driven Learning, pages 54-61, Stanford, CA.

Kolodner, J.L. (1987). Extending Problem-Solving Capabilities through Case-
Based Inference. In Proceedings of the Fourth International Workshop on Ma-
chine Learning, Irvine, CA.

36



Kolodner, J.L. (1993). Case-Based Reasoning. Morgan Kaufmann Publishers,
San Mateo, CA.

Krulwich, B. (1994). A Component-Model Approach to Determining What to
Learn. In M. desJardins & A. Ram, editors, Proceedings of the AAAI Spring
Symposium on Goal-Driven Learning, pages 62-71, Stanford, CA.

Krulwich, B., Birnbaum, L., & Collins, G. (1992). Learning Several Lessons from
one Experience. In Proceedings of the Fourteenth Annual Conference of the
Cognitive Science Society, pages 242-247, Bloomington, IN.

Laird, J.E. (1991), editor. Special Section on Integrated Cognitive Architectures.
SIGART Bulletin, 2(4):12-184.

Laird, J.E., Rosenbloom, P.S.; & Newell, A. (1986). Chunking in Soar: The
Anatomy of a General Learning Mechanism. Machine Learning, 1:11-46.

Leake, D.B. (1989). Anomaly Detection Strategies for Schema-Based Story Un-
derstanding. In Proceedings of the Eleventh Annual Conference of the Cognitive
Science Society, pages 490-497, Ann Arbor, MI.

Leake, D.B. (1991a). An Indexing Vocabulary for Case-Based Explanation. In
Proceedings of the Ninth National Conference on Artificial Intelligence, Ana-
heim, CA, pages 10-15.

Leake, D.B. (1991b/chapter 9 of this volume). Goal-Based Explanation Evalua-
tion. Cognitive Science, 15:509-545.

Leake, D.B. (1992). Evaluating FExplanations: A Content Theory. Lawrence Erl-
baum Associates, Hillsdale, NJ.

Leake, D.B. (1993). Learning Adaptation Strategies by Introspective Reasoning
about Memory Search. In D.B. Leake, editor, Proceedings of the AAAI-93
Workshop on Case-Based Reasoning, pages b7-63, AAAI Press, Menlo Park,
CA.

Leake, D.B. & Ram, A. (1993/chapter 16 of this volume). Goal-Driven Learning:
Fundamental Issues (A Symposium Report). AI Magazine, 14(4).

Leake, D.B. (chapter 20 of this volume). Goal-Driven Integration of Explanation
and Action. In A. Ram & D.B. Leake, editors, Goal-Driven Learning, MIT
Press/Bradford Books, Cambridge, MA.

Maes, P. (1990). Situated Agents Can Have Goals. Robotics and Autonomous
Systems, 6:49-70.

Markovitch, S. & Scott, P.D. (1993). Information Filtering: Selection Mechanisms
in Learning Systems. Machine Learning, 10:113-151.

Martin, J.D. (1994). DC1: Supervised and Unsupervised Clustering. In M. des-
Jardins & A. Ram, editors, Proceedings of the AAAI Spring Symposium on
Goal-Driven Learning, pages 80-87, Stanford, CA.

Michalski, R.S. (1983). A Theory and Methodology of Inductive Learning. Arti-
ficial Intelligence, 20:111-161.

Michalski, R.S. (1993). Inferential Theory of Learning as a Conceptual Basis for
Multistrategy Learning. Machine Learning, 11(2/3):111-151, 1993.

Michalski, R.S. & Ram, A. (chapter 21 of this volume). Learning as Goal-
Driven Inference. In A. Ram & D.B. Leake, editors, Goal-Driven Learning,

37



MIT Press/Bradford Books, Cambridge, MA.

Michalski, R.S. & Tecuci, G. (1994), editors. Machine Learning: A Multistrategy
Approach, Volume IV, Morgan Kaufman Publishers, San Mateo, CA.

Minsky, M. (1963). Steps towards Artificial Intelligence. In E.A. Feigenbaum & J.
Feldman, editors, Computers and Thought, pages 406-450, McGraw-Hill, New
York, NY.

Minton, S. (1988). Learning Search Control Knowledge: An Erplanation-Based
Approach. Kluwer Academic Publishers, Boston.

Minton, S. (1990/chapter 3 of this volume). Quantitative Results Concerning the
Utility of Explanation-Based Learning. Artificial Intelligence, 42:363-391.

Mitchell, T.M. (1980). The Need for Biases in Learning Generalizations. Techni-
cal Report CBM-TR-117, Rutgers University, New Brunswick, NJ.

Mitchell, T.M. (1982). Generalization as Search. Artificial Intelligence, 18:203—
226.

Mitchell, T.M., Allen, J., Chalasani, P., Cheng, J., Etzioni, O., Ringuette, M. &
Schlimmer, J. (1991). Theo: A Framework for Self-Improving Systems. In K.
VanLehn, editor, Architectures for Intelligence: The Twenty-Second Carnegie
Mellon Symposium on Cognition, pages 323-355, Lawrence Erlbaum Associates,
Hillsdale, NJ.

Mitchell, T.M. & Keller, R. (1983). Goal Directed Learning. In Proceedings of
the International Machine Learning Workshop, pages 117-118, Monticello, IL.

Mitchell, T.M., Keller, R., & Kedar-Cabelli, S. (1986). Explanation-Based Gen-
eralization: A Unifying View. Machine Learning, 1(1):47-80.

McKoon, G. & Ratcliff, R. (1992). Inference During Reading. Psychological
Review, 99: 440-466.

Mooney, R. (1990). A General Explanation-based Learning Mechanism and its
Application to Narrative Understanding. Morgan Kaufmann Publishers, San
Mateo, CA.

Mooney, R.J. & Ourston, D. (1993). A Multistrategy Approach to Theory Re-
finement. In R.S. Michalski & G. Tecuci, editors, Machine Learning: A Mul-
tistrategy Approach, Volume IV, pages 141-164, Morgan Kaufman Publishers,
San Mateo, CA.

Mostow, J. (1983). Machine Transformation of Advice into a Heuristic Search
Procedure. In R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Ma-
chine Learning: An Artificial Intelligence Approach, pages 367-403, Morgan
Kaufmann Publishers, San Mateo, CA.

Mostow, J. & Bhatnagar, N. (1987). FAILSAFE—A Floor Planner that Uses
EBG to Learn from its Failures. In Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, pages 249-255, Milan, Italy.

Murphy, G.L. & Medin, D.L. (1985). The Role of Theories in Conceptual Coher-
ence. Psychological Review, 92:289-316.

Newell, A. (1990). Unified Theories of Cognition. Harvard University Press.
Cambridge, MA.

38



Newell, A. & Simon, H. (1972). Human Problem Solving. Prentice-Hall, Engle-
wood Cliffs, NJ.

Ng, E. & Bereiter, C. (1991/chapter 14 of this volume). Three Levels of Goal
Orientation in Learning. The Journal of the Learning Sciences, 1(3&4):243—
271.

Oehlmann, R., Sleeman, D., & Edwards, P. (1992.) Self-Questioning and Exper-
imentation in an Exploratory Discovery System. In Proceedings of the ML-92
Workshop on Machine Discovery, pages 41-50, Ninth International Machine
Learning Conference, University of Aberdeen, Scotland.

Owens, C. (1991). A Functional Taxonomy of Abstract Plan Failures. In Pro-
ceedings of the Thirteenth Annual Conference of the Cognitive Science Society,
pages 167-172, Chicago, IL.

Patalano, A., Seifert, C., & Hammond, K. (1993). Predictive Encoding: Plan-
ning for Opportunities. Proceedings of the Fifteenth Annual Conference of the
Cognitive Science Society, pages 800-805, Boulder, CO.

Park, Y. & Wilkins, D. (1990). Establishing the Coherence of an Explanation to
Improve Refinement of an Incomplete Knowledge Base. In Proceedings of the
Eighth National Conference on Artificial Intelligence, pages 511-516, Boston,
MA.

Perez, M.A. (1994). The Goal is to Produce Better Plans. In M. desJardins &
A. Ram, editors, Proceedings of the AAATI Spring Symposium on Goal-Driven
Learning, pages 88-93, Stanford, CA.

Plaza, E., Aamodt, A., Ram, A., Van de Welde, W., & van Someren, M. (1993).
Integrated Learning Architectures. In Proceedings of the European Conference
on Machine Learning, Vienna, Austria.

Provost, F.J. (1994). Goal-Directed Inductive Learning: Trading off Accuracy
for Reduced Error Cost. In M. desJardins & A. Ram, editors, Proceedings of
the AAAT Spring Symposium on Goal-Driven Learning, pages 94-101, Stanford,
CA.

Provost, F.J. & Buchanan, B.G. (1992). Inductive Policy. In Proceedings of the
Tenth National Conference on Artificial Intelligence, pages 255-261, San Jose,
CA.

Pryor, L. & Collins, G. (1992/chapter 10 of this volume). Planning to Perceive.
In Proceedings of the 1992 AAAI Spring Symposium on Selective Perception,
Stanford, CA.

Quilici, A. (in press). Toward Automatic Acquisition of an Advisory System’s
Knowledge Base. Applied Intelligence.

Rajamoney, S. (1993). Designing Experiments to Extend the Domain Theory. In
DeJong, G., editor, Investigating Explanation-Based Learning, Kluwer, Boston.

Ram, A. (1987). AQUA: Asking Questions and Understanding Answers. In
Proceedings of the Sizth Annual National Conference on Artificial Intelligence,
pages 312-316, Seattle, WA.

Ram, A. (1989). Question-Driven Understanding: An Integrated Theory of Story
Understanding, Memory and Learning. Ph.D. Dissertation, Research Report

39



#710, Yale University, Department of Computer Science, New Haven, CT.

Ram, A. (1990). Knowledge Goals: A Theory of Interestingness. In Proceedings of
the Twelfth Annual Conference of the Cognitive Science Society, pages 206-214,
Cambridge, MA.

Ram, A. (1991). A Theory of Questions and Question Asking. The Journal of
the Learning Sciences, 1(3&4):273-318.

Ram, A. (1993). Indexing, Elaboration and Refinement: Incremental Learning of
Explanatory Cases. Machine Learning, 10:201-248.

Ram, A. & Cox, M.T. (1994/chapter 7 of this volume). Introspective Reason-
ing using Meta-Explanations for Multistrategy Learning. In R.S. Michalski &
G. Tecuci, editors, Machine Learning: A Multistrateqy Approach, Volume IV,
Morgan Kaufman Publishers, San Mateo, CA.

Ram, A., Cox, M.T., & Narayanan, S. (chapter 18 of this volume). Goal-Driven
Learning in Multistrategy Reasoning and Learning Systems. In A. Ram & D.B.
Leake, editors, Goal-Driven Learning, MIT Press/Bradford Books, Cambridge,
MA.

Ram, A. & Hunter, L. (1992/chapter 4 of this volume). The Use of Explicit
Goals for Knowledge to Guide Inference and Learning. Applied Intelligence,
2(1):47-73.

Ram, A. & Leake, D.B. (1991). Evaluation of Explanatory Hypotheses. In Pro-
ceedings of the Thirteenth Annual Conference of the Cognitive Science Society,
pages 867-871, Chicago, IL.

Ram, A., Narayanan, S., & Cox, M.T. (1993). Learning to troubleshoot: Multi-
strategy learning of diagnostic knowledge for a real-world problem solving task.
Technical Report GIT-CC-93/67, College of Computing, Georgia Institute of
Technology, Atlanta, Georgia 30332-0280, 1993.

Redmond, M. (1992). Learning by Observing and Understanding Expert Prob-
lem Solving. Ph.D. Dissertation, Technical report GIT-CC-92/43, College of
Computing, Georgia Institute of Technology, Atlanta, GA.

Resnick, L.B. (1983). Towards a Cognitive Theory of Instruction. In S.G. Paris,
G.M. Olson, & H.W. Stevenson, editors, Learning and Motivating in the Class-
room, pages 6-38, Lawrence Erlbaum Associates, Hillsdale, NJ.

Resnick, L.B. (1987). Constructing Knowledge in School. In L.S. Liben, editor,
Development and Learning: Conflict or Congruence, pages 19-50, Lawrence
Erlbaum Associates, Hillsdale, NJ.

Riesbeck, C. (1981). Failure-driven Reminding for Incremental Learning. In Pro-
ceedings of the Seventh International Joint Conference on Artificial Intelligence,
pages 115-120, Vancouver, British Columbia.

Roschelle, J. (1992). Learning by Collaborating: Convergent Conceptual Change.
The Journal of the Learning Sciences, 2(3):235-276.

Rosenbloom, P., Laird, J., & Newell, A. (1993) The Soar papers: Research on
wntegrated intelligence. MIT Press, Cambridge, MA.

Sacerdoti, E.D. (1975). A Structure for Plans and Behavior. Technical Note
#109, SRI International. Summarized in P.R. Cohen & E.A. Feigenbaum,

40



Handbook of AI, Volume I1I, pages 541-550.

Scardamalia, M. & Bereiter, C. (1991). Higher Levels of Agency for Children
in Knowledge Building: A Challenge for the Design of New Knowledge Media.
The Journal of the Learning Sciences, 1(1):37-86.

Schank, R.C. (1982). Dynamic Memory: A Theory of Learning in Computers and
People. Cambridge University Press, Cambridge, England.

Schank, R.C. (1986). FEzplanation Patterns: Understanding Mechanically and
Creatwely. Lawrence Erlbaum Associates, Hillsdale, NJ.

Schank, R.C. & Abelson, R. (1977). Scripts, Plans, Goals and Understanding.
Lawrence Erlbaum Associates, Hillsdale, NJ.

Schank, R.C., Fano, A., Bell, B., & Jona, K. (1993/1994). The Design of Goal-
Based Scenarios. The Journal of the Learning Sciences.

Schank, R.C. & Leake, D.B. (1989). Creativity and Learning in a Case-Based
Explainer. Artificial Intelligence, 40(1-3):353-385. Also appears in J.G. Car-
bonell, editor, Machine Learning: Paradigms and Methods, MIT Press, Cam-
bridge, MA, 1990.

Schlimmer, J.C. (1987). Incremental Adjustment of Representations for Learn-
ing. In Proceedings of the Fourth International Workshop on Machine Learning,
pages 79-90, Irvine, CA.

Seifert, C. (1988). Goals in Reminding. In J.L. Kolodner, editor, Proceedings of
the Case-Based Reasoning Workshop, pages 190-208, Morgan Kaufmann Pub-
lishers, San Mateo, CA.

Slade, S. (1993). Goal-Based Decision Making: An Interpersonal Model. Lawrence
Erlbaum Associates, Hillsdale, NJ.

Spellman, B.A. & Holyoak, K.J. (1993). An Inhibitory Mechanism for Goal-
Directed Analogical Mapping. In Proceedings of the Fifteenth Annual Confer-
ence of the Cognitive Science Society, pages 947-952, Boulder, CO.

Sperber, D. & Wilson, D. (1986). Relevance: Communication and Cognition.
Language and Thought Series, Harvard University Press, Cambridge, MA.

Srull, T. & Wyer, R. (1986). The Role of Chronic and Temporary Goals in Social
Information Processing. In R. Sorrentino and E. Higgins, editors, Handbook
of Motivation and Cognition: Foundations of Social Behavior, pages 503-549.
Guilford Press, Guilford, CT.

Steinbart, P.J. (1992). The Role of Questioning in Learning from Computer-Based
Decision Aids. In T.W. Lauer, E. Peacock, and A.C. Graesser, editors, Ques-
tions and Information Systems, pages 273-285, Lawrence Erlbaum Associates,
Hillsdale, NJ.

Stroulia, E. & Goel, A K. (1994). Task Structures: A Language for Learning
Goals. In M. desJardins & A. Ram, editors, Proceedings of the AAAI Spring
Symposium on Goal-Driven Learning, pages 112-121, Stanford, CA.

Stroulia, E., Shankar, M., Goel, A.K., & Penberthy, L. (1992). A Model-Based
Approach to Blame Assignment in Design. In J.S. Gero, editor, Proceedings of
the Second International Conference on Al in Design, pages 519-537.

41



Sussman, G. (1975). A Computer Model of Skill Acquisition. Artificial Intelligence
Series, Volume 1, American Elsevier, New York, NY.

Tambe, M., Newell, A., & Rosenbloom, P.S. (1990). The Problem of Expen-
sive Chunks and 1ts Solution by Restricting Expressiveness. Machine Learning,
5:299-348.

Thagard, P. & Millgram, E. (chapter 19 of this volume). Inference to the Best
Plan: A Coherence Theory of Decision. In A. Ram & D.B. Leake, editors,
Goal-Driven Learning, MIT Press/Bradford Books, Cambridge, MA.

Utgoff, P.E. (1986). Shift of Bias for Inductive Concept Learning. In R.S. Michal-
ski, J.G. Carbonell, & T.M. Mitchell, editors, Machine Learning II: An Artificial
Intelligence Approach, Morgan Kaufman Publishers, San Mateo, CA.

van Berkum, J.J.A., Hijne, H., de Jong, T., van Joolingen, W.R., & Njoo, M.
(1991 /chapter 15). Aspects of Computer Simulations in an Instructional Con-
text. Education and Computing, 6:231-239, 1991.

Van de Velde, W. (1988). Quality of Learning. In Proceedings of the European
Conference on Artificial Intelligence, pages 408-413, Munich, Germany.

VanLehn, K. (1989). Problem Solving and Cognitive Skill Acquisition. In M.I.
Posner, editor, Foundations of Cognitive Science, pages 5b27-579, MIT Press,
Cambridge, MA.

VanLehn, K. (1991a). Rule Acquisition Events in the Discovery of Problem Solv-
ing Strategies. Cognitive Science, 15(1):1-47.

VanLehn, K. (1991b).  Architectures for Intelligence: The Twenty-Second
Carnegie-Mellon Symposium on Cognition. Lawrence Erlbaum Associates,
Hillsdale, NJ.

Veloso, M. & Carbonell, J.G. (1993). Derivational Analogy in PRODIGY:
Automating Case Acquisition, Storage, and Utilization. Machine Learning,
10(3):249-278.

Weinert, F.E. (1987). Introduction and Overview: Metacognition and Motivation
as Determinants of Effective Learning and Understanding. In F.E. Weinert &
R.H. Kluwe, editors, Metacognition, Motivation, and Understanding, Lawrence
Erlbaum Associates, Hillsdale, NJ.

Weintraub, M. (1991). An FEzplanation-Based Approach to Assigning Credit,
Ph.D. Dissertation, Computer Science Department, The Ohio State University,
Columbus, OH.

Wellman, H.M. (1985). The Origins of Metacognition. In D.L. Forrest-Pressley,
G.E. MacKinnon, & T.G. Waller, editors, Metacognition, Cognition, and Human
Performance, Volume 1, pages 1-31, Academic Press, New York.

Wellman, H.M. (1992). The Child’s Theory of Mind. MIT Press/Bradford Books,
Cambridge, MA.

White, R.T. & Gunstone, R.F. (1989). Metalearning and Conceptual Change.
International Journal of Science Education, 11:577-586.

Wilensky, R. (1983). Planning and Understanding. Addison-Wesley, Reading,
MA.

42



Wisniewski, E.J. & Medin, D.L. (1991 /chapter 6 of this volume). Harpoons and
Long Sticks: The Interaction of Theory and Similarity in Rule Induction. In D.
Fisher & M.J. Pazzani, editors, Concept Formation: Knowledge and Experience
i Unsupervised Learning, Morgan Kaufman Publishers, San Mateo, CA.

Wrobel, S. (1988). Automatic Representation Adjustment in an Observational
Discovery System. In D. Sleeman, editor, Proceedings of the Third European
Working Session on Learning, pages 2563-261, Pitman Publishing, London.

Xia, X. & Yeung, D.-Y. (1988/chapter 12). A Learning Model for the Selection
of Problem Solving Strategies in Continuous Physical Systems. In Proceedings
of the Fourth IEEE Conference on Artificial Intelligence Applications, pages
200-206, San Diego, CA.

Zukier, H. (1986). The Paradigmatic and Narrative Modes in Goal-Guided Infer-
ence. In R. Sorrentino and E.T. Higgins, editors, Handbook of Motivation and
Cognition: Foundations of Social Behavior, Guilford Press, New York, NY.

43



