
M.I.T. Media Lab Vision and Modeling Group Technical Report No. 157, January 1991
To appear in Presence, Vol 1, No. 1, 1991, MIT Press, Cambridge, MA.

Synchronization in Virtual Realities

M. Friedmann, T. Starner, A. Pentland

Vision and Modeling Group, The Media Lab, Massachusetts Institute of Technology
Room E15-389, 20 Ames St., Cambridge MA 02139 1

ABSTRACT: Interactive graphics, and especially virtual reality systems, require synchroniza-
tion of sight, sound, and user motion if they are to be convincing and natural. We present a solution
to the synchronization problem that is based on optimal estimation methods.

1 Introduction

The core of most virtual reality systems is the ability to closely map sensed user motion to rendering
parameters. The exact synchronization of user motion and rendering is critical: lags greater than
100 msec in the rendering of hand motion can cause users to restrict themselves to slow, careful
movements while discrepencies between head motion and rendering can cause motion sickness [2, 4].
In systems that also generate sound, small delays in sound output can confuse even practiced users.
This paper proposes a method of accurately predicting sensor position in order to more closely
synchronize processes in distributed virtual environments.

Problems in synchronization of user motion, rendering, and sound arise from three basic causes.
The first cause is noise in the sensor measurements. The second cause is the length of the processing
pipeline, that is, the delay introduced by the sensing device, the CPU time required to calculate the
proper response, and the time spent rendering output images or generating appropriate sounds. The
third cause is unexpected interruptions such as network contention or operating system activity.
Because of these factors, using the raw output of position sensors leads to noticeable lags and other
discrepancies in output synchronization.

Unfortunately, most virtual reality systems either use raw sensor positions, or they make an
ad-hoc attempt to compensate for the fixed delays and noise. A typical method for compensation
averages current sensor measurements with previous measurements to obtain a smoothed estimate
of position. The smoothed measurements are then differenced for a crude estimate the user’s
instantaneous velocity. Finally, the smoothed position and instantaneous velocity estimates are
combined to extrapolate the user’s position at some fixed interval in the future.

Problems with this approach arise when the user either moves quickly, so that averaging sensor
measurements produces a poor estimate of position, or when the user changes velocity, so that the
predicted position overshoots or undershoots the user’s actual position. As a consequence, users
are forced to make only slow, deliberate motions in order to maintain the illusion of the virtual
reality.

We present a solution to these problems based on the ability to more accurately predict future
1This research was made possible by ARO Grant No. DAAL03-87-K-0005. Great thanks are due Barry Vercoe

and Mike Hawley for their help with CSound, as well as to Ali Azabaryejani for bringing this Kalman filter notation
to our attention.

1

user positions using an optimal linear estimator and on the use of fixed-lag dataflow techniques that
are well-known in hardware and operating system design. The ability to accurately predict future
positions eases the need to shorten the processing pipeline because a fixed amount of “lead time”
can be allotted to each output process. For example, the positions fed to the rendering process
can reflect sensor measurements one frame ahead of time so that when the image is rendered and
displayed, the effect of synchrony is achieved. Consequently, unpredictable system and network
interruptions are invisible to the user as long as they are shorter than the allotted lead time.

2 Optimal Estimation of Position and Velocity

At the core of our technique is the optimal linear estimation of future user position. To accomplish
this it is necessary to consider the dynamic properties of the user’s motion and of the data mea-
surements. The Kalman filter [3] is the standard technique for obtaining optimal linear estimates
of the state vectors of dynamic models and for predicting the state vectors at some later time.
Outputs from the Kalman filter are the maximum likelihood estimate for Gaussian noises, and are
the optimal (weighted) least-squares estimate for non-Gaussian noises [1].

In our system we have found that it is sufficient to treat only the translational components (the
x, y, and z coordinates) output by the Polhemus sensor2, and to assume independent observation
and acceleration noise. In this section, therefore, we will develop a Kalman filter that estimates
the position and velocity of a Polhemus sensor for this simple noise model. Generalizations to
rotational measurements and more complex models of noise are straightforward, following the
framework described in [1], but are quite lengthy and are omitted in the interest of compactness.
A detailed treatment of rotation with all relevant equations can be found in [8].

2.1 The Kalman Filter

Let us define a dynamic process
Xk+1 = f(Xk, ∆t) + ξ(t) (1)

where the function f models the dynamic evolution of state vector Xk at time k, and let us define
an observation process

Yk = h(Xk, ∆t) + η(t) (2)

where the sensor observations Y are a function h of the state vector and time. Both ξ and η are
white noise processes having known spectral density matrices.

In our case the state vector Xk consists of the true position, velocity, and acceleration of the
Polhemus sensor in each of the x, y, and z coordinates, and the observation vector Yk consists of
the Polhemus position readings for the x, y, and z coordinates. The function f will describe the
dynamics of the user’s movements in terms of the state vector, i.e. how the future position in x
is related to current position, velocity, and acceleration in x, y, and z. The observation function
h describes the Polhemus measurements in terms of the state vector, i.e., how the next Polhemus
measurement is related to current position, velocity, and acceleration in x, y, and z.

Using Kalman’s result, we can then obtain the optimal linear estimate X̂k of the state vector
Xk by use of the following Kalman filter:

X̂k = X∗
k + Kk(Yk − h(X∗

k, t)) (3)
2It should be noted that this assumption is not valid for head rotations, which are far more important than head

translations for view changes

2

provided that the Kalman gain matrix Kk is chosen correctly [3]. At each time step k, the filter
algorithm uses a state prediction X∗

k, an error covariance matrix prediction P∗
k, and a sensor

measurement Yk to determine an optimal linear state estimate X̂k, error covariance matrix estimate
P̂k, and predictions X∗

k+1, P∗
k+1 for the next time step.

The prediction of the state vector X∗
k+1 at the next time step is obtained by combining the

optimal state estimate X̂k and Equation 1:

X∗
k+1 = X̂k + f(X̂k, ∆t)∆t (4)

In our graphics application this prediction equation is also used with larger times steps, to predict
the user’s future position. This prediction allows us to maintain synchrony with the user by giving
us the lead time needed to complete rendering, sound generation, and so forth.

2.1.1 Calculating The Kalman Gain Factor

The Kalman gain matrix Kk minimizes the error covariance matrix Pk of the error ek = Xk − X̂k,
and is given by

Kk = P∗
kHk

T (HkP∗
kHk

T − R)−1 (5)

where R = E[η(t)η(t)T] is the n x n observation noise spectral density matrix, and the matrix Hk

is the local linear approximation to the observation function h,

[Hk]ij = ∂hi/∂xj (6)

evaluated at X = X∗
k.

Assuming that the noise characteristics are constant, then the optimizing error covariance ma-
trix Pk is obtained by solving the Riccati equation

0 = Ṗ∗
k = FkP∗

k + P∗
kF

T
k − P∗

kH
T
k R−1HkP∗

k + Q (7)

where Q = E[ξ(t)ξ(t)T] is the n x n spectral density matrix of the system excitation noise ξ, and
Fk is the local linear approximation to the state evolution function f ,

[Fk]ij = ∂fi/∂xj (8)

evaluated at X = X̂k.
More generally, the optimizing error covariance matrix will vary with time, and must also be

estimated. The estimate covariance is given by

P̂k = (I − KkHk)P∗
k (9)

From this the predicted error covariance matrix can be obtained

P∗
k+1 = ΦkP̂kΦT

k + Q (10)

where Φk is known as the state transition matrix

Φk = (I + Fk∆t) (11)

3

2.2 Estimation of Displacement and Velocity

In our graphics application we use the Kalman filter described above for the estimation of the dis-
placements Px, Py, and Pz, the velocities Vx, Vy, and Vz, and the accelerations Ax, Ay, and Az of Pol-
hemus sensors. The state vector X of our dynamic system is therefore (Px, Vx, Ax, Py, Vy, Ay, Pz, Vz, Az)T ,
and the state evolution function is

f(X, ∆t) =




Vx + Ax
∆t
2

Ax

0
Vy + Ay

∆t
2

Ay

0
Vz + Az

∆t
2

Az

0




(12)

The observation vector Y will be the positions Y = (P ′
x, P ′

y, P
′
z)T that are the output of the

Polhemus sensor. Given a state vector X we predict the measurement using simple second order
equations of motion:

h(X, ∆t) =




Px + Vx∆t + Ax
∆t2

2

Py + Vy∆t + Ay
∆t2

2

Pz + Vz∆t + Az
∆t2

2


 (13)

Calculating the partial derivatives of Equations 6 and 8 we obtain

F =




0 1 ∆t
2

0 1
0

0 1 ∆t
2

0 1
0

0 1 ∆t
2

0 1
0




(14)

and

H =




1 ∆t ∆t2

2

1 ∆t ∆t2

2

1 ∆t ∆t2

2


 (15)

Finally, given the state vector Xk at time k we can predict the Polhemus measurements at time
k + ∆t by

Yk+∆t = h(Xk, ∆t) (16)

and the predicted state vector at time k + ∆t is given by

X̂k+∆t = X∗
k + f(X̂k, ∆t)∆t (17)

4

1 2 3 4 5 6
-50

50

100

150

200

250

Height (mm)
polhemus signal
.03 second look ahead

Time (seconds)

Figure 1: Output of a Polhemus sensor and the Kalman filter prediction of that output for a lead
time of 1/30th of a second.

(a)

4.6 4.8 5 5.2 5.4 5.6 5.8

-50

50

100

150

200

250
Height (mm)

polhemus signal
.03 second look ahead
.06 second look ahead
.09 second look ahead

Time (seconds)

(b)

4.6 4.8 5 5.2 5.4 5.6 5.8

-50

50

100

150

200

250
Height (mm)

polhemus signal
.03 second look ahead
.06 second look ahead
.09 second look ahead

Time (seconds)

Figure 2: (a) Output of Kalman filter for various lead times, (b) output of commonly used velocity
prediction method.

2.2.1 The Noise Model

We have experimentally developed a noise model for user motions. Although our noise model is
not verifiably optimal, we find the results to be quite sufficient for a wide variety of hand and head
tracking applications. The system excitation noise model ξ is designed to compensate for large
velocity and acceleration changes; we have found

ξ(t)T =
[

1 20 63 1 20 63 1 20 63
]

(18)

(where Q = ξ(t)ξ(t)T) provides a good model. In other words, we expect and allow for positions
to have a standard deviation of 1mm, velocities 20mm/sec and accelerations 63mm/sec2. The
observation noise is expected to be much lower than the system exitation noise. The spectral
density matrix for observation noise is R = η(t)η(t)T ; we have found that

η(t)T =
[

.25 .25 .25
]

(19)

provides a good model for the Polhemus sensor.

5

 Application
Control Process

 Device
Query Process

 Kalman
Filter Process

Sensor

Position DataEstim
ated Positio

n

 a
t Time t Q

uery for P
ositio

n

 at Time t

 Q
ue

ry
 @

30
Hz

Figure 3: Communications used for control and filtering of Polhemus sensor

2.3 Experimental Results and Comparison

Figure 1 shows the raw output of a Polhemus sensor attached to a drumstick playing a musical
flourish, together with the output of our Kalman filter predicting the Polhemus’s position 1/30th
of a second in the future.

As can be seen, the prediction is generally quite accurate. At points of high acceleration a
certain amount of overshoot occurs; such problems are intrinsic to any prediction method but
can be minimized with more complex models of the sensor noise and the dynamics of the user’s
movements.

Figure 2(a) shows a higher-resolution version of the same Polhemus signal with the Kalman
filter output overlayed. Predictions for 1/30, 1/15, and 1/10 of a second in the future are shown.
For comparison, Figure 2(b) shows the performance of the prediction made from simple smoothed
local position and velocity, as described in the introduction. Again, predictions for 1/30, 1/15,
and 1/10 of a second in the future are shown. As can be seen, the Kalman filter provides a more
reliable predictor of future user position than the commonly used method of simple smoothing plus
velocity prediction.

3 MusicWorld

Our solution is demonstrated in a musical virtual reality, an application requiring synchronization
of user, physical simulation, rendering, and computer-generated sound. This system is called Mu-
sicWorld, and allows users to play a virtual set of drums, bells, or strings with two drumsticks
controlled by Polhemus sensors. As the user moves a physical drumstick the corresponding ren-
dered drumstick tracks accordingly. When the rendered drumstick strikes a drum surface the sound
generator produces the appropriate sound for that drum. The visual appearance of MusicWorld is
shown in Figure 4(a).

Figure 3 shows the processes and communication paths used to filter and query each Polhemus
sensor. Since we cannot insure that the application control process will query the Polhemus devices
on a regular basis, and since we do not want the above Kalman loop to enter into the processing
pipeline, we spawn two small processes to constantly query and filter the actual device. The
application control process then, at any time, has the opportunity to make a fast query to the filter
process for the most up to date, filtered, polhemus position. Using shared-memory between these

6

(a) (b)

Estimated Positions
 At Times t , t , ...1 2

Rendering Commands
 With 1/30 Second
 Lead Time

Sound Commands
With 1/15 Second
 Lead Time

Application
 Control
 Process

Polhemus
 Filter
Processes

Rendering
 Process

1/30 Sec. Delay

1/15 Sec. Delay

 Sound
Generation
 Process

Figure 4: (a) MusicWorld, a musical virtual reality, (b) Communications and lead times for Mu-
sicWorld processes.

two processes makes the final queries fully optimal.
MusicWorld is built on top of the ThingWorld system [5, 6], which has one process to handle

the problems of real-time physical simulation and contact detection and a second process to handle
rendering. Sound generation is handled by a third process on a separate host, running CSound [7].
Figure 4(b) shows the communication network for MusicWorld, and the lead times employed.

The application control process queries the Kalman filter process for the predicted positions
of each drumstick at 1/15 and 1/30 of a second. Two different predictions are used, one for each
output device. The 1/15 of a second predictions are used for sound and are sent to ThingWorld
to detect stick collisions with drums and other sound generating objects. When future collisions
are detected, sound commands destined for 1/15 of a second in the future are sent to CSound.
Regardless of collisions and sounds, the scene is always rendered using the positions predicted at
1/30 of a second in the future, corresponding to the fixed lag in our rendering pipeline. In general,
it would be more optimal to constantly check and update the lead times actually needed for each
output process, to insure that dynamic changes in network speeds, or in the complexity of the scene
(rendering speeds) do not destroy the effects of synchrony.

4 Summary

The unavoidable processing delays in computer systems mean that synchronization of graphics
and sound with user motion requires prediction of the user’s future position. We have shown
how to construct the optimal linear filter for estimation of future user position, and demonstrated
that it gives better performance than the commonly used technique of position smoothing plus
velocity prediction. The ability to produce accurate predictions can be used to minimize unexpected
delays by using them in a system of multiple asynchronous processes with known, fixed lead times.
Finally, we have shown that the combination of optimal filtering and careful construction of system
communications can result in a well-synchronized, multi-modal virtual environment.

7

References

[1] Friedland, B. (1986). Control system design. McGraw-Hill, 1986.

[2] Held, R. (1990). Correlation and decorrelation between visual displays and motor output.
Motion sickness, visual displays, and armored vehicle design, (pp. 64-75). Aberdeen Proving
Ground, Maryland: Ballistic Research Laboratory.

[3] Kalman, R. E. & Bucy, R. S. (1961). New results in linear filtering and prediction theory.
Transaction ASME (Journal of basic engineering), 83D, 95-108.

[4] Oman, C. M. (1990). Motion sickness: a synthesis and evaluation of the sensory conflict theory.
Canadian Journal of Physiology and Pharmacology, 68, 264-303.

[5] Pentland, A. P. & Williams, J. R. (1989). Good vibrations: Modal dynamics for graphics and
animation. ACM Computer Graphics, 23(4), 215-222.

[6] Pentland, A., Friedmann, M., Horowitz, B., Sclaroff, S. & Starner, T. (1990). The ThingWorld
modeling system. In E.F. Deprettere, (Ed.). Algorithms and parallel VLSI architectures, Am-
sterdam : Elsevier.

[7] Vercoe, B. & Ellis, D. (1990). Real-time CSOUND: Software synthesis with sensing and control.
ICMC Glasgow 1990 Proceedings, 209-211.

[8] Wu, J., Rink, R., Caelli, T., & Gourishankar, V. (1989). Recovery of the 3-D loca-
tion and motion of a rigid object through camera image (An extended Kalman approach)
Int’l Journal of Computer Vision, 2, 373-394.

8

