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Abstract

We present two real-time hidden Markov model-based
systems for recognizing sentence-level continuous Amer-
ican Sign Language (ASL) using a single camera to track
the user’s unadorned hands. The first system observes
the user from a desk mounted camera and achieves 92%
word accuracy. The second system mounts the camera
in a cap worn by the user and achieves 98% accuracy
(97% with an unrestricted grammar). Both experiments
use a 40 word lexicon.

Categories: Gesture Recognition, Hidden Markov
Models, Wearable Computers, Sign Language, Motion
and Pattern Analysis.

1 Introduction

While there are many different types of gestures, the
most structured sets belong to the sign languages. In
sign language, each gesture already has assigned mean-
ing, and strong rules of context and grammar may be
applied to make recognition tractable. American Sign
Language (ASL) is the language of choice for most deaf
in the United States. ASL uses approximately 6000 ges-
tures for common words and finger spelling for commu-
nicating obscure words or proper nouns. However, the
majority of signing is with full words, allowing signed
conversations to proceed at about the pace of spoken
conversation. ASL’s grammar allows more flexibility
in word order than English and sometimes uses redun-
dancy for emphasis. Another variant, Signed Exact En-
glish (SEE), has more in common with spoken English
but is not as widespread in America.

Conversants in ASL may describe a person, place,
or thing and then point to a place in space to store
that object temporarily for later reference [14]. For the
purposes of this experiment, this aspect of ASL will be
ignored. Furthermore, in ASL the eyebrows are raised
for a question, relaxed for a statement, and furrowed for

a directive. While we have also built systems that track
facial features [4, 9], this source of information will not
be used to aid recognition in the task addressed here.

1.1 Related Work

Following a similar path to early speech recognition,
many previous attempts at machine sign language recog-
nition concentrate on isolated signs or fingerspelling.
Space does not permit a thorough review [19], but, in
general, most attempts either relied on instrumented
gloves or a desktop-based camera system and used a
form of template matching or neural nets for recogni-
tion. However, current extensible systems are beginning
to employ hidden Markov models (HMM’s).

Hidden Markov models are used prominently and
successfully in speech recognition and, more recently,
in handwriting recognition. Consequently, they seem
ideal for visual recognition of complex, structured hand
gestures as are found in sign languages. Explicit seg-
mentation on the word level is not necessary for either
training or recognition. Language and context models
can be applied on several different levels, and much re-
lated development of this technology has been done by
the speech recognition community [6].

When the authors first reported this project in 1995
[15, 18], very few uses of HMM’s were found in the com-
puter vision literature [22, 13]. At the time, continuous
density HMM’s were beginning to appear in the speech
community; continuous gesture recognition was scarce;
gesture lexicons were very small; and automatic train-
ing through Baum-Welch re-estimation was uncommon.
Results were not reported with the standard accuracy
measures accepted in the speech and handwriting recog-
nition communities, and training and testing databases
were often identical or dependent in some manner.

Since this time, HMM-based gesture recognizers for
other tasks have appeared in the literature [21, 2],
and, last year, several HMM-based continuous sign lan-
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guage systems were demonstrated. In a submission
to UIST’97, Liang and Ouhyoung’s work in Taiwanese
Sign Language [8] shows very encouraging results with
a glove-based recognizer. This HMM-based system rec-
ognizes 51 postures, 8 orientations, and 8 motion prim-
itives. When combined, these constituents can form a
lexicon of 250 words which can be continuously recog-
nized in real-time with 90.5% accuracy. At ICCV’98,
Vogler and Metaxas described a desk-based 3D camera
system that achieves 89.9% word accuracy on a 53 word
lexicon [20]. Since the vision process is computationally
expensive in this implementation, an electromagnetic
tracker is used interchangeably with the 3 mutually or-
thogonal calibrated cameras for collecting experimental
data.

1.2 The Task

In this paper, we describe two extensible systems which
use one color camera to track unadorned hands in real
time and interpret American Sign Language using hid-
den Markov models. The tracking stage of the sys-
tem does not attempt a fine description of hand shape,
instead concentrating on the evolution of the gesture
through time. Studies of human sign readers suggest
that surprisingly little hand detail is necessary for hu-
mans to interpret sign language [10, 14]. In fact, in
movies shot from the waist up of isolated signs, Sper-
ling et al. [14] show that the movies retain 85% of their
full resolution intelligibility when subsampled to 24 by
16 pixels! For this experiment, the tracking process pro-
duces only a coarse description of hand shape, orienta-
tion, and trajectory. The resulting information is input
to a HMM for recognition of the signed words.

While the scope of this work is not to create a user in-
dependent, full lexicon system for recognizing ASL, the
system is extensible toward this goal. The “continuous”
sign language recognition of full sentences demonstrates
the feasibility of recognizing complicated series of ges-
tures. In addition, the real-time recognition techniques
described here allow easier experimentation, demon-
strate the possibility of a commercial product in the
future, and simplify archival of test data. For this recog-
nition system, sentences of the form “personal pronoun,
verb, noun, adjective, (the same) personal pronoun” are
to be recognized. This structure allows a large variety
of meaningful sentences to be generated using randomly
chosen words from each class as shown in Table 1. Six
personal pronouns, nine verbs, twenty nouns, and five
adjectives are included for a total lexicon of forty words.
The words were chosen by paging through Humphries
et al. [7] and selecting those words which would gen-
erate coherent sentences given the grammar constraint.
Words were not chosen based on distinctiveness or lack

Table 1: ASL Test Lexicon

part of speech vocabulary
pronoun I, you, he, we, you(pl), they
verb want, like, lose, dontwant, dontlike,

love, pack, hit, loan
noun box, car, book, table, paper, pants,

bicycle, bottle, can, wristwatch,
umbrella, coat, pencil, shoes, food,
magazine, fish, mouse, pill, bowl

adjective red, brown, black, gray, yellow

of detail in the finger positioning. Note that finger posi-
tion plays an important role in several of the signs (pack
vs. car, food vs. pill, red vs. mouse, etc.)

2 Hidden Markov Modeling

Due to space limitations, the reader is encouraged to
refer to the existing literature on HMM evaluation, esti-
mation, and decoding [1, 6, 11, 23]. A tutorial relating
HMM’s to sign language recognition is provided in the
first author’s Master’s thesis [15].

The initial topology for an HMM can be determined
by estimating how many different states are involved in
specifying a sign. Fine tuning this topology can be per-
formed empirically. In this case, an initial topology of
5 states was considered sufficient for the most complex
sign. To handle less complicated signs, skip transitions
were specified which allowed the topology to emulate a
strictly 3 or 4 state HMM. While different topologies
can be specified per sign explicitly, the above method
allows training to adapt the HMM automatically with-
out human intervention. However, after testing several
different topologies, a four state HMM with one skip
transition was determined to be appropriate for this task
(Figure 1).

Figure 1: The four state HMM used for recognition.

3 Feature extraction and hand
ambiguity

Previous systems have shown that, given strong con-
straints on viewing, relatively detailed models of the
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hands can be recovered from video images [3, 12]. How-
ever, many of these constraints conflict with recognizing
ASL in a natural context, since they either require sim-
ple, unchanging backgrounds (unlike clothing); do not
allow occlusion; require carefully labelled gloves; or are
difficult to run in real time.

In this project, we track the hands using a single
camera in real-time without the aid of gloves or mark-
ings. Only the natural color of the hands is needed. For
vision-based sign recognition, the two possible mount-
ing locations for the camera are in the position of an
observer of the signer or from the point of view of the
signer himself. These two views can be thought of as
second-person and first-person viewpoints, respectively.

Training for a second-person viewpoint is appropri-
ate in the rare instance when the translation system is
to be worn by a hearing person to translate the signs
of a mute or deaf individual. However, such a system
is also appropriate when a signer wishes to control or
dictate to a desktop computer as is the case in the first
experiment. Figure 2 demonstrates the viewpoint of the
desk-based experiment.

Figure 2: View from the desk-based tracking camera.
Images are analyzed at 320x240 resolution.

The first-person system observes the signer’s hands
from much the same viewpoint as the signer himself.
Figure 3 shows the placement of the camera in the cap
used in the second experiment, and demonstrates the
resulting viewpoint. The camera was attached to an
SGI for development; however, current hardware allows
for the entire system to be unobtrusively embedded in
the cap itself as a wearable computer. A matchstick-
sized camera such as the Elmo QN401E can be embed-
ded in front seam above the brim. The brim can be
made into a relatively good quality speaker by lining it
with a PVDF transducer (used in thin consumer-grade
stereo speakers). Finally a PC/104-based CPU, digi-
tizer, and batteries can be placed at the back of the

head. See Starner et al. [17] and the MIT Wearable
Computing Site (http://wearables.www.media.mit.edu
/projects/wearables/) for more detailed information
about wearable computing and related technologies.

Figure 3: The hat-mounted camera, pointed downward
towards the hands, and the corresponding view.

A wearable computer system provides the greatest
utility for an ASL to spoken English translator. It can
be worn by the signer whenever communication with a
non-signer might be necessary, such as for business or on
vacation. Providing the signer with a self-contained and
unobtrusive first-person view translation system is more
feasible than trying to provide second-person translation
systems for everyone whom the signer might encounter
during the day.

For both systems, color NTSC composite video is
captured and analyzed at 320 by 243 pixel resolution.
This lower resolution avoids video interlace effects. A
Silicon Graphics 200MHz R4400 Indy workstation main-
tains hand tracking at 10 frames per second, a frame
rate which Sperling et al. [14] found sufficient for hu-
man recognition. To segment each hand initially, the
algorithm scans the image until it finds a pixel of the
appropriate color, determined by an a priori model of
skin color. Given this pixel as a seed, the region is grown
by checking the eight nearest neighbors for the appro-
priate color. Each pixel checked is considered part of the
hand. This, in effect, performs a simple morphological
dilation upon the resultant image that helps to prevent
edge and lighting aberrations. The centroid is calcu-
lated as a by-product of the growing step and is stored
as the seed for the next frame. Since the hands have the
same skin tone, the labels “left hand” and “right hand”
are simply assigned to whichever blob is leftmost and
rightmost.

Note that an a priori model of skin color may not
be appropriate in some situations. For example, with
a mobile system, lighting can change the appearance of
the hands drastically. However, the image in Figure 3
provides a clue to addressing this problem, at least for
the first-person view. The smudge on the bottom of the
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image is actually the signer’s nose. Since the camera is
mounted on a cap, the nose always stays in the same
place relative to the image. Thus, the signer’s nose can
be used as a calibration object for generating a model of
the hands’ skin color for tracking. While this calibration
system has been prototyped, it was not used in these
experiments.

After extracting the hand blobs from the scene, sec-
ond moment analysis is performed on each blob. A
sixteen element feature vector is constructed from each
hand’s x and y position, change in x and y between
frames, area (in pixels), angle of axis of least inertia
(found by the first eigenvector of the blob) [5], length of
this eigenvector, and eccentricity of bounding ellipse.

When tracking skin tones, the above analysis helps
to model situations of hand ambiguity implicitly. When
a hand occludes either the other hand or the face (or the
nose in the case of the wearable version), color tracking
alone can not resolve the ambiguity. Since the face re-
mains in the same area of the frame, its position can be
determined and discounted. However, the hands move
rapidly and occlude each other often. When occlusion
occurs, the hands appear to the above system as a sin-
gle blob of larger than normal area with significantly
different moments than either of the two hands in the
previous frame. In this implementation, each of the
two hands is assigned the features of this single blob
whenever occlusion occurs. While not as informative as
tracking each hand separately, this method still retains
a surprising amount of discriminating information. The
occlusion event itself is implicitly modeled, and the com-
bined position and moment information are retained.
This method, combined with the time context provided
by hidden Markov models, is sufficient to distinguish be-
tween many different signs where hand occlusion occurs.

4 The second person view: a
desk-based recognizer

The first experimental situation explored was the sec-
ond person view: a desk-based recognizer. In this ex-
periment 500 sentences were obtained, but 22 sentences
were eliminated due to subject error or outlier signs. In
general, each sign is 1 to 3 seconds long. No intentional
pauses exist between signs within a sentence, but the
sentences themselves are distinct. For testing purposes,
384 sentences were used for training, and 94 were re-
served for testing. The test sentences are not used in
any portion of the training process.

For training, the sentences are divided automati-
cally in five equal portions to provide an initial segmen-
tion into component signs. Then, initial estimates for
the means and variances of the output probabilities are

provided by iteratively using Viterbi alignment on the
training data and then recomputing the means and vari-
ances by pooling the vectors in each segment. Entropic’s
Hidden Markov Model ToolKit (HTK) is used as a basis
for this step and all other HMM modeling and train-
ing tasks. The results from the initial alignment pro-
gram are fed into a Baum-Welch re-estimator, whose
estimates are, in turn, refined in embedded training
which ignores any initial segmentation. For recognition,
HTK’s Viterbi recognizer is used both with and without
the part-of-speech grammar based on the known form of
the sentences. Contexts are not used since they would
require significantly more data to train. However, a sim-
ilar effect can be achieved with the strong grammar in
this data set. Recognition occurs five times faster than
real time.

Word recognition accuracy results are shown in Ta-
ble 2; when different, the percentage of words correctly
recognized is shown in parentheses next to the accuracy
rates. Accuracy is calculated by

Acc =
N − D − S − I

N

where N is the total number of words in the test set, D
is the number of deletions, S is the number of substi-
tutions, and I is the number of insertions. Note that,
since all errors are accounted against the accuracy rate,
it is possible to get large negative accuracies (and cor-
responding error rates of over 100%). When using the
part-of-speech grammar (pronoun, verb, noun, adjec-
tive, pronoun), insertion and deletion errors are not
possible since the number and class of words allowed
is known. Thus, all errors are vocabulary substitutions
when this grammar is used (and accuracy is equivalent
to percent correct). Assuming independence, random
chance would result in a percent correct of 13.9%, cal-
culated by averaging over the likelihood of each part-of-
speech being correct. Without the grammar, the recog-
nizer is allowed to match the observation vectors with
any number of the 40 vocabulary words in any order. In
fact, the number of words produced by the recognizer
can be up to the number of samples in the sentence!
Thus, deletion (D), insertion (I), and substitution (S)
errors are possible in the “unrestricted grammar” tests,
and a comparison to random chance becomes irrelevant.
The absolute number of errors of each type are listed in
Table 2. Many of the insertion errors correspond to
signs with repetitive motion.

An additional “relative features” test is provided in
the results. For this test, absolute (x, y) position is re-
moved from the feature vector. This provides a sense of
how the recognizer performs when only relative features
are available. Such may be the case in daily use; the

4



signer may not place himself in the same location each
time the system is used.

Table 2: Word accuracy of desk-based system

experiment training set independent
test set

all features 94.1% 91.9%
relative features 89.6% 87.2%
all features & 81.0% (87%) 74.5% (83%)
unrestricted (D=31, S=287, (D=3, S=76,
grammar I=137, N=2390) I=41, N=470)

Word accuracies; percent correct in parentheses where

different. The first test uses the strong part-of-speech

grammar and all feature elements. The second test removes

absolute position from the feature vector. The last test

again uses all features but only requires that the

hypothesized output be composed of words from the

lexicon. Any word can occur at any time and any number

of times.

The 94.1% and 91.9% accuracies using the part-of-
speech grammar show that the HMM topologies are
sound and that the models generalize well. However,
the subject’s variability in body rotation and position is
known to be a problem with this data set. Thus, signs
that are distinguished by the hands’ positions in relation
to the body were confused since the absolute positions of
the hands in screen coordinates were measured. With
the relative feature set, the absolute positions of the
hands are be removed from the feature vector. While
this change causes the error rate to increase slightly, it
demonstrates the feasibility of allowing the subject to
vary his location in the room while signing, possibly re-
moving a constraint from the system.

The error rates of the “unrestricted” experiment bet-
ter indicate where problems may occur when extending
the system. Without the grammar, signs with repetitive
or long gestures were often inserted twice for each ac-
tual occurrence. In fact, insertions caused more errors
than substitutions. Thus, the sign “shoes” might be rec-
ognized as “shoes shoes,” which is a viable hypothesis
without a language model. However, a practical solu-
tion to this problem is to use context training and a
statistical grammar.

5 The first person view: a
wearable-based recognizer

For the second experiment, the same 500 sentences were
collected by a different subject. Sentences were re-

signed whenever a mistake was made. The full 500
sentence database is available from anonymous ftp at
whitechapel.media.mit.edu under pub/asl. The subject
took care to look forward while signing so as not to con-
found the tracking with head rotation, though variations
can be seen. Often, several frames at the beginning and
ending of a sentence’s data contain the hands at a rest-
ing position. To take this in account, another token,
“silence” (in deference to the speech convention), was
added to the lexicon. While this “sign” is trained with
the rest, it is not included when calculating the accuracy
measurement.

The resulting word accuracies from the experiment
are listed in Table 3. In this experiment 400 sentences
were used for training, and an independent 100 sen-
tences were used for testing. A new grammar was added
for this experiment. This grammar simply restricts the
recognizer to five word sentences without regard to part
of speech. Thus, the percent correct words expected
by chance using this “5-word” grammar would be 2.5%.
Deletions and insertions are possible with this grammar
since a repeated word can be thought of as a deletion
and an insertion instead of two substitutions.

Table 3: Word accuracy of wearable computer system

grammar training set independent
test set

part-of- 99.3% 97.8%
speech
5-word 98.2% (98.4%) 97.8%

sentence (D = 5, S=36,
I=5 N =2500)

unrestricted 96.4% (97.8%) 96.8% (98.0%)
(D=24, S=32, (D=4, S=6,
I=35, N=2500) I=6, N=500)

Word accuracies; percent correct in parentheses where

different. The 5-word grammar limits the recognizer output

to 5 words selected from the vocabulary. The other

grammars are as before.

Interestingly, for the part-of-speech, 5-word, and un-
restricted tests, the accuracies are essentially the same,
suggesting that all the signs in the lexicon can be dis-
tinguished from each other using this feature set and
method. As in the previous experiment, repeated words
represent 25% of the errors in the unrestricted grammar
test. In fact, if a simple repeated word filter is applied
post process to the recognition, the unrestricted gram-
mar test accuracy becomes 97.6%, almost exactly that
of the most restrictive grammar! Looking carefully at
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the details of the part-of-speech and 5-word grammar
tests indicate that the same beginning and ending pro-
noun restriction may have hurt the performance of the
part-of-speech grammar! Thus, the strong grammars
are superfluous for this task. In addition, the very sim-
ilar results between fair-test and test-on-training cases
indicate that the HMM’s training converged and gener-
alized extremely well for the task.

The main result is the high accuracies themselves,
which indicate that harder tasks should be attempted.
However, why is the wearable system so much more ac-
curate than the desk system? There are several possible
factors. First, the wearable system has less occlusion
problems, both with the face and between the hands.
Second, the wearable data set did not have the problem
with body rotation that the first data set experienced.
Third, each data set was created and verified by sep-
arate subjects, with successively better data recording
methods. Controlling for these various factors requires
a new experiment, described in the next section.

6 Discussion and Future Work

We have shown a high accuracy computer vision-based
method of recognizing sentence-level American Sign
Language selected from a 40 word lexicon. The first
experiment shows how the system can be used to com-
municate with a desk-based computer. The second ex-
periment demonstrates how a wearable computer might
use this method as part of an ASL to English translator.
Both experiments argue that HMM’s will be a power-
ful method for sign language recognition, much as they
have been for speech and handwriting recognition. In
addition, the experiments suggest that the first person
view provides a valid perspective for creating a wearable
ASL translator.

While it can be argued that sign evolved to have
maximum intelligibility from a frontal view, further
thought reveals that sign also may have to be distin-
guishable by the signer himself, both for learning and
to provide control feedback. To determine which view
is superior for recognition, we have begun a new exper-
iment. Native signers will be given a task to complete.
The task will be designed to encourage a small vocabu-
lary (e.g. a few hundred words) and to encourage nat-
ural sign. Four views of the signers will be recorded
simulaneously: a stereo pair from the front, a view from
the side, and the wearable computer view. Thus, both
3D and 2D tracking from various views can be compared
directly.

Head motion and facial gestures also have roles in
sign which the wearable system would seem to have
trouble addressing. In fact, uncompensated head ro-

tation would significantly impair the current system.
However, as shown by the effects in the first experiment,
body/head rotation is an issue from either viewpoint.
Simple fiducials, such as a belt buckle or lettering on a
t-shirt may be used to compensate tracking or even pro-
vide additional features. Another option for the wear-
able system is to add inertial sensors to compensate for
head motion. In addition, EMG’s may be placed in the
cap’s head band along the forehead to analyze eyebrow
motion as has been discussed by Picard [9]. In this way
facial gesture information may be recovered.

As the system grows in lexicon size, finger and palm
tracking information may be added. This may be as
simple as counting how many fingers are visible along
the contour of the hand and whether the palm is facing
up or down. In addition, tri-sign context models and
statistical grammars may be added which may reduce
error up to a factor of eight if speech and handwriting
trends hold true for sign [16].

These improvements do not address user indepen-
dence. Just as in speech, making a system which can
understand different subjects with their own variations
of language involves collecting data from many sub-
jects. Until such a system is tried, it is hard to estimate
the number of subjects and the amount of data that
would comprise a suitable training database. Indepen-
dent recognition often places new requirements on the
feature set as well. While the modifications mentioned
above may be initially sufficient, the development pro-
cess is highly empirical.

Similarly, we have not yet addressed the problem of
finger spelling. Changes to the feature vector to address
finger information are vital, but adjusting the context
modeling is also of importance. With finger spelling, a
closer parallel can be made to speech recognition. Tri-
sign context occurs at the sub-word level while grammar
modeling occurs at the word level. However, this is at
odds with context across word signs. Can tri-sign con-
text be used across finger spelling and signing? Is it ben-
eficial to switch to a separate mode for finger spelling
recognition? Can natural language techniques be ap-
plied, and if so, can they also be used to address the
spatial positioning issues in ASL? The answers to these
questions may be key to creating an unconstrained sign
language recognition system.
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